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Abstract

A theoretical and experimental research work in relation to Barqueta cable-stayed
bridge is described in this paper. Barqueta Bridge, across Guadalquivir river, links
the city of Seville with the Scientific Park Cartuja 93. At jam hours cars may cover
one half of the bridge lanes for more than one hour. Full-scale tests were carried out
to measure the bridge dynamic response. The experimental program included the
dynamic study for two different live load conditions: the bridge with one half of it
lanes full of cars, and the bridge empty of cars. Modal parameters estimations were
made based on the acquired data. Ten vibration modes were identified in the fre-
quency range of 0-6 Hz by different techniques, being two of these modes very close
to each other. The traffic-structure interaction is also studied. Experimental results
were compared with those obtained from a three-dimensional finite element model
developed in this work. Both sets of results show very good agreement. Finally, a
damage identification technique has been applied to determine the integrity of the
structure. Results obtained from a test developed in July 2005 have been correlated
to experimental results obtained in October 2006 using the damage index method.

Key words: arch bridge, damage detection, operational modal analysis,
vehicle-structure interaction

1 Introduction

Experimental tests constitute the most reliable method to obtain the dynamic
properties (natural frequencies, mode shapes and damping ratios) of actual
structures and to validate, from these results, numerical models used for their
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analysis. They permit also to asses the state of damage of a structure by
comparison with the dynamic properties obtained in previous analyses.

Dynamic identification methods from ambient vibration have been used in
complicated structures like dams [1], offshore platforms [2], sports stadia [3],
bridges [4], etcetera. A theoretical and experimental research work in relation
to Barqueta bridge is described in this work. It is a steel arch bridge with
cable-stayed deck that links the old town of Seville with the Scientific Park
Cartuja 93. At certain hours, a traffic jam occurs on the bridge and cars cover
one half of the bridge lanes (Fig. 1) for more than one hour.

The experimental program developed in this work includes the dynamic cha-
racterization of the structure for two situations under normal conditions and
when it is covered by traffic. The modal properties of the bridge are identified
from ambient vibration and the results obtained for both situations of the
bridge are compared. By this analysis, the effect that vehicles have on the
dynamic behaviour of the structure is studied. The idea presented in [3], where
changes of the modal properties of a sport stadium were determined at times
when different activities took place at the stadium, is explored in this paper
for the bridge case. The authors of that paper concluded that the dynamic
properties of the structure depend to some extent on the type of the activity
celebrated in the stadium. The possibility of these changes taking place in
other types of structures is studied in this work.

The obtained experimental results are compared with those from a three-
dimensional finite element analysis. Finally, a damage identification methodo-
logy is applied to verify the structural integrity of the bridge. Experimental
results obtained with a time difference of one year and a temperature difference
of 10oC are analyzed.

2 Description of the structure

The aesthetic functions and symbolic values of the structures are more and
more important every day, in particular when these structures are built in ur-
ban zones [5,6]. Barqueta bridge was built in Seville for the 1992 International
Exhibition [7,8]. It is an innovative structure, designed by JJ. Arenas and M.
Pantaleón, with a flying central arch rising from the vertex of two lateral trian-
gular frames. Fifteen years after its construction, Barqueta is an indispensable
piece of the urban landscape of Seville. Barqueta is a bowstring steel bridge.
The 168 m span structure rests on two sets of two vertical supports spaced
30 m in the transverse direction located at the banks of the Guadalquivir
river (Figs. 1-3). The cross-sections of the arch and inclined legs include deep
grooves that produce enough local inertia to avoid the need of any internal
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longitudinal stiffener.

The deck cross-section is shown in Fig. 2. It is 16 m wide and 2.4 m deep. The
total wide of the bridge is 21 m with two cantilever pedestrian decks. The deck
cross-section includes two vertical webs separated by a distance of 1 m (see
Fig. 2). The hangers are anchored between then. The hangers have variable
inclination. The deck is supported on the extremes by transversal beams, with
variable depth, which rest on the vertical supports.

3 Finite Element Model

A three dimensional finite element model (FEM) has been developed for the
numerical analysis of the structure using as-built drawings of the bridge and
some double-check in-situ measurements. Modal analysis was carried out using
ANSYS [9].

