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Dynamic Label Propagation in Social Networks

Juan Du, Feida Zhu, and Ee-Peng Lim

School of Information System,
Singapore Management University
{juandu, fdzhu,eplim}@smu.edu.sg

Abstract. Label propagation has been studied for many years, starting
from a set of nodes with labels and then propagating to those without
labels. In social networks, building complete user profiles like interests
and affiliations contributes to the systems like link prediction, personal-
ized feeding, etc. Since the labels for each user are mostly not filled, we
often employ some people to label these users. And therefore, the cost
of human labeling is high if the data set is large. To reduce the expense,
we need to select the optimal data set for labeling, which produces the
best propagation result.

In this paper, we proposed two algorithms for the selection of the opti-
mal data set for labeling, which is the greedy and greedyMax algorithms
according to different user input. We select the data set according to
two scenarios, which are 1) finding top-K nodes for labeling and then
propagating as much nodes as possible, and 2) finding a minimal set of
nodes for labeling and then propagating the whole network with at least
one label. Furthermore, we analyze the network structure that affects
the selection and propagation results. Our algorithms are suitable for
most propagation algorithms. In the experiment part, we evaluate our
algorithms based on 500 networks extracted from the film-actor table in
freebase according to the two different scenarios. The performance in-
cluding input percentage, time cost, precision and fl-score were present
in the results. And from the results, the greedyMax could achieve higher
performance with a balance of precision and time cost than the greedy
algorithm. In addition, our algorithm could be adaptive to the user input
in a quick response.

1 Introduction

The problem of label propagation has in recent years attracted a great deal of
research attention [12][17, @], especially in the setting of social networks where an
important application of it is to better understand the elements of the network,
such as user profiles [§]. As user profiles are often represented by node labels
denoting their interests, affiliations, occupations, etc, it is therefore desirable
to know the correct labels for as many nodes as possible. However, in real-life
social network applications, complete label information of the entire network is
rare due to users’ privacy concern and unwillingness to supply the information.
Consequently, label propagation has been widely used to derive from the known
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labels of a subset of nodes the unknown ones of the other nodes for the rest of
the network [I]. The underlying assumption is the well-observed phenomenon of
“homophily” in social networks, i.e., users with strong social connections tend
to share similar social attributes.

To trigger the label propagation process over a social network, we need to
first acquire the correct labels for an initial set of nodes, which we called a seed
set. As the acquisition cost of the labels is usually high, e.g., by human labeling
and verification, the goal for label propagation in these settings is usually to
find as small a seed set as possible such that the knowledge of these node labels
would maximize the label propagation. A seemingly similar problem is the classic
influence maximization problem, the goal of which is to find as small a set of
nodes as possible to initiate certain adoption (e.g., products, innovation, etc.)
such that it will trigger the maximum cascade, which has been the focus of many
influential research works including Kleinberg’s [6].

However, it is important to note the critical difference between our problem
and the influence maximization problem. Our label propagation problem has an
extra dimension of complexity as a result of the uncertainty of the labels assigned
to the seed set. In the influence maximization problem, the labels to be assigned
to the seed set are mainly for status indication which are known a priori — if
a node is chosen as a seed to initiate the adoption, its label is set as “active”,
otherwise, its label remains as “inactive”. The challenge is to find the right set to
assign the initial “active” labels to maximize the cascade. On the other hand, in
our label propagation problem, labels represent categorical attributes the values
of which remain undecided until specified by users, i.e., for each node in the seed
set, technically, users can specify any chosen label from the label universe. The
challenge in identifying the right set is not only to study the network structure
but to consider all possibilities of label assignment as well.

This important difference between the two problems also suggests that, in our
problem setting, a dynamic model of seed set computation based on step-wise
user input could be more suitable. Instead of computing the seed set all at once,
we in fact should compute the seed set one node at a time based on user input
for the next label. As shown in Example [I different label revealed at each step
could lead to drastically different propagation result.

