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a b s t r a c t

RFID technology has been examined in healthcare to support a variety of applications such as patient

identification and monitoring, asset tracking, and patient–drug compliance. However, managing the

large volume of RFID data and understanding them in the medical context present new challenges. One

effective solution for dealing with these challenges is complex event processing (CEP), which can

extract meaningful events for context-aware applications. In this paper, we propose a CEP framework to

model surgical events and critical situations in an RFID-enabled hospital. We have implemented a

prototype system with the proposed approach for surgical management and conducted performance

evaluations to test its scalability and capability. Our study provides a feasible solution to improve

patient safety and operational efficiency for an RFID-enabled hospital, by providing sense and response

capability to detect medically significant events.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The pressures of improving patient safety while reducing
operational costs for healthcare are forcing hospitals to adopt new
information technologies so as to reduce medical errors and
respond quickly to critical situations. Radio frequency identifica-
tion (RFID) is a rapidly developing technology and it is believed to
be the next generation innovation for automatic data collection,
object identification, and asset tracking. Although RFID is still in
its infancy in healthcare applications, it has gained much
attention during recent years from both service providers and
technology vendors. Some pioneering hospitals have implemen-
ted this technology to identify and monitor patients, track assets
and medical supplies, and check patient–drug compliance. A
survey conducted by BearingPoint (2007) and the National
Alliance for Health Information Technology on participants of
more than 300 government and healthcare executives, indicates
that RFID is ‘‘poised for growth in healthcare’’.

With the capability to capture the identity and location of any
tagged object automatically and periodically, RFID data in
hospitals can be in huge amount. Besides, an increasing number
of embedded devices in hospitals, such as physiological sensors
and environmental sensors, emit data in real time. Consequently,
a hospital needs to handle a large amount of data from a variety of
sources and detect medically significant events timely by

correlating RFID and non-RFID data. However, RFID raw data
only provides low-level information such as Electronic Product
Codes (EPC) of the tagged objects, location and timestamp, which
are not directly related to business processes. Physiological events
such as patient body temperature and blood pressure are also in
low level. Other data such as patient medical record needs to be
correlated to signify actionable information for decision making.
Therefore, the ability to transform raw data in health care
practices into useful knowledge in order to realize the maximum
value from RFID technology becomes a critical issue.

Complex event processing (CEP) (Luckham, 2002) provides an
effective solution to process event streams in real time for today’s
dynamic business environment. Compared to the delayed-analy-
sis methods used traditionally in relational databases, CEP
involves continuous processing and analysis of high-volume and
high-speed data streams such as RFID data. It also correlates
distributed data to detect and respond to business-critical
situations in real time. Thus, CEP helps to deal with a variety of
data streams to deliver actionable information. For example, in
the case of patient identification in a surgery, if a wrong patient is
taken to the surgery room mounted with an RFID reader, an alert
will be triggered and sent to the care provider immediately.
Therefore, leveraging CEP to manage hospital events that are
captured by RFID systems and embedded devices for situation
detection can be helpful to solve the challenges faced by
healthcare.

In this paper, we propose an RFID-enabled CEP framework for
managing hospital data from a variety of sources, specifically for
surgical procedures. We apply the logic of CEP to model basic
events and event patterns in hospitals to detect medically
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significant events. To verify the feasibility of our approach, we
have developed a prototype system that leverages CEP to provide
critical alerts for healthcare professionals. This paper aims to
identify potential challenges that affect the quality of healthcare
services and seeks a viable approach to improve patient safety.
This study helps to answer the following questions: (1) what are
the major challenges faced in hospitals, especially in surgical
procedures, (2) how can RFID help to address these challenges?
(3) what is CEP and how can CEP be used to handle a large number
of RFID events and other medical events? and (4) what are the
expected benefits of using RFID-enabled CEP framework in
hospitals?

This paper is organized as follows. In Section 2, we describe
background information and an application scenario. Then we
present CEP preliminaries in Section 3, including events, event
operators, and event rules. Section 4 describes the modeling of
hospital events and patterns. The implementation and evaluation
of the proposed RFID-enabled CEP prototype is described in
Section 5, where system architecture and performance evaluation
are presented. In Section 6, we discuss the contributions and
limitations of our work, followed by the related work in Section 7.
Section 8 outlines our conclusion and future work.

2. Background and motivation

2.1. An application scenario

The hospital is a large, extremely busy, and chaotic environ-
ment where hundreds of medical cases are treated every day.
Hundreds of doctors and staffs are walking constantly; inpatients
and outpatients are moving around under surveillance; medical
devices are commonly recalled for emergent use. Although
information systems have been used to support the work of
medical professionals, they are not able to accurately track patient
flow and asset flow in real time. Thus, sensing and responding
quickly to critical situations becomes impossible in this dynamic

and unpredictable environment. In particular, performing a
surgery requires extensive information sharing, coordination,
emergent situations detection, and immediate reactions. Achiev-
ing these requirements is even difficult if no proper technology is
used to help monitor patient flows, track medical devices, and
alert unexpected situations. Failure in doing these would threaten
patient safety, decrease operational efficiency, and increase
medical costs.

