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ABSTRACT 

In this paper we investigate the fluid flow through a thin (or long) channel filled with a fluid saturated porous 
medium. We are motivated by some important applications of the porous medium flow in which the viscosity 
of fluids can change significantly with pressure. In view of that, we consider the generalized Brinkman’s 
equation which takes into account the exponential dependence of the viscosity and the drag coefficient on the 
pressure. We propose an approach using the concept of the transformed pressure combined with the 
asymptotic analysis with respect to the thickness of the channel. As a result, we derive the asymptotic 
solution in the explicit form and compare it with the solution of the standard Brinkman’s model with constant 
viscosity. To our knowledge, such analysis cannot be found in the existing literature and, thus, we believe that 
the provided result could improve the known engineering practice. 

Keywords: Brinkman’s equation; Pressure-dependent viscosity; Pressure-dependent drag coefficient; 
Transformed pressure; Asymptotic analysis. 

NOMENCLATURE 

F  dimensionless flux 
H  thickness of the channel 
l  length of the channel 

k̂  pressure-viscosity coefficient  
k  dimensionless pressure-viscosity 

coefficient 

εM  Characteristic number 

P̂  pressure 
P  dimensionless pressure 
dP  dimensionless pressure drop 

0P  referent pressure 

q transformed pressure 
û  velocity 
u  dimensionless velocity 

0V  referent velocity 

 

β̂  drag coefficient 

β  dimensionless drag coefficient 
ε small parameter 
̂  viscosity 

  dimensionless viscosity 
σ auxiliary parameter 

 
1. INTRODUCTION 

The steady-state flow of an incompressible, viscous 
fluid through a porous media is given by the 
conservation of mass and conservation of linear 
momentum principles. While the conservation of 
mass is described by the standard continuity 

equation 

ˆdiv 0,u                                                               (1) 

different laws have been used to describe the 
conservation of the linear momentum. Without 
doubt, Darcy law (Darcy 1856) is the most 
commonly used model stating that the filtration 
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velocity is proportional to the applied pressure 
gradient. However, it is based on several 
(restrictive) assumptions and, thus, its range of 
applicability is limited. In particular, expressed as a 
first order PDE for the velocity, Darcy law cannot 
sustain the no-slip boundary condition for the fluid 
velocity imposed on an impermeable wall. That 
inspired H. Brinkmann (Brinkman 1947) to propose 
the correction of the Darcy law in order to be able 
to impose such condition on an obstacle submerged 
in porous medium. In the absence of the external 
force, Brinkman equation can be written as 

ˆˆ ˆ ˆ ˆβ 0,p    u u                                             (2) 

Note that the second-order Eq. (2) can handle the 
presence of a boundary on which (physically 
relevant) no-slip condition is imposed. 
Nevertheless, in many geophysical problems the 
variations of the viscosity with pressure cannot be 
ignored if the flow is subjected to very high 
pressure drops. Such situation naturally occurs in 
petroleum engineering, namely in problems such 
as enhanced oil recovery and CO2 sequestration. 
In view of that, the Brinkman equation needs to be 
generalized in order to be able to capture the 
effects of the pressure-dependent viscosity. 

The notion that the fluid viscosity can depend on the 
pressure goes back to the celebrated work by Stokes 
(1845). Since then, numerous experimental 
investigations (see e.g. Binding et al. (1998), 
Goubert et al. (2001), Del Gaudio and Behrens 
(2009)) confirmed that, as the pressure is increased 
by several orders of magnitude, the variations of the 
viscosity with pressure should be taken into account 
while the flow is still incompressible. The viscosity-
pressure relation is most commonly described by 
the Barus law (Barus (1893)) stating that the 
viscosity increases exponentially with pressure: 

ˆˆ
0 0

ˆˆ ˆ ˆ( )   ,    , const. 0.kpp e k                         (3) 

In the context of Eq. (2), the pressure-dependent 
viscosity implies that the porous medium parameter 

β̂  (drag coefficient) also varies with the pressure 
(see e.g. Srinivasan et al. (2013)). More precisely, 
the exponential dependence (3) leads to a drag 
coefficient of the form 

ˆˆ
0 0

ˆˆ ˆ ˆ( )   ,    , const. 0.kpp e k                         (4) 

As a consequence, we arrive at the following 
generalized version of the Brinkman’s equation: 

   ˆˆ ˆ ˆ ˆ ˆ ˆdiv 2 ( ) β 0,p p p      D u u                  (5) 

where is    1
ˆ ˆ ˆ

2
T      

D u u u  the symmetric 

part of the velocity gradient tensor. The aim of this 
paper is to study the flow governed by Eqs. (1) and 
(5) from the analytical point of view. Note that 

when ˆ 0   and β̂  is constant,  Eq. (5) reduces to 

simple Darcy equation, while for β̂ 0  and ̂  

constant, we get the Stokes equation. Finally ̂  

and β̂  are assumed to be constants (i.e. k = 0), we 
have the Brinkman's equation (2). 