The arch, supports, and the internal stiffener were represented as two-node
beam elements (BEAM44) with 6 degrees of freedom per node. This element
permits the end nodes to be offset from the centroidal axis of the beam. The
hangers were modeled as truss elements (LINK10) with 3 degrees of freedom
per node. The deck slab was modeled using eight-node shell elements with
6 degrees of freedom per node (SHELL93). The two extreme beams and the
vertical supports were connected by spring elements (COMBINE14).

A detailed model of all the bridge elements was intended. As a consequence,
the number of degrees of freedom is high. The full model consists of 10328
beam elements, 17 truss elements, 15672 shell elements and 8 spring elements,
resulting into 26025 elements and 47024 nodes. Fig. 3 shows a full 3-D view
of the finite element model of the bridge and details of the deck cross-section.

4 Full-scale testing

Dynamic properties can be obtained by measurement of vibrations produced
by ambient loads. This technique is simpler for civil engineering structures
than classical modal analysis because it is not necessary to excite the structures
by shakers. In addition, the structure can be used during the testing process.

The experimental program, carried out during July 15 2005 and October 11
2006, includes dynamic characterization of the structure in normal conditions
and when a half of the bridge is covered by traffic. The response of the structure
was measured at 16 selected points (Fig. 4) using Endevco (Model 86 and
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Model 4370) accelerometers. Preliminary results obtained from a FE dynamic
analysis were used to determine the optimum location of the sensors.

Since nine Model 86 accelerometers were available for the testing and two of
these sensors (at locations 1 and 2) were held stationary for reference during
the test carried out in 2005 and one of them (at location 2) during the test
developed in 2006, two set-ups were required to cover the 16 measurement
points. It is worth to mention that in output-only modal analysis, where the
input force remains unknown and may vary between the set-ups, the different
measurements setups can only be linked if there are some sensors in common.
The reference accelerometers were chosen in order to be able very carefully to
measure all global modes of the bridge.

The hangers were not instrumented in the first test because, according to pre-
liminary numerical analysis and preceding experimental studies [10,11], sig-
nificant interaction between the stay-cables and the rest of the structure was
not expected. This interaction is significant when the lowest natural frequen-
cies of the structure and the natural frequencies of the cables are close. In the
present case, cables are short, estimating their first natural frequencies around
6 Hz. There are at least, 10 global modes of the structure below this values.
Therefore it is not expected that cables have an important participation in the
global modes of the bridge. This assumption was validated by the second test,
where the cables were instrumented (Figure 5a.). The power spectral density
of the cable’s response is shown in Figure 6 where it can be observed that the
first bending mode of the cable is around 6 Hz.

During the first test, data of the response of the structure were acquired
when the structure was under fluid traffic conditions, in locations 1 to 9,
and when cars cover one half of the lanes of the bridge, in points 1,2 and
10 to 16. In order to obtain the mode shapes of the structure, the response
at all points have been used. Traffic-structure interaction is not expected to
cause changes in structural mode shapes. Natural frequencies and damping
ratios, were determined using each one of the set-ups independently. In the
second test, the response of the structure was acquire in all locations for both
situations: when the structure is under fluid traffic conditions and when cars
cover one half of the lanes of the bridge.

Ambient vibration response was acquired during 1000 seconds per channel
and per set-up. The data were sampled to 64 Hz. Data were decimated (order
3) to carry out data analysis in the frequency range of interest (0 to 10 Hz).
Data records were Hannning-windowed with 66.67% overlapping for spectral
averaging.

Acquired data are available for interested reader by sending an e-mail message
to the authors.
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5 Data Analysis

Different procedures to obtain modal parameters from ambient vibration data
have been used in this work. In output-only modal analysis, also called opera-
tional modal analysis, the applied forces are unknown and, therefore, neither
the frequency response function nor the impulse response function can be ob-
tained to determine modal parameters as in classical modal analysis [12]. The
signal at one of the fixed transducers is used as a reference to determine the
frequency response function and the impulse response function.

Four complementary identification methods have been considered in the present
work: three of them based on frequency domain analysis and one on time
domain analysis. The study has been developed using MATLAB [13] and
ARTEMIS [14] software.

