Computational Method for Obtaining Filiform Lie Algebras of Arbitrary Dimension

MANUEL CEBALLOS ${ }^{1}$, JUAN NÚÑEZ ${ }^{1} \&$ ÁNGEL F. TENORIO 2
${ }^{1}$ University of Seville
Department of Geometry and Topology
Aptdo. 1160. 41080-Seville.
SPAIN
${ }^{2}$ Pablo de Olavide University
Dept. Economics, Quantitative Methods and Economic History
Ctra. Utrera km. 1. 41013-Seville
SPAIN
mceballos@us.es, jnvaldes@us.es, aftenorio@upo.es

Abstract

This paper shows a new computational method to obtain filiform Lie algebras, which is based on the relation between some known invariants of these algebras and the maximal dimension of their abelian ideals. Using this relation, the law of each of these algebras can be completely determined and characterized by means of the triple consisting of its dimension and the invariants z_{1} and z_{2}. As examples of application, we have included a table showing all valid triples determining filiform Lie algebras for dimension 13.

Key-Words: Filiform Lie algebra, abelian ideal, invariant z_{1}, invariant z_{2}, algorithm, computational methods.

1 Introduction

Nowadays, several questions about Lie algebras remain unanswered. One of these still open problem is to obtain the classification of nilpotent Lie algebras. Due to the difficulty of this problem, it seems convenient not to consider the whole classification but over a subclass of nilpotent Lie algebras. In the case of this paper, we study the classification of filiform Lie algebras - introduced by Vergne [9] in the late 1960s.

Note that classifying nilpotent Lie algebras can be worked from a geometric approach. In this sense, the set of n-dimensional Lie-algebra laws is an affine algebraic variety containing a Zariski closed subset made up of all nilpotent laws. Moreover, filiform laws correspond with a Zariski open subset in the variety of nilpotent laws.

The classification of filiform Lie algebras of dimensions 11 and 12 and the confirmation of the classifications of minors dimensions was obtained by Boza et al. [1] and Fedriani [7]. Additionally, Bratzlavsky [2] completely determined the classification of filiform Lie algebras \mathfrak{g} such that their derived algebra $\mathcal{C}^{2}(\mathfrak{g})$ is abelian. More recently, Echarte et al. [6] characterized n-dimensional complex filiform Lie algebras such that $\mathcal{C}^{3}(\mathfrak{g})$ is abelian by means of the invariants z_{1} and z_{2} previously introduced in [3]. The present paper carries on the study started in [6] and also introduce a new computational method to obtain the law of all filiform Lie algebras only giving as input the maximum among the dimension of its abelian ideals (this maximum determines the value of z_{2} and gives the interval in which the value of z_{1} is running). In our opinion, the results obtained here can be considered a new step forward in the classification problem of filiform Lie algebras.

2 Preliminaries

For an overall review about Lie algebras, the reader can consult [8]. In this paper, we only consider finitedimensional Lie algebras over the complex number field \mathbb{C}.

Given a n-dimensional Lie algebra \mathfrak{g}, its lower central series is defined as

$$
\mathcal{C}^{1}(\mathfrak{g})=\mathfrak{g}, \mathcal{C}^{2}(\mathfrak{g})=[\mathfrak{g}, \mathfrak{g}], \ldots, \mathcal{C}^{k}(\mathfrak{g})=\left[\mathcal{C}^{k-1}(\mathfrak{g}), \mathfrak{g}\right], \ldots
$$

and \mathfrak{g} is nilpotent if there exists $m \in \mathbb{N}$ such that $\mathcal{C}^{m}(\mathfrak{g}) \equiv 0$. Moreover, if the lower central series satisfies $\operatorname{dim}\left(\mathcal{C}^{1}(\mathfrak{g})\right)=n, \operatorname{dim}\left(\mathcal{C}^{2}(\mathfrak{g})\right)=n-2, \operatorname{dim}\left(\mathcal{C}^{3}(\mathfrak{g})\right)=n-3, \ldots$ and $\operatorname{dim}\left(\mathcal{C}^{n}(\mathfrak{g})\right)=0$, then \mathfrak{g} is said to be filiform.