We use a typical surgical workflow (Fig. 1, adapted from Su
and Chou (2008)) to illustrate the challenges in performing a
surgery. This workflow generally involves three phases, namely
preoperative, intraoperative, and postoperative. Five groups of
participants are involved in this procedure, including patients
(P1), transporters (P2), nurses (P3), anesthetists (P4), and
surgeons (P5). Surgical related locations can include ward (L1),
holding area of operating suit (L2), operating suit (L3), holding
area of operating room (L4), operating room (OR) (L5), recovery
room (L6), and intensive care unit (ICU) (L7).

In the preoperative stage, the transporter brings the scheduled
patient along with related documents from the ward to the OR
suit. Before the patient is admitted into the OR suit, the nurse
verbally confirm the patient’s identity and surgical information.
Besides, the nurse reviews the patient’s medical record such as
medication, vital signs and tests, to determine her readiness. Then
the patient stays in the holding area of OR until the scheduled OR
is ready. However, before the patient is admitted into the OR, the
nurse has to check her identity again. Before the surgery begins,
the anesthetist verbally confirms the patient’s identity, medical
information (e.g., allergies, medical history), and the scheduled
surgery. Then the anesthetist reviews her vital signs and test
results, and gives the most suitable anesthesia. After anesthesia,
the patient is ready for the operation but the surgeon also checks
if this is the right patient and site of body for the operation.
During the surgery, the surgeon and nurses focus on the operation
and if any emergency happens, they can hardly know the personal
information of the patient, since all the information is documen-
ted in paperwork. After the operation, the nurse takes the patient
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Fig. 1. A typical surgical workflow.
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to recovery room within OR suit for awakening from anesthesia.
At last, the patient is discharged from OR suit and transferred to
the original ward or ICU, depending on her medical conditions.
During this procedure, the status of the patient and the OR are
both updated manually.

From the above surgical procedure, we can identify following
challenges that may threaten patient safety. First, identifying
patient manually at different stages by different hospital person-
nel is error-prone and time consuming. Since nurses are usually
very busy dealing with a number of cases per day, they might
forget to confirm the patient’s identity in some cases. Besides, the
surgeon has to verify the patient by face recognition if she is
anesthetized. As a result, possible human mistakes can cause
wrong patient, wrong OR, and wrong procedure for a surgery
(Sandlin, 2005). Second, inability to access patient electrical
health record (EHR) can cause medical errors or delay in handling
emergency. Incomplete knowledge about patient medical history
can cause wrong anesthesia. During the surgery, although patient
monitors can show the patient’s vital signs in real time, these
signals should be interpreted better along with EHR (e.g., history,
lab tests, medication). Third, limited resources in hospitals make
high recall rate of medical devices, but tracking a device manually
is almost impossible. For example, a patient encounters a heart
attack in a sudden and needs an infusion pump immediately.
Nurses usually have to look several places before they can find the
device and this always causes delay in the treatment. Fourth,
hospital staff members usually have too much workload so they
might make mistakes. Surgeons may leave sponges inside the
patient body if manually counting the sponge number at the
beginning and the end of a surgery. Even more, they may leave
scissors or other small instruments carelessly inside the patient
body. Last, improper disposal of used instruments can cause
waste. For instance, some reusable instruments are thrown away
by housekeepers if they do not pay enough attention.

Clearly, a technology like RFID is in urgent need to
automatically identify and track objects in hospitals. More
importantly, hospitals should be able to sense and respond to
critical situations in real time. These motivate us to propose an
RFID-enabled CEP framework for modeling surgical events and
respond to medically significant events in real time.

2.2. An RFID-enabled smart hospital

RFID uses radio waves to transfer data between readers and
tagged objects. It is automatic, fast, and does not require line of

sight for communications between readers and tags. With the
capability of automatic data identification and collection, RFID
technology can be used in hospitals to identify and locate
patients, equipment, and medical instruments. Moreover, it has
the potential to significantly improve operations by actively
monitoring patient and asset flow through the hospital and
enabling this data to be analyzed for process improvement. For
example, St. Vincent’s Hospital in Birmingham deployed RFID to
track patient flow through its radiology and labs to improve
patient flow (Krohn, 2005).

An RFID-enabled smart hospital is configured with pervasive
RFID devices. All patients are equipped with personalized
bracelets with embedded RFID tags and patients with high risk
are equipped with biomedical sensors that take physical mea-
sures automatically. Medical equipment and instruments are also
RFID tagged. Besides, doctors are equipped with mobile devices to
track tagged items and are able to receive alerts immediately in
case of emergency. The hospital is equipped with RFID readers in
different locations to communicate with tags. In addition, other
embedded sensors are also available for providing important data.
For instance, the temperature and humidity sensors installed in
operating rooms offer an optimal environment for surgeries.
Patient monitoring devices such as pulse oximeters and anesthe-
sia machines continuously provide streams of patient vital signs.