Ezample 1. In Figure [Il suppose in Step 1 the network is initialized with only
node 4 labeled as “A” and the propagation method is the majority voting al-
gorithm such that each node gets the label of the majority of its neighbors.
Depending on which node and its label is known in Step 2, we would get entirely
different final propagation result. If in Step 2 we know node 6 with label “B”,
the propagation can not proceed, and if node 5 is further known with the same
label “B”, the result will be as shown in the right-upper network. On the other
hand, if in Step 2 node 1 is revealed with label “A” the network will be fully
propagated with label “A”. Yet, if in Step 2 node 1 is labeled as “B” instead,
then more nodes’ labels need to be known in order to continue the propagation.

Therefore, in this paper, we propose the dynamic label propagation problem,
which is to find, incrementally based on user input, the optimal seed set to
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Fig. 1. Examples of different propagation results by dynamic label input

propagate the entire network. A closely related problem is to find the optimal
k-size seed set where k is a user-specified parameter, e.g., budget constraint. We
show that both problems are NP-hard, and present a greedy algorithm which
gives good empirical results. We propose four evaluation criteria and compared
different propagation models. To explore the connection between the actual label
distribution and the network structure properties, we show the propagation re-
sults for some widely-used network measures including density, modularity and
single node number. Our empirical results on a real-world data set demonstrate
the effectiveness and efficiency of our proposed greedy algorithm.

The rest of the paper is organized as follows. We first introduce some popular
propagation algorithms and the relation to our algorithm of finding the optimal
given label set in Section Pl And in Section Bl we provide the details of our
algorithms. Some network structure analysis that will affect the selection and
propagation are shown in Section @l And we evaluate the algorithms in Section
Bl The related work is introduced in Section [f] and finally our work is concluded
in Section [7

2 Problem Formulation

2.1 Problem Definition

We denote a labeled network as G = (V, E, L), where V|, E and L represent
the non-empty sets of nodes, edges, labels respectively. Given a labeled network
G = (V,E, L), there exists an Oracle function Og : V — L such that given
a query of any node v € V, Og(v) € L, which simulates user input on the
node labels. We assume initially no labels are know for any node of G, and each
node could obtain a label of L during the label propagation, which could get
updated during the process. However, we also assume that labels obtained from
the Oracle will never change.
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We begin by defining the notion of a propagation scheme as follows. The idea
is that, given a set of nodes whose labels are known initially, a propagation
scheme defines the set of the nodes each of which would obtain a label by the
end of the label propagation process. The propagation scheme is defined as a
function to achieve the greatest generality since the exact choice of the propa-
gation algorithm would depend on the nature of the application. We leave the
detailed discussion of the propagation scheme to subsequent parts of the paper.

Definition 1. [Propagation Scheme] Given a labeled network G = (V, E, L),
an Oracle function Og and a S C 'V such that for each v € S, Og(v) is known,
a propagation scheme is a function P : 2V — 2V such that P(S) C V and for
each v € P(S), v would obtain a label by the end of the label propagation process.

The question of the greatest interest to users is the Minimum Label Cover (MLC)
problem which is to find the smallest node set to obtain labels initially such that
the subsequent propagation could cover the whole network, i.e., assign labels for
every node. A closely related problem is the K-set Label Cover (KLC) problem
in which we are interested in how much of the network we can at most cover if
we know the labels of K nodes, which is useful for applications in which a budget
is given to acquire the initial labels. These two problems are related in that a
solution to the KLC problem would also give a solution to the MLC problem.
Notice that in both problem settings, the Oracle to reveal the node labels is
not available to the algorithm to find the seed set. In contrast, in our dynamic
problem definitions later, the Oracle is available at each step to answer label
queries.

Definition 2. [Minimum Label Cover (MLC)] Given a labeled network
G = (V,E,L) and a propagation scheme P(.), the Minimum Label Cover prob-
lem is to find a node set S of minimum cardinality, such that the label propagation
as defined by P(.) would cover the entire network, i.e., S = argmin{S|P(S) =

K
V}.

Definition 3. [K-set Label Cover (KLC)] Given a labeled network G =
(V,E, L), a propagation scheme P(.) and a positive integer K, the K-set Label
Cover problem is to find a node set SK of cardinality K such that the label prop-
agation as defined by P(.) would achieve the maximum coverage of the network,
i.e., SK = argmax{S||S| = K}.

|P(S)]

We are now ready to define our dynamic label propagation problem, which es-
sentially is to solve MLC and KLC incrementally given user input at each step.