For these latter, a basis $\left\{e_{i}\right\}_{i=1}^{n}$ is called adapted if the brackets appearing in the law of this algebra are: $\left[e_{1}, e_{h}\right]=e_{h-1}$, for $3 \leq h \leq n ;\left[e_{2}, e_{h}\right]=0, \forall h ;\left[e_{3}, e_{h}\right]=0$, for $2 \leq h \leq n$. In this way, \mathfrak{g} is model if the unique nonzero brackets in its law are $\left[e_{1}, e_{h}\right]=e_{h-1}$, for $3 \leq h \leq n$.

A subset \mathfrak{h} of a Lie algebra \mathfrak{g} is an abelian ideal if $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$ and $\mathcal{C}^{2}(\mathfrak{h})=0$. The maximal dimension among all the abelian ideals of \mathfrak{g} will be denoted by $\beta(\mathfrak{g})$. This value is an invariant of the Lie algebra \mathfrak{g}.

Next, we recall two invariants of filiform Lie algebras introduced in [3,5]. If \mathfrak{g} is a n-dimensional filiform Lie algebra, the invariant z_{1} is defined as follows

$$
z_{1}=\max \left\{k \in \mathbb{N} \mid C_{\mathfrak{g}}\left(\mathcal{C}^{n-k+2}(\mathfrak{g})\right) \supset \mathcal{C}^{2}(\mathfrak{g})\right\}=\min \left\{k \geq 4 \mid\left[e_{k}, e_{n}\right] \neq 0\right\}
$$

where $C_{\mathfrak{g}}(\mathfrak{h})$ is the centralizer of a subalgebra \mathfrak{h} in \mathfrak{g} and $\left\{e_{i}\right\}_{i=1}^{n}$ is an adapted basis of \mathfrak{g}. Note that this set is empty for model filiform Lie algebras. Additionally, the definition of z_{1} involves that the ideal $\mathcal{C}^{n-i+2}(\mathfrak{g})$ is the largest one with centralizer containing $\mathcal{C}^{2}(\mathfrak{g})$. Moreover, the following assertion was proved in [3]

$$
\begin{equation*}
\left[e_{h}, e_{k}\right]=0, \text { for } 1<h<z_{1} \text { and } k>1 \tag{1}
\end{equation*}
$$

The invariant z_{2} is defined as $z_{2}=\max \left\{k \in \mathbb{N} \mid \mathcal{C}^{n-k+1}(\mathfrak{g})\right.$ is abelian $\}$. Immediately, this definition implies that $\mathcal{C}^{n-z_{2}+1}(\mathfrak{g}) \equiv\left\langle e_{2}, \ldots, e_{z_{2}}\right\rangle$ is the largest abelian ideal in the lower central series of \mathfrak{g}.

In [3], the following relation was proved for these two invariants and the dimension of \mathfrak{g}

$$
\begin{equation*}
4 \leq z_{1} \leq z_{2}<n \leq 2 z_{2}-2 \tag{2}
\end{equation*}
$$

Finally, the following results were achieved for invariants z_{1} and z_{2} in [5]
Lemma 1 Under the previous conditions, it is deduced that $\left[e_{z_{1}+k-1}, e_{z_{2}+1}\right]=\alpha_{1} e_{k+1}+\alpha_{2} e_{k}+\ldots+$ $\alpha_{k-1} e_{3}+\alpha_{k} e_{2}$, with $1 \leq k \leq z_{2}-z_{1}+1$. Moreover, $\alpha_{p} \neq 0$, for some p such that $1 \leq p \leq z_{2}-z_{1}+1$.