3. CEP preliminaries

An RFID-enabled smart hospital can generate a variety of data
streams that are in different formats and need to be processed
timely. For example, an RFID tracking system consistently
generates data about the location and time of tagged items,
which is in low-level semantics and not directly useful. Besides,
embedded sensors and devices continuously generate environ-
mental or medical related data. Complex event processing (CEP)
has been introduced to process and correlate these data. This
technique aims at processing multiple streams of data continu-
ously and identifying meaningful events in real-time. CEP has
several features. First, it can extract basic events from a large
amount of data and correlate them to create business events
according to user-defined rules. Second, the patterns to correlate
events can include logical, temporal, and causal constructors.
Third, CEP can react to critical situations in real time. In this
section, we formalize the definition of events, event constructors,
and CEP rules. The relationship of the concepts in CEP is
illustrated by the ontology in Fig. 2.

EventEvent hasType Event
hasAttribute

Type Attribute

CEPmodel
Basic Complex CEP composedBy

Event Event Rule
trigger

take

RFID
composedBy

Non-RFID
ActionEvent Event Event

Constructor

Logical Temporal subClassOf
Constructor Constructor

Fig. 2. CEP ontology.
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3.1. Event

An event can be defined as a record of an activity in a system
for the purpose of computer processing (Luckham, 2002),
or an occurrence of interest in time (Wang et al., 2009). In
general, events can be categorized into basic event and complex

event (or composite event). We use upper case and lower case, such
as E and e, to represent event type and event instance,
respectively.

Definition 1 (Basic event). A basic event can be denoted as E¼E

(id, a, t), where id is the unique ID of an event, a¼{a1, a2, y am},
m40, is a set of event attributes and t is the event occurrence
time. A basic event is atomic, indivisible, and occurs at a point
sin time.

Definition 2 (RFID event). An RFID event can be denoted as E¼e

(o, r, t), where o is the tag EPC, r is the reader ID that captures this
tag, and t represents the observation timestamp. Although the
time of RFID reading might be earlier than the time when the
event is captured, we assume this difference is too small to be
recognized. An RFID event is a basic event.

Definition 3 (Complex event). A complex event can be defined as
E¼E (id, a, c, tb, te), te4¼tb, where c¼{e1, e2, y, en}, n40, is the
vector that contains the basic events and complex events that
cause this event happen, tb and te are the starting and ending
times of this complex event. It can happen over a period of time
(i.e., from tb to te).

A complex event is aggregated from basic events or complex
events using a specific set of event constructors such as
disjunction, conjunction, and sequence that are explained in the
next section. It signifies or refers a set of other events to indicate a
situation described in the application scenario. Complex events
contain more semantic meaning and are more useful for decision
making in business applications.

3.2. Event constructors

Event constructors or event operators are used to express the
relationships among events and correlate events to form complex
events. Wang et al. (2006) gives a comprehensive set of event
constructors and classify them into temporal and non-temporal
constructors. In Table 1, we adapt and extend these event
constructors and list the most frequently used ones for complex
event detection.

These event constructors can be used to define event patterns
that catch meaningful information from real-time data streams.
For example, the pattern within (E14 E2, 5 s) matches when both
events E1 and E2 occur within time interval less than 5 seconds;

the pattern (E14: E2) matches when event E1 occurs but event E2

does not occur; the pattern (E�1; E2) matches when every
occurrence of event E1 is followed by event E2.

3.3. CEP rules

Based on the formalization of events and event constructors
described above, CEP rules are defined to specify domain syntax
and semantics. A rule is the predefined inference logic or pattern
for detecting complex events. Several studies (Zang et al., 2008;
Wang et al., 2009) have described different syntax for CEP rules.
We use ECA (event–condition–action)-like rule expression lan-
guage to describe event patterns since it is easier to use and more
understandable. The generic syntax of ECA can be expressed as
follows:

Rule rule_id, rule_name, rule_group, priority

ON event

IF condition

THEN action1, action 2, y action n

END

where rule_id and rule_name are unique for each rule,
suggesting the id and name for a rule; rule_group is a group of
semantically related rules; priority defines the priority of this rule;
event specifies the event of interested; condition is a boolean
combination of user-defined functions; action defines a user
defined procedure (e.g., to send out alarms) or an update in the
database (e.g., update of patient status). With CEP rules, we can
provide sufficient support for processing RFID and other sensor
data, such semantic data filtering and real-time monitoring.