Definition 4. [Dynamic Minimum Label Cover (DMLC)] Given a la-
beled network G = (V, E, L) , an Oracle function Og and a propagation scheme
P(.), the Dynamic Minimum Label Cover problem is to find a node sequence of
minimum length, S = (v1,va,...,v|s|), such that the label propagation as defined
by P(.) would cover the entire network, i.e., S = argmin g {S|P(S) = V}.
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Definition 5. [Dynamic K-set Label Cover (DKLC)] Given a labeled net-
work G = (V,E,L) , an Oracle function Og, a propagation scheme P(.) and a
positive integer K, the Dynamic K-set Label Cover problem is to find a node
sequence of length K, § = (v1,va,...,vk), such thal the label propagation
as defined by P(.) would achieve the mazimum coverage of the network, i.e.,
SK = argmax{S||S| = K}

[P(S)]

2.2 Complexity Analysis

In this section we give some complexity analysis of the varied problem settings,
mostly based on known hardness results with some quite straightforward problem
reductions. The detailed proofs are omitted due to space limit. First it is not
hard to see the NP-hardness of the MLC problem as a result of the following
theorem from [6].

Theorem 1. [6] The influence maximaization problem is NP-hard for the Lin-
ear Threshold model.

In our definition of the MLC problem, if we set the propagation scheme to be
the function which corresponds to the Linear Threshold model as described in
[6], and our label set L to be the set containing only a single label, then the
status of a node whether or not it has acquired this label would map exactly
to the status of being “active” or “inactive” as in the Linear Threshold model
in [6]. Therefore, the influence maximization problem is indeed a sub-problem
of the MLC problem. Due to Theorem [I we have the following theorem for the
MLC problem.

Theorem 2. The MLC problem is NP-hard.

As we can solve the MLC problem in polynomial time by systematically try a
sequence of increasing values of K for the corresponding KL.C problem, Theorem
implies that the KL.C problem is also NP-hard.

Corollary 1. The KLC problem is NP-hard.

By similar argument, if we set our label set L to be the set containing only a
single label to match exactly the status of a node being “active” or “inactive”
as in the Linear Threshold model in [6], the having the Oracle available will not
lend additional information as in this case the label, which is actually status,
is known a priori. As such, the static versions of the problem are actually sub-
problems of the dynamic versions. We therefore also have the following results
by similar argument.

Theorem 3. The DMLC problem is NP-hard.

Corollary 2. The DKLC problem is NP-hard.
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Since both versions of the dynamic label propagation problems are NP-hard, we
resort to heuristic algorithms. In particular, we develop a greedy algorithm which
will be detailed in Section Bl In [6], it has been shown that such a greedy hill-
climbing algorithm would give an approximation to within a factor of (1—1/e—e¢)
for Linear Threshold model. It is worth noting that in this paper we are not
limited to the Linear Threshold model, as we will discuss in the following. Un-
fortunately, the approximation bounds are not known for the greedy algorithm
in models with other propagation methods, e.g., K-nearest neighbor algorithm,
which we would like to explore in our future study.

2.3 Propagation Models

We present a discussion of some widely-used propagation models focusing on
their applicability in our problem setting.

K-nearest Neighbor Algorithm. K-nearest neighbor algorithm (KNN) is a
method for classification, while in label propagation, it is also widely used. The
idea of KNN is that the node will be labeled as the same label as his nearest
top-K nodes’ labels. The distance of two nodes could be measured by different
factors like SimRank [5], which measures the structural-context similarity. In
this case, the selection prefers the nodes that are more similar to others.

Linear Threshold Model. Linear threshold model is widely used in informa-
tion diffusion. Given a set of active node, and a threshold # for each node, at
each step, an inactive node will become active if the sum of the weights of the
edges with active neighbors exceeds the threshold . Similar to this process, dur-
ing the label propagation, a node will accept the label if the sum of the weights
of the edges with neighbors by this label exceeds the threshold 6. In the linear
threshold model, the selection prefers the nodes with higher degree and higher
edge weights. We call it majority voting in the following sections to differentiate
the propagation with information diffusion.