Introducing the exponential dependence (3), (4) into 
the Brinkman’s equation makes the problem highly 
nonlinear and, thus, we cannot expect to derive the 
exact solution of the full system (1), (5) even in the 
case of the simple two-dimensional channel (i.e. 
fracture with plane-parallel walls). Therefore, we 
introduce the small parameter ε (denoting the ratio 
between thickness of the channel and its length) and 
propose the asymptotic approach as ε → 0. After 
rewriting the Eqs. (1), (5) in the non-dimensional 
form, we apply the concept of the transformed 
pressure originally proposed by Marušić-Paloka 
and Pažanin (2013). By doing that, we transform 
the momentum Eq. (5) into the equation with 
small nonlinear perturbation that we can control. 
In such transformed system, we compare the 
characteristic (non-dimensional) number εM  

describing the flow with small parameter ε trying 
to identify the critical case in which all the effects 
we seek for are balanced at the main order. We 
compute the asymptotic solution of the 
transformed problem in the most interesting 
(critical) case and then recover the solution of the 
governing problem by applying the inverse 
transformation. As a result, we obtain the effective 
model described by the explicit expressions for the 
velocity and pressure distribution. It enables us to 
clearly observe the influence of the viscosity-
pressure dependance and porous structure on the 
effective flow. In particular, we can easily 
compare our asymptotic solution with the solution 
of the standard Brinkman’s model with constant 
viscosity. 

To conclude the Introduction, we provide some 
bibliographic remarks on the subject. For the 
flow through porous media, as governed by the 
Brinkman equation and its various 
generalizations, analytical treatments can be 

found only in the constant viscosity case ( ˆ 0k  ). 
We refer the reader to Durlofsky and Brady 
(1987), Kuznetsov (1998), Malashetty et al. 
(2001), Merabet et al. (2008), Marušić-Paloka et 
al. (2012), Khan et al. (2014)). In the variable 

viscosity case ( ˆ 0k  ), the numerical approach 
has been developed and we refer the reader to 
Naskhatrala and Rajagopal (2009), Srinivasan et 
al. (2013). In those papers, the results based on 
numerical simulations have been provided clearly 
suggesting that the corresponding solutions 
exhibit significantly different characteristics than 
the solutions of the classical Darcy or 
Brinkman’s equation. We confirm those findings 
in the present paper using analytical (asymptotic) 
approach and without making any simplifying 
assumptions on the governing system of PDEs 
and its solution. If we assume that û= û (ˆx) i (in 
fact, û (ˆx) = const., due to (1)), then the Eq. (5) is 
reduced to a simple ODE for the pressure which can 
be easily solved by the separation of variables (see 
Subramanian and Rajagopal (2007)).  As far as we 
know, this is the first attempt to carry out such an 
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analysis and, thus, we believe that it could 
improve the known engineering practice. 

1If we assume that ˆu = ˆu (xˆ)i (in fact, ˆu(xˆ) = 
const., due to (1)), then the Eq. (5) is reduced to a 
simple ODE for the pressure which can be easily 
solved by the separation of variables (see 
Subramanian and Rajagopal 2007). 

2. FORMULATION OF THE 
PROBLEM 

We consider the flow in a simple two-dimensional 
domain 

  ˆ ˆ ˆ ˆ ˆ, : 0 ,0 .x y x l y h      2R                 (6) 

The ratio ε = h/l is assumed to be small meaning 
that the channel under consideration is either very 
thin or very long. Such situation appears naturally 
in the applications we aim to address. As 
explained in the Introduction, the channel is filled 
with a fluid saturated porous medium and the flow 
is modeled by the generalized Brinkman’s 
equation with pressure-dependent viscosity and 
drag coefficient. Thus, we have the following 
system satisfied by the unknown fluid velocity û  
and pressure p̂ : 

   ˆˆ ˆ ˆ ˆ ˆ ˆdiv 2 ( ) β 0,p p p      D u u                  (7) 

ˆdiv 0, u                                                             (8) 

where the dependence of the functions ̂ and β̂  
upon the pressure is given by Eqs. (3) and (4) 
respectively. To complete the problem, suitable 
boundary conditions have to be added. We impose a 
standard no-slip boundary condition for the velocity 
on the channel walls and we assume that the flow is 
governed by the prescribed pressure drop

0ˆ ˆldP p p  . In view of that, the boundary 

conditions read: 

ˆ ˆ0  for   0, ,y h u                                                (9) 

ˆ ˆ0  for  0, ,x l  u i                                           (10) 

ˆ ˆ ˆ  for  ,   0, .ip p x i i l                                      (11) 

Our goal is to investigate the asymptotic behavior 

of the flow described by (7)–(11), as ε → 0. 