4. Modeling events in an RFID-enabled smart hospital

A smart hospital enabled by RFID can track movements of
doctors, patients, and objects carrying RFID tags. With RFID
technology, it is possible to create a physically linked world in
which every object is identified, cataloged, and tracked (Wang
et al., 2006). To achieve these advantages, the first task for an RFID
application is to map objects and their behaviors in the physical
world into their virtual counterparts by semantically interpreting
and transforming data from RFID systems and other sensors. We
use the CEP techniques described above to model complex events
in hospitals, such as medical related activities and emergencies.
Since most studies focus on the correlation of events in supply
chain (Wang et al., 2009), such as the aggregation of events based
on containment relationships, we argue that event patterns in
hospitals can be quite different from those in supply chains. For

Table 1
Expression and semantics of event constructors.

Type Constructor Expression Meaning

Logical (non-temporal)

AND (4) E14 E2 Conjunction of two events E1 and E2 without occurrence order

OR (3) E13 E2 Disjunction of two events E1 and E2 without occurrence order

NOT (:) : E1 Negation of E1

Temporal

sequence (;) (E1; E2) E1 occurs followed by E2

window ( )
window(E1,t) Event E1 occurs for time period t (s, m, h)[s: second, m: minute, h: hour]

window(E1, n) Event E1 occurs n times (n40)

within ( )
within(E1, t) Event E1 occurs within less than t

within(E1,t1, t2) Event E1 occurs within interval t1 and t2

at ( ) at (E1, t) Event E1 occurs at time t [system time]

every (n) E�1 Every occurrence of E1

during( ) During(E1, E2) Event E2 occurs during event E1
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example, hospitals are interested in resources used for a surgery
and all the personnel performing this surgery. The CEP rule is an
effective mechanism to filter basic events and extract meaningful
information, in order to identify medically significant events.

4.1. Location transformation

RFID readings can imply object movements and location
change, which is the basis to identify activities in a clinical
workflow and detect medically significant events. For example,
when an RFID observation indicates a wrong patient is taken into
an OR, a mismatch between the patient and the OR can be
detected. In response to the wrong patient event, the medical staff
is automatically and instantly warned of this mismatch. In
addition, location transformation should be recorded for historical
data analysis, since patient and asset flows can be traced by a
sequence of location changes. Table 2 lists all the complex events
related to the location change of objects. An object can be any
RFID-tagged entity such as a person, a device, or a bottle of
medicine. Based on these events, we can infer the current location
of an object, and the period during which the object stays in a
location.

4.2. RFID semantic data filtering

Two types of data filtering should be considered for RFID data
before they can be further processed: low level data filtering and
semantic data filtering (Wang et al., 2009). We assume that
incoming RFID data has already been filtered with enough quality
by the middleware since most middleware provides the function-
ality of low-level data filtering and aggregation (e.g., Alien and
Symbol). Thus, we only consider rules that perform semantic data
filtering in a smart hospital. For example, although a medicine
bottle is always being detected present in a smart cabinet which is
mounted with an RFID reader, we are only interested when it is
put into the cabinet, and when it is taken out of the cabinet, in
order to automatically update the status of this medicine bottle
and the person performing this action. If an unauthorized person
is moving a medicine bottle, medical staff will be alerted
automatically and immediately. Table 3 captures complex

events involving semantic data filtering. Other complex events
can be derived from these as well.

4.3. RFID real-time monitoring

CEP rules can provide effective support for real-time monitor-
ing of RFID-tagged objects, especially medical devices and
patients. It is well known that hospitals own a great number of
expensive medical equipment and part of them are stolen on a
regular basis (Fuhrer and Guinard, 2006). RFID can improve theft
prevention by tracking equipment to reduce severe consequences
caused by the lack of vital equipment. If a reader at the building
exit detects a piece of tagged equipment without detecting an
authorized user, then it implies the equipment is being taken out
illegally, and an alert is sent to a hospital security personnel.
Another common application is patient tracking before a surgery.
If a reader r mounted at the OR door detects a tagged patient who
is not authorized to have a surgery within 45 min from current
time (CT), then an alarm is triggered to inform this mismatch. This
rule can be represented as follows:

Rule R1, patient_identification

ON within (e (p_epc, r, t)4 type (p_epc¼ ‘‘patient’’, 10 s)

IF NOT (SELECT n from SURGERY

WHERE patient_epc¼p_epc AND location_epc¼r AND

CTrscheduled_timerCT+45 min)
THEN trigger_alarm

END

4.4. Patient monitoring

In addition to the RFID event stream in hospitals, patient
monitoring systems continuously track patient physiological data.
For example, vital signs monitors can track heart rate and blood
pressure; pulse oximeter monitors the blood oxygen saturation
levels of patients. The value of an individual physiological
parameter is in low level and generally does not provide much
semantic meaning in terms of the patient status. To detect
medical situations, CEP rules are used to correlate various
physiological events with temporal reasoning. Patient medical
records may be combined to trigger alarms since patients have

Table 2
Common RFID location change events.