Lemma 2 Under the previous conditions, it is deduced that $\left[e_{z_{1}}, e_{z_{2}+k}\right]=\alpha_{1} e_{k+1}+\alpha_{2}^{1} e_{k}+\ldots+\alpha_{k}^{k-1} e_{2}$, with $1 \leq k \leq n-z_{2}$. Moreover, $\alpha_{q}^{q-1} \neq 0$, for some q such that $1 \leq q \leq n-z_{2}$.

3 Theoretical results

Proposition 3 Let \mathfrak{g} be an n-dimensional non-model filiform Lie algebra. Then, $\mathcal{C}^{n-z_{2}+1}(\mathfrak{g})$ is the unique abelian ideal of maximal dimension. Consequently, $\beta(\mathfrak{g})=z_{2}-1$.

Proof: Let $\left\{e_{h}\right\}_{h=1}^{n}$ be an adapted basis of \mathfrak{g}. Since \mathfrak{g} is filiform, its lower central series is given by the ideals $\mathcal{C}^{k}(\mathfrak{g})=\left\langle\left\{e_{i}\right\}_{i=2}^{n-k+1}\right\rangle, \forall k \in \mathbb{N}$. In virtue of the definition of z_{2}, the ideal $\mathcal{C}^{n-z_{2}+1}(\mathfrak{g})$ is abelian but $\mathcal{C}^{n-z_{2}}(\mathfrak{g})$ is not.

If \mathfrak{I} is an abelian ideal of \mathfrak{g}, we will prove that $\mathfrak{I} \subset \mathcal{C}^{n-z_{2}+1}(\mathfrak{g})$. In effect, assume $\mathfrak{I} \nsubseteq \mathcal{C}^{n-z_{2}+1}(\mathfrak{g})$. If $x \in \mathfrak{I} \backslash \mathcal{C}^{n-z_{2}+1}(\mathfrak{g})$, then $x=\sum_{h=1}^{n} \alpha_{h} e_{h}$ such that $\exists h \in \mathbb{N} \cap\left[z_{2}+1, n\right]$ with $\alpha_{h} \neq 0$.

Additionally, if $\alpha_{p} \neq 0$ for some $p \in \mathbb{N} \cap\left[z_{2}+1, n\right]$, then $\mathcal{C}^{n-p+1}(\mathfrak{g})=\left\langle e_{2}, \ldots, e_{p}\right\rangle \subseteq \mathfrak{I}$. This is because \mathfrak{I} is an ideal and hence $a d^{q}\left(e_{1}\right)(x)=\alpha_{q+2} e_{2}+\ldots+\alpha_{p} e_{p-q}+\ldots+\alpha_{n} e_{n-q} \in \mathfrak{I}$, for each $q \in \mathbb{N} \cap[0, n-2]$. In consequence, since $p \geq z_{2}+1$, we have the following chain of inclusions: $\mathcal{C}^{n-z_{2}}(\mathfrak{g}) \subset \mathcal{C}^{n-p+1}(\mathfrak{g}) \subset \mathfrak{I}$. Hence, \mathfrak{I} is non-abelian, which comes into contradiction with our initial assumption.

Proposition 4 Let \mathfrak{g} be an n-dimensional non-model filiform Lie algebra. Then, the law of \mathfrak{g} is given by the following brackets
$\left[e_{1}, e_{h}\right]=e_{h-1}$, for $3 \leq h \leq n$;
$\left[e_{z_{1}}, e_{z_{2}+1}\right]=\alpha_{1} e_{2} ;$
$\left[e_{z_{1}+1}, e_{z_{2}+1}\right]=\alpha_{1} e_{3}+\alpha_{2} e_{2} ; \ldots$
$\left[e_{z_{2}}, e_{z_{2}+1}\right]=\alpha_{1} e_{z_{2}-z_{1}+2}+\alpha_{2} e_{z_{2}-z_{1}+1}+\ldots+\alpha_{z_{2}-z_{1}} e_{3}+\alpha_{z_{2}-z_{1}+1} e_{2} ;$
$\left[e_{z_{1}}, e_{z_{2}+k}\right]=\alpha_{1} e_{k+1}+\alpha_{2}^{1} e_{k}+\ldots+\alpha_{k}^{k-1} e_{2} ;$
$\left[e_{z_{1}+p}, e_{z_{2}+k}\right]=\sum_{h=2}^{k+p} P_{h}\left(\left[e_{z_{1}+p-1}, e_{z_{2}+k}\right]+\left[e_{z_{1}+p}, e_{z_{2}+k-1}\right]\right) e_{h+1}+\alpha_{k+p}^{k-1} e_{2}$,
where $2 \leq k \leq n-z_{2}, p<z_{2}-z_{1}+k$ and $P_{l}($ for $1 \leq l \leq n)$ is the following function