The first identification method employ is Peak-Picking (PP), which has been
used with success in many other applications [5,11,15,16]. This method is
based on the fact that when the frequency response function reaches a peak
at a certain frequency, it can be associated to the force or to a resonance
frequency of the structure [17]. Natural frequencies are identified from peaks
of spectral densities function:

ωdi =
√

1− ξ2
i · ωni (1)

This procedure produce a good estimations of natural frequencies for weakly
damped structures. To distinguish between peaks associated to the excitation
and those associated to resonance frequencies of the structure, mode shapes
can be used [17]. The response values at all points of a weakly damped struc-
ture for one of its resonance frequencies, are in phase or out of phase by 180o,
depending on the mode shape. Peaks of spectra density function associated to
the excitation normally present a phase difference of the cross-spectra function
between two measurements points different from 0o or 180o. In addition, the co-
herence function between two signals has a value close to one for the resonance
frequencies of the structure, due to the high relation response-noise at those
frequencies. This fact helps to decide which of the frequencies really are natu-
ral frequencies of the structure. The PP method is based on the assumption
that the dynamic response of the structure at resonance peaks is determined
for each mode. This is valid when modes are well separated. Therefore, it is
difficult to identify modes very close to each other using this method. The
auto-spectra, cross-spectra and coherence functions obtained from the first
test, are shown in Fig. 7. The natural frequencies were identified from reso-
nance peaks in auto-spectra and cross-spectra functions. Coherence function
peaks are the same that the peaks of the previous functions, and the phase
value of the cross-spectra function for those peaks are 0o or 180o, providing
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additional evidence that these peaks correspond to natural frequencies of the
structure.

The second identification technique used in the present study is the so called
Averaged Normalized Power Spectral Densities (ANPSDs) which is a practical
implementation, developed by Felber [18], of the PP method. In this case, auto-
spectra functions are normalized and averaged to obtain an average spectra
density function that, normally, shows all resonance frequencies of the system.

ANPSD(ω) =
1

l

l∑

i=1

PSD(ω)∑n
j=1 PSD(ωj)

(2)

where l is the number of measurement locations. The natural frequencies of the
structure are obtained from the simple observation of the peak in the ANPSDs
diagram. This method was used successfully in the dynamic characterization
of an arch bridge in reference [19]. The ANPSDs diagrams for both situations
of the bridge obtained from the first test are shown in Fig. 8.

The third identification technique used, also in the frequency domain, is called
Enhanced Frequency Domain Decomposition (EFDD) [20] which, from a sim-
ple form, introduces significant improvements to Peak Picking Technique. This
method is based on a modal decomposition realization of the spectral density
matrix, being one of the advantages of the method the possibility to identify
very close modes.

The Power Spectral Density matrix (PSD) of the m measured responses can
be expressed, for a lightly damped structure, as:

Gyy(jω) =
∑

kεSub(ω)

dkφkφ
T
k

jω − λk

+
dkφkφ

T

k

jω − λk

(3)

where dk is a scalar constant, φk is the mode shape vector, λk is the pole of the
output PSD, and Sub(ω) is the limited number of modes that will contribute
to the response at frequency ω.

The first step of the EFDD is to estimate the output PSD matrix at discrete
frequencies, and to carry out the Singular Value Decomposition (SVD) of the
matrix

Ĝyy(jωi) = UiSiU
H
i (4)

where the matrix Ui contains the singular vectors uij and Si is a diagonal
matrix with the scalar singular values sij. Close to a peak, where the k mode
is dominant, there will be only one mode in Sub(ω) and, therefore, the first
singular vector uk1 is an estimate of the mode shape; i.e., φ̂k = uk1, and the
corresponding singular value is the auto power spectral density function of
the singular degree of freedom system. This power spectral density function is
identified around the peak comparing the estimated mode shape φ̂k with the
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singular vectors from the frequency lines around the peak. If the MAC value
obtained from the singular vector and φ̂k is higher than a reference value close
to one, the singular value belongs to the auto power spectral density function.
Once the auto power spectral density function has been obtained around the
peak, the natural frequency and the damping ratio are estimated by Inverse
Fast Fourier Transform. The singular values decomposition of the spectral
density matrix is shown in Fig. 9. Peaks representing vibration modes have
been selected.

It can be observed that two modes very close to 2 Hz exist for the bridge under
study, one of them not been determined by the previous methods. This type
of modes can be easily identified with EFDD, by observation not only of the
highest singular value but also of the next one.