Complex event Expression

E1: Object o1 enters place la E1¼within (:e(o1, r, t1); e(o1, r, t2), 10 sb)

E2: Object o1 leaves place l E2¼within (e(o1, r, t1); :e(o1, r, t2), 10 s)

E3: Object o1 moves from l1 to l2 (l1a l2) E3¼within (e(o1, r1, t1); e(o, r2, t2), 10 s)

a Assume location l is mounted with RFID reader r, l1 with reader r1, and l2 with reader r2 (same for Table 3).
b Assume that the readers are scheduled to bulk-read all objects every 10 seconds (same for Table 3).

Table 3
Common RFID semantic filtering events.

Complex event Expression

E4: Object o1 enters proximity of object o2 E4¼within (E14 e(o2, r, t3), 10 s)

E5: Object o1 is touching/next to object o2 E5¼within (e(o1, r, t1)4e(o2, r, t2), 10 s)

E6: Object o1 leaves proximity of object o2 E6¼within (E24 e(o2, r, t3), 10 s)

E7: Object o1 and object o2 move to distance d (m) apart E7¼within (e(o1, r1, t1)4e(o2, r2, t2), 10 s)4dist(r1, r2)Zd

E8: Person o1 put object o2 to location l1 E05¼within (e(o1, r1, t3)4e(o2, r1, t4), 10 s) E8¼within (E5;E05, 10 s)4type(o1)¼ ‘‘person’’

E9: Person o1 takes object o2 away from location l1 E9¼within (E05;E5, 10 s) 4type(o1)¼ ‘‘person’’

W. Yao et al. / Journal of Network and Computer Applications 34 (2011) 799–810 803



different medical backgrounds. In the operating room, if the
detection of critical situations is delayed, the patient’s life will be
threatened.

We use hypovolemia danger detection as an example to
illustrate the modeling of patient monitoring. Suppose a patient
with hypovolemia history is being operated and his vital signs are
being tracked by monitoring devices. If his heat rate increases
over 5% and his blood pressure decreases over 6% within a 5
minutes time period, an alarm is sent to the medical staff for
action. The rule can be represented as:

Define E1¼HeartRate (epc, value, t1)

Define E2¼BloodPressure (epc, value, t2)

Define E3¼observation (epc, r, t3)

Rule R2, hypovolemia_danger

ON (E1.epc¼E2.epc¼E3.epc)

4type(epc)¼ ‘‘patient’’4type(r)¼ ‘‘OR’’

4 window (increase(E1.value)45%4 decrease(E2.value)46%, 5 min)

IF SELECT n from MedicalRecord

WHERE patient_epc¼p_epc AND hypovolemia¼true

THEN send_alarm

END

4.5. Data aggregation

Hospitals are flooded with massive flux of data from RFID
systems and other medical monitors. To avoid data overload and
missing important events, CEP rules are used to aggregating data
in an automatic fashion. For example, if we detected the presence
of correct patient and medical staff in a surgery room and the light
of this room is turned on, an aggregated event surgery begin can be
inferred. As a result, we can update the status of the surgery room
and related persons automatically.

5. System implementation and assessment

The RFID-enabled CEP framework is designed to collect basic
events from heterogeneous sources and correlate them for
situation detection. We have implemented a prototype system
that aims to offer sense-and-response capability to a smart

hospital so they can react quickly to emergencies, especially for
time critical scenarios.

5.1. Architecture

Fig. 3 presents the physical and semantic data flow in an RFID-
enabled CEP framework. At the lowest level, raw readings from
location tracking systems are captured by RFID readers and then
filtered (i.e., smoothing and aggregation) by the middleware to
remove noisy and redundant data. The produced RFID events
along with data from other embedded sensors or devices are then
passed on to the CEP engine for further processing. These events
are basic events since they are captured directly from their
sources and have not been aggregated. In addition, data from
other information systems or database is needed for complex
event pattern matching. They are inserted into the working
memory as facts. Facts and events from sensors can be correlated
by event constructors. CEP rules are stored in the rule base, so that
the CEP engine can detect complex events to signify critical
situations. As a result, the complex events contain semantic
meanings and can be used by applications. For example, if a
certain threat to patient safety is identified, an alert will be sent to
the care provider.

5.2. CEP engine—Drools 5.0

We selected the open source software Drools 5.0 (Bali, 2009),
which include Drools expert and Drools fusion, as our CEP engine,
since it provides an integrated platform for modeling rules,
events, and processes. Drools expert is a forward chaining
inference engine, using an enhanced implementation of RETE
algorithm (Forgy and Rete, 1982). To support complex event
processing, Drools fusion was developed to support processing of
multiple events from an event cloud for event detection,
correlation, and abstraction. It has several advantages. First, it
supports asynchronous multi-thread streams in which events
may arrive at any time and from multiple sources. Second, since
temporal reasoning is an essential part of CEP, we examined the
capability of Drools fusion in support of temporal relationships. It

Fig. 3. Physical and semantic data flow in RFID-enabled hospital.
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has a complete set of temporal operators to allow modeling and
reasoning over temporal relationships between events. Third, it
allows complete and flexible reasoning over the absence of events
(i.e., negation). Lastly, aggregation of events over temporal or
length-based windows is supported by sliding windows.