$$
P_{l}: \mathfrak{g} \rightarrow \mathbb{C}: u \mapsto P_{l}(u),
$$

where $P_{l}(u)$ denotes the coordinate of $u \in \mathfrak{g}$ with respect to the basis vector e_{l}.
Proof: The brackets $\left[e_{z_{1}+k}, e_{z_{2}+1}\right]=\alpha_{1} e_{k+2}+\alpha_{2} e_{k+1}+\ldots+\alpha_{k} e_{3}+\alpha_{k+1} e_{2}$ and $\left[e_{z_{1}}, e_{z_{2}+k}\right]=$ $\alpha_{1} e_{k+1}+\alpha_{2}^{1} e_{k}+\ldots+\alpha_{k}^{k-1} e_{2}$ are obtained from Lemmas 1 and 2 , respectively. We only need to prove that for $2 \leq k \leq n-z_{2}$ and $p<z_{2}-z_{1}+k,\left[e_{z_{1}+p}, e_{z_{2}+k}\right]=\sum_{h=2}^{k+p} P_{h}\left(\left[e_{z_{1}+p-1}, e_{z_{2}+k}\right]+\right.$ $\left.\left[e_{z_{1}+p}, e_{z_{2}+k-1}\right]\right) e_{h+1}+\alpha_{k+p}^{k-1} e_{2}$. We use the Jacobi identity $J\left(e_{1}, e_{z_{1}+p}, e_{z_{2}+k}\right)=0$, which involves $\left[e_{1},\left[e_{z_{1}+p}, e_{z_{2}+k}\right]\right]=\left[e_{z_{1}+p-1}, e_{z_{2}+k}\right]+\left[e_{z_{1}+p}, e_{z_{2}+k-1}\right]$, therefore $\left[e_{z_{1}+p}, e_{z_{2}+k}\right]=$ $\sum_{h=2}^{k+p} P_{h}\left(\left[e_{z_{1}+p-1}, e_{z_{2}+k}\right]+\left[e_{z_{1}+p}, e_{z_{2}+k-1}\right]\right) e_{h+1}+\alpha_{k+p}^{k-1} e_{2}$.

Now, by using the invariant z_{2} and Expression (2), we obtain the following two results
Corollary 5 Let \mathfrak{g} be an n-dimensional non-model filiform Lie algebra with $\beta(\mathfrak{g})=k \in \mathbb{N}$. Then, $z_{2}=$ $k+1$ and the following relation holds: $3 \leq z_{1}-1 \leq k<n-1 \leq 2 k-1$.

Corollary 6 Let \mathfrak{g} be an n-dimensional non-model filiform Lie algebra with adapted basis $\left\{e_{h}\right\}_{h=1}^{n}$. If \mathfrak{h} is the subalgebra $\left\langle\left\{e_{i}\right\}_{i=2}^{n}\right\rangle$, then the derived subalgebra $\mathcal{C}^{2}(\mathfrak{h})$ satisfies that $\mathcal{C}^{2}(\mathfrak{h}) \subset\left\langle\left\{e_{i}\right\}_{i=2}^{2 n-\left(z_{1}+z_{2}\right)}\right\rangle$.

Let us note that Corollary 5 improves the well-known bound for $\beta(\mathfrak{g})$ in a complex non-abelian nilpotent Lie algebra \mathfrak{g} given in [4]: $\frac{\sqrt{8 n+1}-1}{2} \leq \beta(\mathfrak{g}) \leq n-1$.