The last technique is a more elaborated mathematical procedure that works
directly with time domain acquired data. It is called Stochastic Subspace
Identification (SSI). The interested reader can find details of the mathemati-
cal approach in references [21,22]. SSI is a powerful tool (perhaps the most
advanced identification method that exists up to day) that has been used for
dynamic characterization of many structures [21,23,24]. A brief review of the
main ideas of this method is presented in the following.

The dynamic behaviour of a structure is described by:

MÜ(t) + CU̇(t) + KU(t) = F(t) (5)

where M, C, and K are the mass, damping, and stiffness matrices of the
structure, respectively. U(t) and F(t) are the displacement and input force
vectors respectively. This equation can be written as a state space equation:

ẋ(t) = Acx(t) + Bcu(t) (6)

where the state vector x(t) = [U(t), U̇(t)]T and the state matrix Ac, and the
system control influence coefficient matrix Bc, are defined by

Ac =




0 I

−M−1K −M−1C


 Bc =




0

−M−1


 where F(t) = B2u(t) (7)

The output vector y(t) can be expressed as

y(t) = Ccx(t) + Dcu(t) (8)

where Cc is the output influence coefficient matrix and Dc is the output con-
trol influence coefficient matrix. These equations constitute a continuous-time
state space model of a dynamic system.
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Since experimental data are discrete, a discrete-time state space model can be
obtained by sampling the continuous-time state space model:

xk+1 = Axk + Buk (9)

yk = Cxk + Duk (10)

where xk = x(k∆t) is the discrete-time state vector containing the sampled
displacements and velocities; uk,yk are the sampled input and output, respec-
tively; A = exp(Ac∆t) is the discrete state matrix;and B = [A − I]A−1

c Bc

is the discrete input matrix.

Including the stochastic components; i.e., the noise due to disturbances and
modeling inaccuracies (wk) and the noise due to sensor inaccuracy (vk), the
discrete state space model can be written as:

xk+1 = Axk + Buk + wk (11)

yk = Cxk + Duk + vk (12)

The process noise wk and measurement noise vk are assumed to be zero-mean,
white noise, statistically independent, and with covariance matrices

E







wp

vp




(
wT

p vT
p

) 
 =




Q S

ST R


 δpq (13)

where E is the expected value operator and δpq is the Kronecker delta. Q, R
and S are process and measurement noise covariance matrices.

In ambient vibration testing, only the responses of the structure are measured,
obtaining:

xk+1 = Axk + wk (14)

yk = Cxk + vk (15)

where the input uk is modeled by the noise terms.

This equation constitutes the basis for time domain modal identification from
ambient vibration testing. There are several techniques to carry out modal
identification based on this equation.

Fig. 10 shows a stabilization diagram obtained by applying SSI. System order
and stable poles can be found in these diagrams which provide modes of the
structure.

8



6 Dynamic behaviour of the bridge

The dynamic behaviour of Barqueta Bridge is governed by vertical bending
and torsional modes, in the frequency range of 0−6 Hz. Ten modes have been
identified in this frequency range. Table 1 shows the obtained natural frequen-
cies for the bridge under fluid traffic conditions whereas Table 2 corresponds
to the situation when the bridge is jammed. Damping ratios obtained for both
bridge conditions are shown in Tables 3 and 4.

It is observed in both tests that the natural frequencies of the structure change
very little due to the traffic conditions on the bridge. The first test was carried
out on July 2005, while that the second one took place on October 2006, with
an ambient temperature difference of 10oC. Very little changes appear in the
natural frequencies obtained from the two experimental tests as can be seen
from the values shown in Tables 1 and 2. Damping ratios may increase up
to 200 per cent when the bridge is jammed with vehicles, as compared to
the empty situation. Increments in damping ratios of the same order were
observed in both series of tests. A very similar conclusion was reached in [3],
where it was concluded that the damping ratios in a sport stadium increases
to a significant extent when it is crowded.

Mode shapes of the structure identified from experimental modal analysis and
from numerical analysis are shown in Figs. 11 and 12.A complete agreement
between both sets of mode shapes can be observed.

In order to quantify this agreement, experimental results have been compared
with the finite element results by using the Modal Assurance Criterion (MAC)
[25]. MAC values vary from 0 to 1; a value of one implies perfect correlation of
the two modes vectors (one vector is proportional to the other), while a value
close to zero indicates no correlated modes (orthogonal modes). The MAC
value is defined as:

MAC(φA,k, φB,j) =
(φT

A,kφB,j)
2

(φT
A,kφA,k)(φT

B,jφB,j)
(16)

where φC,k is the k-mode of data set C, and T means transpose matrix.