Fig. 4 presents an overall walkthrough of how we implemented
complex event processing of RFID and medical data with Drools.
The event receivers are defined as Java classes and they are
considered as input adapters. They can be fed with data streams
from physical data sources or simulation programs. Event
receivers respond to complex event detectors (e.g., patient
misidentification) with events of interest. An entry point is a
channel through which the events of interest are asserted into the
working memory. In this way, all event streams can be
independent of each other and multiple threads can run in
parallel. Complex event patterns are defined using CEP rules.
Upon detection of predefined patterns, alerts are sent out as
messages and actions are triggered. Complex events are also fed
back into the engine and treated as incoming events.

5.3. Temporal reasoning for complex event detection

Traditionally, the RETE algorithm is used in expert systems for
production-based logical reasoning, matching a set of facts
against a set of inference rules. The basic idea of RETE algorithm
is to construct an acyclic network of rule premises for forward
chaining. By default it does not support temporal operators. We
are not describing the details of RETE algorithm since we focus on
the extension of RETE with temporal reasoning. To support
temporal constraints in rules, events can be modeled as facts
with timestamps and they are inserted into the working memory
at runtime. In addition, events need to be discarded when they are
no longer of interest or cannot contribute to complex events.
Temporal relationships can be realized by explicitly stating the
conditions in the rules (Walzer et al., 2008). For instance, if a
complex event E3 is created when an event E1 occurs followed by
event E2, we can use the following rule to express this: IF
t_begin(E1)ot_begin(E2), THEN create E3. Then this rule can
be processed by the traditional rule engine. Other temporal
constructors can be realized in the same way.

Fig. 5 presents 13 temporal relationships between events as well
as their semantic meanings, including before (after), meets (metby),
overlaps (overlappedby), during (includes), starts (startedby), finishes

(finished by), and coincides. All of them are supported by Drools
fusion. Besides, sliding windows are supported for correlating events
on temporal or length-based time windows. Our proposed event
constructors can be easily supported by these operators. The logical
event constructors AND (4), OR (3), and NOT (:) are supported,
respectively, by the operators and (&&), or (99), and not. Temporal
constructors are also transformable. For example, sequence(;) is often
combined with within to constraint the time distance between two
events. The pattern (within (E1; E2), 10 s) can be expressed as E2 (this
after [0 s, 10 s] E1). Similarly, the rest of temporal constructors can be
transformed as well.

5.4. Performance evaluation

To test the performance of the proposed CEP-enabled RFID
applications, we implemented a prototype in Java language for
testing and evaluation. Our testbed is a PC with 2.0 GB of RAM and
1.86 GHz Genuine Intel CPU running Windows XP Professional
operating system.

In the prototype, we simulated three event streams to generate
basic events. The RFID event stream has four event types, the patient
monitoring event stream has eight event types, and the environ-
mental sensor stream has two event types. Each event type has its
own attributes and methods to get these attributes. Each event type
is used by at least one complex event expression. We used prepared
data files to simulate the continuous generation of events instances.

Currently, there are approximately 120 complex event expres-
sions involving different kinds of semantic meanings and
complexities. All the complex events defined (i.e., E1, E2, y, E9)
and illustrated (i.e., events related to RFID monitoring and patient
monitoring) in Section 4 are included. Each complex event
expression has at least one logical constructor (i.e., AND, OR, or
NOT) and one temporal constructor. The most frequently used
temporal constructors are window and sequence (or after), both of
which are used by more than 60 complex events. On average, each
complex event has approximately two logical and two temporal
constructors. Based on these complex event expressions, we have

Fig. 4. Walkthrough of event processing implementation.

W. Yao et al. / Journal of Network and Computer Applications 34 (2011) 799–810 805



defined 41 rules in total for detecting situations. Each rule uses
1–3 complex event expressions and two-thirds of rules involve
the correlation of facts, e.g., the medical history of a patient.

We evaluate the scalability and the situation detection ability of
our system with the Drool-fusion rule engine. Fig. 6 shows the results
in terms of processing time and number of detected complex events.
We define event processing time as the total time of processing the
number of incoming events. In Fig. 6(a), when the number of basic
events increases from 2500 to 50,000, the event processing time
increases from 4800 to 352,000 ms, if we use 24 rules. However, if
we increase the number of rules to 41, the processing time is
increased from 5500 to 560,000 ms. Thus, the number of event rules
can have significant impact on the performance of event processing
time, especially if they involve complicated temporal and logical
reasoning. Fig. 6(b) shows the number of complex events that are
detected for an increasing number of basic events. Obviously, when
the rule number is small (i.e., 24), we only detect fewer complex
events (i.e., from 38 to 1582). When the rule number increases to 41,
we can detect 44 complex events by 2500 basic events and 2577
complex events by 50,000 basic events.