4 Algorithmic Method

This section introduces a computational method which returns the law of all n-dimensional non-model filiform Lie algebra \mathfrak{g} such that $\beta(\mathfrak{g})$ equals to the value $k \in \mathbb{N}$ used as input. Next, we give a step-by-step explanation of this method.

Input

1. Dimension n of a non-model filiform Lie algebra \mathfrak{g}.
2. Value k of the invariant $\beta(\mathfrak{g})$.

Output

1. List with all triples $\left(z_{1}, z_{2}, n\right)$ such that there exist non-model filiform Lie algebras associated with them.
2. Law of all filiform Lie algebras associated with each triple.

Method

1. Computing the value of invariant z_{2} by using Proposition 3. According to this value and Expression (2), several possibilities appear for the invariant z_{1}.
2. For each value of z_{1}, computing all possible non-zero brackets of \mathfrak{g} given by Proposition 4.
3. Ruling out those values of z_{1} not satisfying the Jacobi identities $J\left(e_{h}, e_{k}, e_{l}\right)=0$, for $z_{1} \leq h<k<$ $l \leq n$.
4. Obtaining the list with all the triples $\left(z_{1}, z_{2}, n\right)$ such that there exist non-model filiform Lie algebras having such invariants.
5. By using Proposition 4 again, computing the law of all Lie algebras associated with each triple given in the previous step.

Regarding Step 3, let us note that Expression (1) implies that $J\left(e_{a}, e_{b}, e_{c}\right)=0$, for $a<b<c<z_{1}$. Next, we give a result related to the trivial case for triples $\left(z_{1}, z_{2}, n\right)$.

Proposition 7 If $z_{1} \geq n-\frac{z_{2}}{2}$, the triple $\left(z_{1}, z_{2}, n\right)$ is associated with an n-dimensional non-model filiform Lie algebra.

Proof: If $z_{1} \geq n-\frac{z_{2}}{2}$, then $\mathcal{C}^{2}(\mathfrak{h}) \subset\left\langle e_{2}, \ldots, e_{z_{1}}\right\rangle$ in virtue of Corollary 6. We have to prove that $J\left(e_{i}, e_{j}, e_{k}\right)=0$, for $z_{1} \leq i<j<k \leq n$. From Expression (1), we obtain [$\left.\left[e_{a}, e_{b}\right], e_{c}\right]=0$, for $z_{1} \leq a<b<n$ and $c \geq 1$. Consequently, $J\left(e_{i}, e_{j}, e_{k}\right)=0$, for $z_{1} \leq i<j<k \leq n$.

5 Implementation and application

Now, we show the implementation of the two main routines needed to apply the previous algorithm. To do so, we have used the symbolic computation package MAPLE 12 . We start loading the library DifferentialGeometry, LieAlgebras to activate commands related to Lie algebras such as BracketOfSubspaces.