Independence Cascading Model. Independence cascading model is another
widely used model in information diffusion and was also deeply discussed in [6]
along with linear threshold model. When a node v becomes active in step ¢, it
is given a single chance to activate each currently inactive neighbor w with a
predefined probability. In addition, if v succeeds, then w will become active in
step t+ 1; but whether or not v succeeds, it cannot make any further attempts to
activate w in subsequent rounds. Obviously, in the label propagation scenario,
node v should be able to propagate its labels out at any steps rather than only
once. And therefore, this model is not suitable for label propagation.

Supervised Learning Algorithm. Supervised learning algorithms use the
nodes with existing labels to train the classifier and then propagate to the un-
labeled nodes, like Support Vector Machine(SVM) and Hidden Markov Model.
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These algorithms need a certain number of labeled nodes as training dataset to
train the model first. However, in our case, the labeling of the nodes is unknown
and need to be adaptive to the user input in a quick response, and thus the
supervised learning algorithms are not quite suitable.

3 Seed Node Detection Algorithm

3.1 Design Ideas

The complexity of the formation of set S is O(2™ — 1), where n is vertex number.
In addition, the selection also needs to consider the situation of nodes with differ-
ent labels, which consequently will decrease the performance. So before propaga-
tion on the incomplete network, we need to employ some techniques to simplify
it first. And according to the different characteristics of various networks, the
techniques might be varies. Here, we introduce two approaches: pruning and
clustering.

Pruning. In social network like twitter, there are some users who have many
followers such as celebrities, film stars and politicians. We call these users as
“Hub users”. When the label stands for affiliations rather than interests, the
propagation will fail due to the existence of these “Hub users”. In addition, the
normal users who do not know each other off-line will decrease the performance
of propagating affiliations as well. And thus, we need to prune some users before
propagation under different circumstances.

Besides, in social network, some nodes are isolated due to a lot of reasons
such as they are puppets or new-comers. In this situation, the degree of these
nodes in a certain target network is usually small. If these spam nodes are
not essential in the specific scenario, then it could be pruned. Since different
pruning techniques will be employed according to different label propagation
scenarios, so the modification of the network will not affect the propagation
result significantly.

By pruning techniques, we could not only remove noise nodes to increase
precision, but also decrease the number of nodes in the network. And thus the
computation time according to O(2"™ — 1) will be reduced.

Clustering. To reduce the complexity, another step is to divide the network into
several subgraphs. However, a question is that if the network could be clustered
well and then the minimum set S will be inferred by randomly choose a node
in each cluster directly. Actually, the clustering approach of previous research
works cannot achieve best results, which consequently leads the wrong labeling
by choosing only one node. And therefore, the idea is that, before propagation,
we just do a roughly clustering on the network. For each cluster, we select a
minimum set §’, and then union all the S§’. During the combination, the nodes
those could be propagated by the others in S’ will be deleted. Actually, the
selection after clustering might not be the optimal one compared to that on the
original network. However, to deal with large networks, it works when considering
time cost.
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Finding Set S. To select set S, there are two approaches. The first one is to give
the final result S directly in off-line mode, and the other one is to add the node
to S online. The main difference between these two selection processes is that
the second one is more dynamic. In the off-line modes, as long as the prediction
of one node’s label is different from the actual one, the selection according to
the propagation result might be changed, as shown in Example [l And thus, it
needs to pre-compute all the situations for the nodes with different labels, which
is impractical for large and complex networks. On contrary to the off-line mode,
the online one picks up the nodes dynamically according to the user input. Once
a node’s label was given by users, the selection considers the current network
states. In another words, in each iteration 7, the selection depends on the network
structure and the labels constructed in (i — 1)’s iteration rather than the initial
network state. The details of the algorithm will be shown as follows.