Since delay and false positive alarms are two important indicators
for the hospital practice, we also evaluate the performance of this
prototype on the basis of latency and detection accuracy. Within the
2577 complex events that we have detected (when we applied all the
41 rules), around one third are related to patient identification at a
series of locations they need to go through for a surgery. Another one
third of complex events signify a variety of medical threats to the
patient, e.g., high fever and heart attack. The remaining one third of
situations concerns sending reminders to surgical personnel before-
hand so they can get prepared, access control of medical equipments,
and improper disposal of reusable instruments. Since we give a clear
definition of rules, the true positive alerts are identified with 100%
accuracy. However, in the real case, the definition of event patterns is
fuzzy so it is not so easy to provide such positive results. The latency
of detection time of these scenarios is all below 1 s, which is quite
acceptable. However, we need to cut down the number of
unnecessary or inconductive reminders and alerts. Otherwise,
healthcare professionals can easily get disturbed.

5.5. A use case of surgical workflow

In general, the performance of the CEP approach to process RFID
and sensor data using Drools fusion is acceptable in the hospital

environment. In this section, we illustrate how this approach can
improve the surgical workflow described in Section 2.

Fig. 7 presents the simplified surgical workflow modeled by
Drools-flow, which is a part of the Drools integration framework. Two
types of basic events are considered including RFID event and patient
physiological event. Hospital database is accessed to retrieve patient
medical records and surgery schedule. These data are inserted into
the CEP engine as facts and associated with event streams for
complex event detection. When various resources are involved in a
surgical workflow, events generated from their activities can impact
each other and result in different surgical outcomes. In such a time
critical environment, temporal relationships of these events need to
be captured to detect critical situations.

In this workflow, we define CEP rules to model critical
situations in surgical management and embed these rules in
workflow activities. We focus on two scenarios: patient identifi-
cation and patient monitoring. As described, patient identification
should be conducted at several stages: admission to L3, admission
to L5, anesthesia, and leaving from L6. Accurate and timely
identification of patients can avoid adverse situations such as
‘‘wrong patient’’, ‘‘wrong OR’’, and ‘‘wrong procedure’’. When a
patient enters an OR, a complex event is generated. The patient
identification rule also checks surgery schedule to see if the
patient is scheduled in this OR. If not, an alert is triggered.
Otherwise, the subsequent activity is activated.

Patient monitoring captures the change of a patient’s physiological
parameters and sends alerts if any emergency happens. When
surgeons are operating on a patient, they are always too focused on
the operation to be aware of the patient’s condition. Thus, the
detection of critical situations may be delayed and the patient’s life
will be threatened. The physiological events of a patient will evolve
with time and needs to be associated with the patient’s medical back-
ground. Thus, temporal reasoning is critical to capture this feature.

We present a screenshot from our prototype system in Fig. 8
for patient monitoring. The left panel presents the patient in the
current OR is ‘‘Jack Miller’’ and his physiological parameters are
changing continuously over time. These physiological data are
simulated by a computer program following a normal distribution
function. For control purpose, we altered some data points to play
the role of complex event detection. For example, in the CTCO2
chart, a peak is created and in the SvO2 chart, a smaller peak and
valley are created. With these variations, we are able to detect
different kinds of situations. Besides, the banner bar in the bottom
keeps rolling and shows variations of these parameters in real

Expression Point-Point Point-Interval Interval-Interval

(E2 after E1)

E1 meets E2

(E2 metby E1)

E1 overlaps E2

(E2 overlappedby E1)

E1 includes E2

E1 before E2

(E2 during E1)

E1 starts E2

(E2 startedby E1)

E1 finishes E2

(E2 finishedby E1)

E1 coincides E2

Fig. 5. Temporal constructors in Drools fusion.
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time, such as increasing and decreasing rates. The right panel
shows raw RFID readings that have not been processed. We can
see that their semantics are in a very low level and do not make
sense to people. The central panel presents detected complex
events like reminders and alerts. These events contain more
semantic meanings and help healthcare personnel to respond to
critical situations quickly.

6. Discussion

According to our study, a number of benefits can be obtained
by using RFID-enabled CEP framework for hospitals to improve

patient safety and reduce operational costs. The experimental
results show that our proposed approach is feasible in practice.
Our proposal of integrating CEP logic with RFID technology has
several advantages over conventional methods.

First, we identify current challenges in hospitals and model an
RFID-enabled smart hospital. With the tracking capability offered
by RFID technology, the smart hospital has the promise to track
people, equipment, and even the medicines. Thus, these objects
have the power to express themselves. By associating their EPC
with the hospital database, we can get more detailed information
of these objects.