First, we show the implementation of a routine which computes the law of a filiform Lie algebra from the triple $\left(z_{1}, z_{2}, n\right)$ by using Proposition 4 . This routine, named law, receives the triple $\left(z_{1}, z_{2}, n\right)$ as input and returns the filiform Lie algebra associated with this triple. For the implementation, we define a list as a local variable L. This list saves the indexes and the value of the structure constants corresponding with the non-zero brackets of the filiform Lie algebra. First, L saves the brackets given by filiformity (i.e. $\left.\left[e_{1}, e_{h}\right]=e_{h-1}, \forall 3 \leq h \leq n\right)$ and the bracket $\left[e_{z_{1}}, e_{z_{2}+1}\right]=\alpha_{1} e_{2}$. Then, a loop is programmed for including the indexes of the rest of non-zero brackets in L.

```
law:=proc(z_1,z_2,n)
local L; L:=[seq([[1,h,h-1],1],h=3..n),
[[z_1,z_2+1,2],a[1]]];
for i from 1 to n do for j from 1 to n do c[i,i][j]:=0; od; od;
for i from 1 to z_2-z_1 do for l from 1 to i+1 do
    L:=[op (L),[[z_1+i,z_2+1,i+3-l],a[l]]];
    c[z_1+i,z_2+1][i+3-l]:=a[l];
od; od;
for i from 2 to n-z_2 do
    L:=[op (L),[[z_1, z_2+i,i+1],a[1]]];
    c[z_1,z_2+i][i+1]:=a[1];
    for j from 2 to i do
            L:=[op(L),[[z_1,z_2+i,i+2-j],a[j][j-1]]];
            c[z_1,z_2+i][i+2-j]:=a[j][j-1];
od; od;
for i from 2 to n-z_2 do for j from 1 to z_2-z_1+i-1 do
    L:=[op(L),[[z_1+j, z_2+i, 2],
    a[i+j][i+j-1]]];
    c[z_1+j,z_2+i][2]:=a[i+j][i+j-1];
    for h from 2 to i+j do
            L:=[op (L),[[z_1+j, z_2+i,h+1],
            c[z_1+j-1,z_2+i][h]+c[z_1+j,z_2+i-1][h]]];
            c[z_1+j, z_2+i][h+1]:=c[z_1+j-1, z_2+i][h]+
            c[z_1+j,z_2+i-1][h];
```

```
> od;od;od;
> return _DG([["LieAlgebra",Alg1,[n]],L]);
> end proc:
```

Next, we implement the routine coefficients, which receives as input the triple $\left(z_{1}, z_{2}, n\right)$ and returns a list with all the structure constants α_{i} and α_{i}^{j} in the law of the associated filiform Lie algebra.

```
> coefficients:=proc(z_1,z_2,n)
> local M; M:={};
> for i from 1 to z_2-z_1+1 do M:={op(M),a[i]}; od;
> for j from 2 to 2\starn-z_1-z_2-1 do M:={op(M),a[j][j-1]}; od;
> return M;
> end proc:
```

Now, we save the output of the routine law in the variable Eq, changing the format of the subindexes of the basis vectors. After that, we evaluate the sentence

```
> DGsetup(law(z_1,z_2,n));
```

From this point, we can operate over the Lie algebra associated with the output given by law. This algebra is denoted by Alg1. Now, we execute

```
Alg1 > L:=LieAlgebraData(Eq,[seq(e[i],i=1..n)],Alg2);
```

> DGsetup(L);

From here on, we are working over the Lie algebra Alg2. With the command LieAlgebraData, we can evaluate the following sentence

```
Alg2 > TF,EQ,SOLN,AlgList:=Query(coefficients(z_1,z_2,n),"Jacobi");
```

This sentence provides us the conditions given by the Jacobi identities in terms of equations for the filiform Lie algebra. Additionally, AlgList shows us a list with all the nonzero brackets.

Finally, for each element in the previous output (that is a list), we have to write the following commands

```
Alg2 > DGsetup(AlgList[i]);
Alg2_i > f:=proc() if BracketOfSubspaces([ez_1],[en])=[] then return "It is not a filiform
Alg2_i > Lie algebra"; end if;
Alg2_i > if BracketOfSubspaces([ez_2],[ez_2+1])=[] then return "It is not a filiform Lie
Alg2_i > algebra"; else return Alg2_i > AlgList[i],SOLN[i]; fi;
Alg2_i > end proc:
Alg2_i > f()
```

With these sentences, we program a routine which studies if the Lie algebra given in AlgList [i] is compatible with the definition of the invariants z_{1} and z_{2}. If so, the output is the set of conditions for the structure constants given by the routine coefficients and the nonzero brackets of the Lie algebra. Otherwise, the output is the message "It is not a filiform Lie algebra".