3. ANALYSIS 

3.1   Equations in Non-Dimensional Form 

The first step is to write the governing problem in 
the non-dimensional form representing the 
appropriate framework for our analysis. We do it in 
a standard way by introducing 

0 0

ˆ ˆ ˆ ˆ
,    ,    ,    ,

x y p
x y p

l l V P
   

u
u                    (12) 

0 0

0

ˆ ˆˆ β
,    ,    β=

ˆ1 ˆ β

k
k

P




                                     (13) 

where V0, P0 denote referent values of the velocity 
and pressure. Setting 

0
0

0β

P
V

l
                                                              (14) 

we obtain 

ε
2 ( ) ,kpM e p M k p

  
     εu u D u      (15) 

εdiv 0.u                                                            (16) 

Note that the above equations are posed in the ε-
independent domain Ω = (0,1)2. The non-
dimensional characteristic number Mε appearing in 
the Eq. (15) represents the ratio between the 
frictional effect due to drag and the frictional effect 
due to viscosity, namely 

2
0

0

ˆ

ˆ

l
M




                                                          (17) 

Finally, hereinafter we use the following notation 
for the partial differential operators: 

  
1 2 2 2

ε 2 2 2

1 1
div ,   v ,

v v v v

x y x y
 

   
    
   

v  

 ε ε ε
φ 1 φ 1

,   ( )
2

T
v

x y



             εi j D v   

1 1

1
ε 2 2

1
       

,
1

       

2

v v

x y
v v + v

v v

x y





  
 
        

   

v i j  

3.2   Transformed Pressure 

Following the idea from Marušić-Paloka and 
Pažanin (2013), we introduce a new function qε, 
called the transformed pressure, such that 

ε ε .kpe p q                                                      (18) 

From (18) we deduce 

 1
,    .k kpq e e

k
    R                             (19) 

For the sake of the further analysis, it is important 
to observe that parameter σ in (19) can be chosen in 
an arbitrary way. Since 

ε ε ε
1

,kp
k

p e q q
e kq    


                        (20) 

from (15)-(16) we get the following system satisfied 
by the velocity u and transformed pressure q: 

ε ε ε ε ε
2

( ) ,
k

k
M q M q

e kq
     


u u D u  

(21) 
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εdiv 0.u                                                            (22) 

The transformed Eq. (21) is still nonlinear but we 
are able control the nonlinearity appearing on the 
right-hand side. Indeed, the liberty in choice of 
parameter σ (see (19)) enables us to choose it small 
enough so that 

2
lim 0.

k

k

e kq 



                                          (23) 

Such choice of the parameter σ will be justified in 
the sequel by the fact that the effective pressure 
does not depend on σ at all (see (35)). That 
means that, throughout the analysis, σ plays the 
role of just an auxiliary parameter, i.e. by 
choosing σ such that (23) holds, we do not 
impose any additional constraints in the process. 

3.3   Asymptotic Solution 

Now we have to construct the asymptotic solution 
of the transformed system (21)-(22). Before 
proceeding, it is important to make the following 
observation: if we kept characteristic number εM  

constant (i.e. independent of ε), then a simply 
calculation would yield the model with no 
contribution of the porous structure at the main 
order. Thus, we need to compare εM  with small 

parameter ε trying to identify the critical case in 
which those effects remain in the macroscopic 
model. It can be easily verified that the critical case 

takes place when 2
ε (ε )M O  . Indeed, if we take 

2
ε (ε )M O  we would obtain a simple Darcy law 

not accounting the effects of the Brinkman 
(viscous) term. On the other hand, the assumption 

2
ε (ε )M O  would yield the situation already 

described above. In view of that, we set 

ε 2
,    (1)

ε

M
M M O                                          (24) 

and perform a careful analysis under this 
assumption. Note that the assumption (24) suggest 
that the frictional effects between the fluid and the 
pores in the solid are dominant over the frictional 
effects within the fluid due to viscosity. 