The obtained MAC matrix between the results obtained from the test carried
out in 2005 and those obtained from the test carried out in 2006, are shown in
Fig. 13. The mode vector correlation using MAC seems quite good, finding the
highest difference in the fifth mode shape. The MAC matrix between the nu-
merical and experimental results have also obtained. Fig. 14 shows that there
is a quite good agreement between experimental and numerical results. There-
fore, the numerical model can be used to represent the dynamic behaviour of
the bridge.
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One of the objectives of this work is to obtain some reference data to de-
tect future damage of Barqueta Bridge, by comparing dynamic parameters
obtained along its life. In this work, the modal parameters obtained in 2005
have been compared to those obtained in 2006. The damage state has been
evaluated using Damage Index Method [26]. In this method, the damage state
is controlled by the index β, based on the decrease in modal strain energy
between two structural degrees of freedoms, as defined by the curvature of
the measured mode shapes. For a point j of the structure, the strain energy
change between the reference state and the current state, for the i mode shape,
is related with curvature changes at the point j. The damage index at point
j, for mode shape i, is defined as:

βij =

∫ b
a [ψ•

′′
(x)]2dx +

∫ L
0 [ψ•

′′
(x)]2dx

∫ b
a [ψ′′(x)]2dx +

∫ L
0 [ψ′′(x)]2dx

·
∫ L
0 [ψ′′(x)]2dx

∫ L
0 [ψ•′′(x)]2dx

(17)

where ψ′′(x) and ψ•
′′
(x) are the second derivates of the i mode shape, in the

reference state and the current state, respectively; L is the length of the beam
element (the structure is discretized by beam elements); and, a and b, are the
ends of the element in which the damage is evaluated. When two or more
mode shapes are used to identify the state of damage, the obtained indexes
for each mode shape are added. An interpolation using spline polynomials is
carried out to determine the modal shapes at points in which there are not
transducers.

It would be useful to introduce some artificial damage in the bridge in order to
validate this methodology. However, it has not been possible to do so. As an
alternative, a simpler structure has been built to validate this technique in the
laboratory. The structure is a steel frame where a beam has been damaged.
Using the proposed technique, the damage was located with an error lower
than 3%.

The damage index obtained from experimental modal analyses for Barqueta
bridge is shown in Fig. 15. It can be observed that the β value is practically
one at all points. This means a perfect correlation of the two analyses. It
was expected, from previous observation by MAC, that both groups of results
were quite well correlated. Results indicate that the bridge has not suffered
any damage during the last year.

7 Conclusions

An experimental and numerical procedure, developed to obtain the dynamic
behaviour of an arch bridge with cable-stayed deck, has been presented. The
modal parameters of the bridge are evaluated from ambient vibration using
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different identification techniques. EFDD and SSI techniques have shown their
efficiency to identify different modes close to each other.

The dynamic behaviour of Barqueta Bridge is governed by vertical bending
modes and torsional modes in the frequency range of 0-6 Hz. Ten vibration
modes have been identified in this frequency range. Consistency in the ob-
tained results from the different records and the coherence information, indi-
cate that the structure had a linear behaviour during tests.

Using MAC, the obtained experimental modes have been compared with those
evaluated from a finite element analysis. A quite good agreement between
numerical and experimental results is observed.

Vehicle-structure interaction has been studied for situations when half of the
bridge is totally covered by vehicles. These vehicles, in addition to add mass
to the structure, produce an increase in the estimated damping ratios. It is
sensible to conclude that vehicles act as energy dissipation mechanisms.