References:

[1] L. Boza, E.M. Fedriani and J. Núñez: Complex filiform Lie algebras of dimension 11. Appl. Math. Comput. 141, 2003, pp. 611-630.
[2] F. Bratzlavsky: Classification des algèbres de Lie nilpotentes de dimension n, de classe $n-1$, dont l'idèal dèrivè est commutatif. Acad. Roy. Belg. Bull. Cl. Sci. 5^{e} Sér. 60, 1974, pp. 858-865.
[3] F.J. Echarte, J. Núñez and F. Ramírez: Study of two invariants in complex filiform Lie algebras. Algebras Groups Geom. 13, 1996, pp. 55-70.
[4] A.G. Elashvili and A.I. Ooms. On commutative Polarizations. J. Algebra 264 (2003), 129-154.
[5] F.J. Echarte, J. Núñez and F. Ramírez: Relations among invariants of complex filiform Lie algebras. Appl. Math. Comp. 147, 2004, pp. 365-376.
[6] F.J. Echarte, J. Núñez and F. Ramírez: Description of some families of filiform Lie algebras. Houston J. Math. 34, 2008, pp. 19-32.
[7] E.M. Fedriani: Classification of Complex Filiform Lie Algebras of Dimension 12. M.Sc. Thesis. University of Seville, Spain, 1997 (in Spanish).
[8] V.S. Varadarajan: Lie Groups, Lie Algebras and Their Representations. Springer, New York, USA, 1984.
[9] M. Vergne: Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algebres de Lie nilpotentes. Bull. Soc. Math. France 98, 1970, pp. 81-116.

Table 1: Triples for non-model filiform Lie algebras of dimension 13.

$\beta(\mathfrak{g})$	Triples	Restrictions
7	$(k, 8,13)$	\ddagger algebra
	$k \in[4,8]$	
8	$(4,9,13)$	\ddagger algebra
	$(5,9,13)$	$\left\{\alpha_{i}, \alpha_{i+1}^{i}=0\right\}$, for $1 \leq i \leq 4$
	$(6,9,13)$	\nexists algebra
	$(7,9,13)$	$\begin{gathered} \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{2}^{1}, \alpha_{3}^{2}=0, \alpha_{4}=-2 \alpha_{4}^{3}\right\} \\ \left\{\alpha_{1}, \alpha_{2}, \alpha_{2}^{1}=0\right\} \end{gathered}$
		$\begin{gathered} \left\{\alpha_{1}, \alpha_{4}^{3}=0, \alpha_{2}=\frac{-5 \pm 3 \sqrt{65}}{28} \alpha_{2}^{1},\right. \\ \alpha_{3}^{2}=-\frac{\alpha_{3}}{5} \frac{(297 \pm 3 \sqrt{65})}{(-5+3 \sqrt{65}\}} \end{gathered}$
	$(8,9,13)$	$\left\{\alpha_{1}, \alpha_{2}^{1}=0\right\},\left\{\begin{array}{l} \\ \left.\alpha_{1}=0, \alpha_{2}=-\frac{9}{5}\right\}\end{array}\right.$
	$(9,9,13)$	None
9	$(4,10,13)$	\ddagger algebra
	$(5,10,13)$	\ddagger algebra
	$(6,10,13)$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{2}^{1}=0, \alpha_{3}= \pm \frac{\sqrt{5}}{3} \alpha_{3}^{2}\right\}$
	$(7,10,13)$	$\left\{\alpha_{1}=0, \alpha_{2}=-\frac{5}{9} \alpha_{2}^{3}\right\},$
	$(8,10,13)$	$\left\{\alpha_{1}=0\right\}$
	$(9,10,13)$	None
	$(10,10,13)$	None
10	$(4,11,13)$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}=0\right\}$
	$(5,11,13)$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}=0\right\}$
	$(6,11,13)$	$\left\{\alpha_{1}, \alpha_{2}=0\right\}$
	$(7,11,13)$	$\left\{\alpha_{1}=0\right\}$
	$(k, 11,13)$	None
	$k \in[8,11]$	
11	$(k, 12,13)$	None
	$k \in[4,12]$	