Expanding the solution as 0 1ε ...    u u u

0 1ε ...q q q   and taking into account (23), we 

first conclude that 0 0( )q q x . Next, we obtain 

0

2
0 0 1

02 2

2

2

0

1
:   0

ε

1
:     0     ,

ε

         0   for    0,1.

dq dq
M M M

dx dyy

u
in

y

y

 
    





 


  



u
i j u

u

 

(25) 

We deduce 1
0 0 1 1( , )   , ( )u x y q q x u i , leading to 

2 1
10 0
02
=  in   .

u dq
Mu M

dxy


   


                        (26) 

We can treat (0,1)x as a parameter and solve the 
above equation as a linear second-order ODE with 
respect to y. We get 

1 0
0 1 2( , ) ( ) ( ) .

M yM y dq
u x y C x e C x e

dx
        (27) 

The functions 1 2( ), ( )C x C x can be computed by 

taking into account that 1
0 0u   for 0,1.y   We 

obtain 

0 0
1 2

1 1
( ) , ( ) .

M M

M M M M

dq dqe e
C x C x

dx dxe e e e



 

 
 

 
(28)  

It remains to determine the transformed pressure q0. 
From the divergence equation we deduce 

1 2
0 11  :     0   in    .

u u

x y

 
  

 
                           (29) 

Integrating the above equation with respect to y 
gives 

1 11 1
0 0 10 0

0  const.u dy u dy D
x

       
            (30) 

Taking into account (27), we obtain 

1

0 1 2
2

( ) .
2 2

M M

M M

M e e M
q x D x D

e e






     
  

 

(31) 

In view of (19), the boundary conditions for q0 are 
given by 

 0
1

( )   ,   0,1,ikpkq i e e i
k

                        (32) 

with 0
0 1

0 0

ˆ ˆ
, lp p

p p
p p

  . Consequently, we arrive at 

   0 01
0

1 1
( ) .kp kpkp kq x e e x e e

k k
       

(33) 

In order to reconstruct the effective pressure effp  

related to the governing (dimensionless) problem2, 
we apply the inverse transformation (see (19)) to 
obtain 

0

1 1
( ) ln  .

( )
eff k

p x
k e kq x

 
    

                       (34) 

In view of (33) we deduce 

 0 01

1 1
( ) ln  .eff kp kpkp

p x
k e e e x 

 
    
 

           (35) 

The effective velocity is provided as
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1
0( ) ( ) ,eff y u yu i where 1

0u is given by (27).Since 

0 1,p p  it follows 01 kpkpe e  implying that 

effp  is well-defined. Moreover, observe that the 

effective pressure does not depend on the parameter 
σ at all. This fact justifies the above transformation 
procedure, namely the choice of the parameter σ 
such that (23) holds. 

4. DISCUSSION 

Let us write our (dimensionless) asymptotic 
solution. In view of (27), (28), (33), and (35), it has 
the following form:  

0 1

1
0

1
0

( ) ( ) ,

( ) [(1 )
( )

             +( 1) ( )],

eff

kp kp
M M y

M M

M M y M M

y u y

e e
u y e e

k e e

e e e e

 




 




  



  

u i

  

(36) 

0 01

1 1
ln ,

( )
eff kp kpkp

p
k e e e x 

 
     

              (37) 

for , (0,1)x y  On the other hand, it can be easily 
verified that the solution corresponding to the 
standard Brinkman model (1)-(2) with constant 
viscosity reads: 

1 0

( ) ( ) ,

( ) [(1 )
( )

             +( 1) ( )],

B B

M M y
B M M

M M y M M

y u y

p p
u y e e

e e

e e e e




 




  



  

u i

  

(38) 

1 0 0( ) ( ) .bp x p p x p                                       (39) 

The above velocity and pressure profiles have been 
plotted in Figs. 1-2 for different values of the 
pressure-viscosity coefficient k. According to the 
experimental results that one can find in the 
literature (see Srinivasan et al. (2013) for details), it 
is reasonable to choose values 

 0.01,0.02,0.035k   in the case of the referent 

pressure 6
0 10P  . In the following we also take M 

= 1 and put 0 300p   and 1 1p  ensuring the 

setting with high (dimensional) pressure drop. 

From Fig. 1 we conclude that the velocity profiles 
exhibit different characteristics in constant (k = 0) 
and variable viscosity case (k > 0). Indeed, though 
the symmetry (around y = 0.5) is preserved in both 
settings, the values of the velocity for k > 0 are more 
than 200 percent lower than those for k = 0. 
Furthermore, as the pressure-viscosity coefficient k 
increases, the velocity profile becomes more 
flattened indicating that the velocity, for higher 
values of k, does not vary too much with respect to y. 