The results of this investigation can be applied to verify the integrity of the
structure along its life. The results obtained from different experimental modal
analyses done using the data recorded in two series of test carried out with
a time difference of one year, have been correlated using the damage index
method in order to evaluated the damage state of the structure.
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(a) (b)

Fig. 1. Barqueta Bridge (a) and traffic jam on Barqueta Bridge (b).
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Fig. 2. Elevation, plan and deck cross-section of Barqueta Bridge.
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(a)

(b)

Fig. 3. The 3-D FE model of Barqueta Bridge (a) and detail of the deck cross-section
model (b).
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Fig. 4. Measurement locations.
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(a) (b)

Fig. 5. Accelerometers at cables and arch member
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Fig. 7. Auto-spectra function, cross-spectra function (magnitude and phase) and
coherence function.
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Fig. 9. Singular Value Decomposition of the Spectral Densities Matrices.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Fig. 11. Mode shapes from experimental modal analysis.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Fig. 12. Mode shapes from numerical modal analysis.
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Fig. 13. MAC Matrix between results obtained in 2005 and those obtained in 2006.
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Fig. 14. MAC Matrix between experimental and numerical results.
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Table 1: Natural frequencies. Fluid traffic conditions.

fPP [Hz] fANPSDs [Hz] fEFDD[Hz] 1 fEFDD[Hz] 2 fSSI [Hz] 3 fSSI [Hz] 4 fFEM [Hz]

0.75 0.75 0.7273 0.7271 0.7252 0.7283 0.751662

1.25 1.25 1.232 1.236 1.228 1.24 1.11

2.05 2.05 2.03 2.036 2.03 2.032 2.002

- - 2.032 2.044 2.033 2.034 2.144

2.5 2.5 2.49 2.495 2.492 2.509 2.066

3.45 3.45 3.456 3.471 3.447 3.469 3.234

3.9 3.9 3.895 3.908 3.904 3.908 3.817

4.5 4.5 4.485 4.493 4.471 4.484 5.054

5.35 5.35 5.348 5.351 5.339 5.344 6.871

5.8 5.85 5.833 5.824 5.822 5.806 5.509

1 Test carried out in 2005
2 Test carried out in 2006
3 Test carried out in 2005
4 Test carried out in 2006
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Table 2: Natural frequencies. Traffic jam on the bridge.

fPP [Hz] fANPSDs [Hz] fEFDD[Hz] 5 fEFDD[Hz] 6 fSSI [Hz] 7 fSSI [Hz] 8 fFEM [Hz]

0.75 0.7 0.7182 0.7144 0.7084 0.7022 0.74214

1.25 1.2 1.208 1.2 1.236 1.206 1.0777

2.05 2 1.992 1.994 2.001 1.982 1.903

- - 2.019 2.013 2.013 2.035 2.1085

2.5 2.5 2.474 2.464 2.485 2.467 2.004

3.45 3.45 3.453 3.476 3.45 3.438 3.105

3.9 3.9 3.914 3.931 3.905 3.933 3.619

4.5 4.5 4.508 4.543 4.494 4.52 4.762

5.35 5.35 5.361 5.363 5.352 5.361 6.76

5.8 5.8 5.832 5.873 5.829 5.89 5.256

5 Test carried out in 2005
6 Test carried out in 2006
7 Test carried out in 2005
8 Test carried out in 2006
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Table 3: Damping ratios. Fluid traffic conditions.

ξEFDD[%] 9 ξEFDD[%] 10 ξSSI [%] 11 ξSSI [%] 12

1.032 1.756 2.398 2.567

0.7081 1.216 1.151 1.137

0.4778 0.9575 1.346 1.809

1.211 1.135 0.7607 1.152

0.5717 0.9463 0.7641 1.078

0.8789 0.7017 0.7287 0.9164

0.3202 0.8016 0.6447 0.7219

0.4263 0.7968 0.6404 1.014

1.065 1.055 0.9012 1.067

1.137 1.092 0.9462 1.765

9 Test carried out in 2005
10 Test carried out in 2006
11 Test carried out in 2005
12 Test carried out in 2006
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Table 4: Damping ratios. Traffic jam on the bridge.

ξEFDD[%] 13 ξEFDD[%] 14 ξSSI [%] 15 ξSSI [%] 16

1.178 2.196 2.26 3.527

1.748 2.266 4.119 2.054

1.663 2.629 1.665 2.601

2.674 2.843 2.053 3.132

0.809 1.434 1.296 1.117

1.161 1.183 1.703 2.667

1.272 2.8 1.48 2.58

1.208 1.583 1.76 2.459

1.186 1.515 1.185 1.503

1.462 1.302 2.048 1.498

13 Test carried out in 2005
14 Test carried out in 2006
15 Test carried out in 2005
16 Test carried out in 2006
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