3.2 Algorithm

We propose a greedy algorithm to select the set S dynamically, which is called
G-DS. In each iteration, we pick up a node which maximizes the propagation cov-
erage. The measurement of the maximization considers different labels. Suppose
in the ¢’s iteration, the existing labels in the network are the set £ = 11,15, ..., .
And then, for each unknown vertex v, we calculate the increase coverage “Cov”
by v labeled as [, as

#known label nodes
x = 3 1
Cov(v, 1) #total nodes (1)

and the probability “P” that v to be labeled as I, according to the current
network status in the (i — 1)’s iteration is

Plu,1,) = #nodes labeled as l:r inv's neighbors, @)
#v's neighbors
and finally sum up Cov * P for each label to get the average coverage AvgCov
as Equation[3l In each iteration, we pick up the vertex with the largest AvgCov
score. The G-DS algorithm is shown in Algorithm [

Score = AvgCov(v) = Z Cov(v,l;) * P(v,ly). (3)
lo€LULnew

However, the performance of the G-DS algorithm is low. The time complexity is
O(n?) in the worst case, where n is the node number in the network. Each time
to choose a node, it needs to calculate the score for each unlabeled nodes with dif-
ferent existing labels. In order to improve the efficiency, we propose a semi-greedy
algorithm, called GMaz-DS. GMax-DS algorithm is similar to the G-DS algorithm.
However, instead of calculating the AvgCov score for all the situations, it only con-
siders the most possible label for node v according to the current network states as
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Algorithm 1. G-DS Algorithm

Require: G = (V,E,L), k
Ensure: K| ==k or |K| == |V|
1: S=0,K=0,L=90
2: while |[K| < k or |[K| < |V]| do
start the 4’s iteration
for each v € (V — K) do
for each [, € L do
compute AvgCov(v) according to the (i — 1)’s iteration
end for
:  end for
9:  S.add(maz(AvgCov(v)))
10:  input the label Oc(v) for the node with the max(AvgCov(v)) score
11:  propagate the network by S, update K
12:  addl’ to L if L does not contain it
13: end while
14: return S

3
4
5:
6:
7
8

in Equation[dl For example, for vertex v, its neighbors have labels like l1,l> and I3,
among which, I; occurs most, and thus the score is calculated as Cov(v, ;).

Score = Cov(v, lymaz) = Cov(v, linaz) * Praz- (4)

In the GMaz-DS algorithm, we replace the score in Algorithm [ line 6 with the
one in Equation [d Since we just consider the label with the highest probability
during the calculation, the computation cost will be significantly decreased. And
the time complexity of GMaz-DS in the worst case is O(n?).

4 Social Network Structure

In real cases, the label distribution is related to the network structures. And
therefore, the network structure will also affect the performance of our algorithm.
So in this section, we present some structure features in social networks which
might influence the performance of the selection. Actually, the performance is
related to the propagation method as well. And thus, all the comparisons are
based on the same propagation method. We randomly extracted 15 networks
from film-actor table in FreeBas, and compared the performance based on two
simple propagation methods, KNN and majority voting algorithms. The results
based on different network attributes are shown in Figure

4.1 Graph Density

If the graph is less dense, then it indicates that the nodes are not well connected
to others. Usually, the nodes with the same labels are more coherent. The prop-
agation methods propagate the labels to a node from its neighbors or similar

! http://www.freebase.com/view/film/actor
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Fig. 2. Performance according to the G-DS and GMaz-DS algorithms by KNN and
Majority voting propagation methods under different network structures (The differ-
ent methods are shown in different colors. Note that some networks are with similar
properties and thus their points meet on the graph.)

nodes. However, in a sparse network, it is hard to propagate the labels. As in
Figure @l(a), (c) and (e) shows, the performance will arise linearly when the

density increases.

4.2 Modularity

Modularity[I0] measures the strength of a division of a network into modules. Net-
works with high modularity have dense connections between the nodes within the
modules but sparse connections between nodes in different modules. So according
to the definition of modularity, a network with higher modularity requires less in-
put for labels. In addition, it is much easier for labels to be propagated within the
modules rather than across the modules, and therefore increases the precision. The
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results are shown in Figure2l (b), (d) and (f), which indicates that the performance
will also arise when modularity increases. (The modularity score is calculated based
on [2].)