 
Fig. 1. Plots of ( 0)Bu k  and 1

0u  for various 

values of k > 0. 

 

 
Fig. 2. Plots of ( 0)Bp k  and effp  for various 

values of k > 0. 

 

 
Fig. 3. Plots of FB (k = 0) and F for various 

values of k > 0. 

 
The difference between constant and variable 
viscosity case is even more apparent when we 
compare the pressures (see Fig. 2). While for k = 0 
we have a simple linear function describing the 
pressure distribution, for k > 0 the outcome is 
completely different. We observe that the pressure 
exhibits a huge decrease within a short distance 
near the left end of the channel. After that it does 
not vary too much with respect to x. That suggests 
the appearance of the pressure boundary layer in the 
vicinity of x = 0 in case of high pressure drops 
between the channel’s ends. Note that the decrease 
near x = 0 becomes more significant as the pressure-
viscosity coefficient k increases. 

Last but not least, it is interesting to investigate how 
the corresponding flow rate (flux) changes with 
respect to the pressure drop 0 1 (1,300)dP p p    

By a simple integration, for Brinkman’s model (k = 
0), we obtain that the flux increase linearly with the 
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change of the pressure difference across the 
channel, namely 

1 1 1
0 10

( ) ( ) ( 3 4).B
dP

F dP u y dy e e
e e


   

      (40) 

On the other hand, in the variable viscosity case, 
from (36), we deduce 

1 1 1
00 0

300 (300 )
1

1

( ) . ( ) ,

            = ( 3 4).
( )

eff

k k dP

F dP u dy u y dy

e e
e e

k e e

  




 


 



 i

     (41) 

As we can observe from Fig. 3., the values of the 
flux are significantly lower for k > 0 than those for k 
= 0 so we may conclude that the standard 
Brinkman’s model in some sense overpredicts the 
flux. Moreover, the flux in variable viscosity case 
increase very slowly, with the increase of dP. In 
fact, the increase in the flux is negligible up to some 
(critical) value of the pressure drop dP (being rather 
high even for moderate values of k). Such 
phenomena becomes more dominant, as the value 
of the pressure-viscosity coefficient k goes up. For 
instance, for k = 0.035, the critical value of the 
pressure drop is almost 250, i.e. the variations of the 
flux are negligible for pressure drops dP < 250. 

5. CONCLUDING REMARKS 

In the present paper we address one important 
application of the porous medium flow: the fluid 
flow governed by the high pressure drop through a 
thin channel (i.e. thin fracture with plane-parallel 
walls) filled with fluid saturated porous medium. 
Such flows appear naturally in the industrial 
applications, in particular in petroleum engineering. 
The framework with high values of pressure induce 
the significant variations of the viscosity with 
respect to pressure making standard Brinkman’s 
model with constant viscosity inappropriate for 
describing such flows. Thus, we consider the 
generalized Brinkman’s model with pressure-
dependent viscosity and drag coefficient. The 
viscosity and drag-pressure relation is assumed to 
be exponential (Barus law) and the effective flow is 
found using asymptotic approach with respect to the 
thickness of the channel. The key idea is to 
introduce the notion of the transformed pressure 
enabling us to control the nonlinearity in the 
momentum equation. The obtained result clearly 
indicates that the asymptotic solution exhibits 
utterly different characteristics than the solution 
corresponding to the classical constant viscosity 
case. To our best knowledge, this is the first attempt 
to solve this problem using analytical approach and 
without making any simplifications on the starting 
problem. Finally, one of the benefits of the analysis 
presented here lies in the fact that it can be 
straightforwardly generalized in two directions. 
Instead of addressing simple fracture with plane-
parallel walls, we can consider more complex (and 
realistic) domain, namely the fracture with 
constrictions (see e.g. Gipouloux and Marušić-
Paloka (2002)). Besides the effects of the porous 

structure and pressure-dependent viscosity, in such 
setting we are particularly interested to detect the 
effects of the shape functions describing the 
constrictions. Another possible generalization 
would be to consider general viscosity-pressure 
dependence ˆ ˆ ˆ( )p p satisfied by Barus law and 
other empiric laws (see e.g. Marušić -Paloka and 
Pažanin (2013)). 

Instead of (19), we would simply introduce the 

transformed pressure q as 
ξ

( )
(ξ)

p d
B p

 
  and 

continue with the same procedure as above. 
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