Second, CEP enables semantic interoperability for a variety
of sensors, embedded devices, and information systems. CEP

Fig. 6. Performance evaluation: (a) event processing time and (b) detection of complex events.
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can deal with data streams from different sources and correlate
them to identify critical situations. Although the data
from sensors, RFID systems, and messages from other systems
are in different formats and incoming rates, CEP can easily
integrate these basic events with event patterns. For example,
RFID system itself only provides location and time information
of tagged objects while humidity sensors only offer room
conditions. In the real world scenario, the room humidity needs
to be adjusted according to what that room is used for.
Monitoring everything manually is time and effort consuming,
and error-prone.

Third, with the complex events detected by CEP, service
providers are able to sense and respond to unexpected changes
immediately. That is, they can identify situations that require
immediate attention to increase real-time responsiveness. Given
CEP’s degree of access and visibility, hospitals can benefit a lot as
it has unpredictable and chaotic environments.

Last, our proposed framework can improve the quality of care
services and reduce operational costs. Fig. 9 summarized a
hierarchy of possible benefits that can be brought to the
hospitals. For example, the system can reduce human errors and
improve medical treatment quality. Among all the benefits
brought by RFID technology, the advantages of CEP are grayed
out to show its benefits to hospital practices. Most of these
benefits can be captured and realized by our proposed approach.

However, there are some limitations in our approach. Our
current rule base uses fixed combination of parameters and
values to detect complex events. That is, it is not able to detect
uncertain situations. For example, in patient monitoring, a single
value cannot determine whether the patient’s heart rate is
definitely high or low. We need a range of values to model these
fuzzy characteristics. Using fuzzy logic to partition the range of
values for these physiological parameters can improve the
detection accuracy in practice.

Fig. 7. Simplified surgical workflow modeled by Drools-flow.

Fig. 8. A screenshot of our prototype.
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7. Related work

The CEP model, which was designed specifically to address
issues around processing real-time events in distributed systems,
has been studied extensively in the past (Luckham, 2002; Wu
et al., 2006). Some studies focused on detecting complex events
for rule-based business activity management in ubiquitous
computing environment (Chakravarthy et al., 1994; Jeng et al.,
2004). However, these studies are generic in nature, and do not
address characteristics that are unique to RFID technology and the
healthcare domain.

With the rapid development of RFID technology, major IT
vendors have been developing RFID middleware to collect RFID
data from readers and emit them to applications. Researchers
have studied the issue of RFID data management, such as data
filtering and aggregation (Jeffery et al., 2006). Recently, more
studies have started to explore the use of CEP in RFID data
management. The traditional ECA model (McCarthy and Dayal,
1989), based on active database systems, could not be directly
applied to RFID systems because RFID data is temporal and in
large volume. Wang and Liu (2005) and Wang et al. (2006) used
CEP as a means to create complex events from an RFID data
stream that can then be used as a foundation for business
application logic. However, their focus was on general RFID
applications instead of domain specific systems. Son et al. (2007)
proposed an efficient method to create business-level events
using CEP based on RFID standards. Other works have provided
solutions and developed systems to integrate non-RFID data to
detect complex events (Bornhövd et al., 2004; Zang et al., 2008).

The above studies provide a solid foundation for building RFID-
enabled CEP framework for hospitals. RFID has been proposed as a
technology to provide ubiquitous computing support for medical
work in hospitals (Bardram, 2003; Want, 2004). Although a
number of researchers have been working on developing context-
sensitive and situation awareness services in the pervasive
computing environment (Jeong and Kim (2005); Moon et al.,
2006; Song and Kim, 2006), these services are not specific for
healthcare domain. They need to be tailored to fit the medical
knowledge and special needs in hospitals. Only a few works have
been conducted to develop context-aware systems for hospitals.

For example, Bardram (2004) presented applications of context-
aware computing in hospitals but their study is still in conceptual
stage. Agarwal et al. (2007) proposed a pervasive computing
system for the operating room to detect medically significant
events and automatically construct an electronic medical record.
Their results are very interesting but they use the traditional rule-
based approach; thus, the delay of detection time is from a few
seconds to 56 s.

8. Conclusions and future work

This paper presents a novel approach to process surgical events
and provide sense and response capability for hospitals. Although the
idea of using CEP to process RFID events and correlate non-RFID
events are not new, we use this RFID-enabled CEP framework to
model complex events in a smart hospital and solve the current
challenges faced by healthcare. This approach can help to accelerate
the adoption of RFID technology in hospitals and provide a feasible
way to solve the interoperability problem. The performance evalua-
tion in terms of processing delay and detection accuracy shows that
our approach is reasonable and acceptable. With the aim to improve
patient safety and reduce operational costs, our study suggests a
possible solution to handle problems encountered in surgery.

However, modeling medical knowledge with RFID and CEP is quite
complicated. Most of medical knowledge comes from experts and is
fuzzy and hard to verify for accuracy. In the future, we will reference
more medical literatures and interview medical professionals to
increase its completeness and apply fuzzy sets theory to model
uncertainty associated with surgical events. This can improve the
accuracy of situation detection and reduce unnecessary alerts.
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