4.3 Single Node Number

Actually, according to the analysis of graph density and modularity, the tendency
of input percentage, time cost and precision shown in Figure[2lshould be linearly.
However, there is some exceptions. We further looked into these networks and
found that these graphs include many one-degree nodes, which we also mentioned
in Section[3l And here, if we just propagate these nodes from the only neighbor
they connect to is unsafe. So here we will just pick up these one-degree nodes
and add them to the input set, which increases the input percentage and the
final precision in our result.

The reasons why we choose density and modularity as the attributes we fur-
ther looked into is that: 1) the network structures they present affect the prop-
agation performance directly, and 2) they are related to some other attributes
like average degree, cluster coefficient, etc. However, there might be some other
factors. And due to the limitation of the pages, we do not enumerate all the
attributes here.

5 Experiment

5.1 Dataset

We utilized the film-actor table from FreeBase. In a network, the nodes indicate
the actors and the edges stand for the relations that these two actors appeared
in the same film. The labels for the node are the films that the actor performed
within the network. We randomly extracted 500 networks from FreeBase for
different actors’ networks. The descriptions of the 500 networks are shown in
Table [l Furthermore, in Figure Bl we present a propagation result for a 131-
vertex network from the set we select by GMaz-DS and KNN, where the color
indicates different labels. The size of the seed set is 13 and the precision is around
84.2%, which strongly illustrates that our algorithm works in real case.

Table 1. Description for the 500 networks extracted from freebase film-actor table

Node  Edge Density

#Minimum 2 81 0.94
#Medium 13 148 2.15
#Max 458 6937 6.21

#Average 24.50 37751 1.84
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Fig. 3. Case study of the propagation result: the size of set S is 13, and the vertex
number is 131. The precision is 84.2%.

5.2 Experiment Setup

We compared the G-DS and the GMaz-DS algorithm according to different
performance measurements. And based on the two scenarios we discussed in
section[I] the comparison also included the two scenarios, which are the selection
of the minimal set and the size-k set. The propagation algorithms we chose
here are KNN and majority voting. In addition, we also compare our algorithm
with the naive off-line one, which is to check all the possible seed sets and
pick up the best one. “TK” stands for the selection of top-k nodes while “A”
is to cover the whole network. And “GA” indicates the G-DS algorithm while
“GM” means the GMaz-DS algorithm. In addition, “K” and “V” indicate the
propagation algorithms respectively, “K” is KNN and “V” is the majority voting
with different thresholds as 0.3 and 0.5.

5.3 Experiment Result

Time Cost. Since our algorithm needs to be adaptive to the user input, so
the time cost for the selection should be limited. Once the labels for a node are
decided, our algorithm needs to pick up another node into S for input quickly.
So, in our experiments, we evaluate the time cost in both scenarios. The result
is shown in Figure @ and notice that the time is normalized to log. Mostly our
algorithm spent only less than 0.0001 seconds to select the data set for input. The
only one extreme case is larger than 1. Since G-DS algorithm need to consider all
the possible labels in the selection, it takes more time than GMaz-DS algorithm
when the network is with more labels.

F1-score under KMLC. Considering the scenario of selecting the size-k set
for input, we evaluate the fl-score where k is equal to 3, 5 and 10. The result
is given in Figure Bl When using the KNN propagation algorithm, the fl-score
could be mostly beyond 90%. On contrary, by majority voting algorithms with
threshold as 0.3, the fl-score is around 70% in average. In addition, comparing
G-DS with GMax-DS algorithms, GMaz-DS outperforms G-DS algorithm in
both propagation algorithms.
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Precision under MLC. To pick up the minimal set, we evaluate the preci-
sion score and the results are shown in Figure [fl The median number mostly
reaches 100% and the lower bound of the precision is around 80%, which indi-
cates that our selection performs well to ensure the precision independence of
the propagation algorithms.

Input Percentage under MLC. Actually, the precision is also related to
the input percentage. When the input percentage is higher, then the precision
will consequently be higher. So we further looked into the input percentage
by different propagation methods with G-DS and GMaz-DS algorithms. The
evaluation result is illustrated in Figure [[ In general, the input percentage is
less than 40%, and the average value for KNN and majority voting is 10% and
30% respectively. Some values are even smaller as 1 or 3. In this experiment, we
could find that according to different propagation methods, the input percentage
could varies, which has already been discussed in Sectionl In addition, by KNN,
the input percentage is around 10% in average and the maximum value is around
25%. In most real cases, this number of input is acceptable.

Compared to the Naive Selection. Furthermore, we also compared our
GMaz-DS algorithm to the force brute selection. The results are shown in Table
Bl The propagation method here is KNN. We might see from the table that the
precision and the input percentage of our algorithms are mostly the same as
the naive one. However, considering the time cost, different with our algorithm,
the naive one will increase exponentially when the vertex number increases. On
contrary, ours grow linearly and is under control.



Dynamic Label Propagation in Social Networks 207

Table 2. Performance comparison between naive algorithm and GMax-DS algorithm
based on the networks with different vertex number

5 10 15 19 20
Input percentage Naive 20% 10% 7% 5% 10%
GMaz-DS  20% 10% % 5% 15%*
Precision Naive 100%  100% 100% 100% 100%
GMax-DS 100% 100% 100% 100% 95%"
Time cost(s) Naive 0.1 8 789 7882 18379
GMaz-DS 0.015 0.124 0.063 0.156 0.327

From the above experiments, we might infer that the time cost of the GMaz-
DS algorithm is less than that of the G-DS algorithm. And in general, the time
cost is limited to an acceptable value, which could be adaptive to the user input.
In addition, to find the size-k set S, even the size is quite small as 3, some
network could also be propagated well and achieve higher fl-score. However, it
would be better if k increases. To select the set S to cover the whole network,
the precision could achieve higher even the input percentage is small.

6 Related Work

To our knowledge, there is no work on dynamic label propagation in social net-
work. However, there is some researches in information diffusion to find the most
influential user sets, which is similar to our problem to some extents. Both are
propagated from neighbors. But the difference is that, in information diffusion,
the status of a node is usually active or in active[d]; while in label propagation,
the node might have multiple labels. In information diffusion, the status is not
intrinsic like retweeting the posts [I1], while for label propagation, a node’s la-
bel like affiliation is intrinsic and will not changed according to different network
structures. And thus, the problem in label propagation is more complicated than
that in information diffusion.

In information diffusion, one of the most widely used algorithms to find the
most influential nodes is the greedy algorithm. David Kempe [6] proposed a
greedy algorithm to maximize the spreading of influence through social network
first. He proved that the optimization problem of selecting the most influential
nodes is NP-hard and provided the first provable approximation guarantees for
efficient algorithm. The algorithm utilized the submodular functions to ensure
finding the most influential nodes in each iteration. Later, based on Kempe’s
work, Yu Wang [13] proposed a new algorithm called Community-based Greedy
algorithm for mining top-K influential nodes to improve the efficiency in large
graphs.

In addition, there are some other attributes to measure the role of the nodes
in the network, like the degree centrality, closeness centrality, betweenness cen-
trality, eigenvector centrality, etc. [14] measured the node’s importance in the
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network respectively in different aspects. And some papers also compared dif-
ferent measures. For example, Kwak et al. [7] looked into three measurements -
number of followers, page-rank and number of retweets, and drew a conclusion
that the finding of influential nodes differs by different measurements. As well
as Kwak’s work, [3] and [15] also compared different measures of influence like
number of mentions, a modified page-rank accounting for topics, also found that
the ranking of the influential nodes depends on the influence measures. In our
problem of label propagation, the selection of the data set for input also differs
by utilizing different propagation methods. And our selection algorithm should
be adaptive to various propagation methods.

7 Conclusion

In this paper, we proposed the G-DS and GMax-DS algorithms to select the
optimal seed set to maximize the propagation performance. Due to the label
complexity, our algorithm could adjust itself dynamically according to the var-
ious user inputs. In addition, we further analyzed various network structure
attributes since they are related to the label distribution and will affect the
selection directly. Our empirical evaluations on real-world FreeBase data set
demonstrated the effectiveness and efficiency of our algorithm in terms of input
percentage, time cost, precision and fl-score.
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