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Abstract

Dynamic soil-structure interaction is concerned with the study of structures supported on flexible soils and

subjected to dynamic actions. Methods combining the finite element method (FEM) and the boundary

element method (BEM) are well suited to address dynamic soil-structure interaction problems. Hence,

FEM-BEM models have been widely used. However, non-linear contact conditions and non-linear behaviour

of the structures have not usually been considered in the analyses. This paper presents a 3D non-linear

time domain FEM-BEM numerical model designed to address soil-structure interaction problems. The

BEM formulation, based on element subdivision and the constant velocity approach, was improved by using

interpolation matrices. The FEM approach was based on implicit Green’s functions and non-linear contact

was considered at the FEM-BEM interface. Two engineering problems were studied with the proposed

methodology: the propagation of waves in an elastic foundation and the dynamic response of a structure to

an incident wave field.
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1. Introduction

Dynamic soil-structure interaction (SSI) is concerned with the study of structures supported on flexible

soils and subjected to dynamic actions. Vibrations of machines on elastic foundations, vibrations induced

by traffic and structures in seismic areas are examples of problems where SSI plays an important role. In

all of the above examples, the flexibility of the soil has an important effect on the response of the structure

and should be taken into account in the analysis. Methods combining the finite element method (FEM)

and the boundary element method (BEM) are well suited to address dynamic soil-structure interaction

problems. Boundless regions such as soils are naturally represented by the BEM, since the radiation of

waves towards infinity is automatically included in the model [1]. The FEM is especially useful to study

structures considering their non-linear behaviour.
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BEM or FEM-BEMmodels have been used, for example, to compute the dynamic stiffness of foundations

in the frequency domain [2], to study soil-dam-reservoir systems by 2D [3, 4] and 3D [5] frequency domain

models, to analyse foundation systems in layered [6] and homogeneous [7, 8, 9] soil media and to predict

traffic-induced vibration by wavenumber-frequency approaches [10, 11, 12]. However, non-linear contact

conditions and non-linear behaviour of the structures have not usually been considered in the analyses. SSI

problems in which non-linear effects are important require a direct time domain approach.

In recent years, several authors have developed and applied 3D time domain FEM-BEM methods to

solve elastodynamic problems [13]. Some of the following papers are based on the formulation presented

by Mansur [14]. This formulation can be used to take into account the actual geometry of the elements

studied and their non-linear behaviour. Karabalis and Beskos [15, 16] computed the dynamic response of

rigid and flexible foundations. Kontini et al. [17] presented a approximate methodology and analysed the

response of a cavity embedded in a semi-infinite medium under the influence of external forces and seismic

waves. Schanz studied the wave propagation in poroelastic solids [18]. Rizos and his co-workers [19, 20]

presented a coupled methodology and computed the cross-interaction of square foundations and high speed

train induced vibrations. Marrero and Domı́nguez [21] studied a plate with a central crack with a nonuniform

mesh. Galv́ın et al. [22, 23, 24, 25] presented a comprehensive train-track-soil-structure model and studied

vibrations induced by train passage on ballast and non-ballast tracks and the resonant response of railway

bridges. However, 3D time domain models also have some disadvantages: they are computationally expensive

and certain issues related to stability, coupling and efficiency have not been satisfactorily solved yet.

Regarding stability, time domain models have shown problems with some combinations of spatial and

temporal discretizations [26, 27]. The dynamic analysis of finite and semi-infinite domains involves the

existence of two kinds of waves in the fundamental solution. Hence, the multiple reflection of different

kinds of waves on the boundaries may lead to causality errors and instability problems. Several studies

have attempted to improve the stability and causality of BEM approaches. Mansur and his co-workers

[28, 29, 30, 31] developed two algorithms for improving the stability of the time response: the θ time-marching

scheme and the time-weighted method. In the θ scheme [28, 29, 30] the response at the corresponding time

is firstly evaluated at a slightly longer time. The time weighting method [31] averages the whole time history

of the solution in a weighted residual sense. Peirce and his co-workers [32, 33] presented the ε scheme, as

the θ scheme, based on increased the time step. Marrero and Domı́nguez [21] used a linear combination of

equations for several time steps to advance one step and applied element subdivision to numerical integration

to improve stability in time.

FEM and BEM can be coupled directly by assembling the equations obtained from both methods into

a global system of equations. Equilibrium and displacement compatibility are established at nodes on the

FEM-BEM interfaces [23, 34, 35, 36]. In this case, the procedure for merging the equations can be com-

plicated and the system of equations is larger than the uncoupled FEM or BEM systems. Alternatively,
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either staggered [19] or iterative methods have been developed to overcome these difficulties, allowing sepa-

rate analysis of both methods. Von Estorff and Hagen [37] presented a FEM-BEM model for the transient

analysis of wave propagation problems, where the coupling of the methods was performed in an iterative

manner by an interface relaxation method. The previous model is an extension of the work by Soares et al.

[38]. The iterative coupling algorithms involve a much smaller system of equations than the conventional

coupled system. Specialized solvers can be used to solve the system of equations according to their special

characteristics. It is also possible to use different time steps for every method. The convergence of these

algorithms is influenced by the selection of the time step of each method and the choice of the iterative

coupling relaxation parameter [39, 40, 41]. Lastly, Soares Jr. et al. [42] have presented a formulation that

avoids the iterative procedures but considers the FEM and BEM separately. Therefore, it retains most of

the advantages of the iterative coupling approach.

The efficiency of the model can be improved by reducing computational effort. It is highly time consuming

to compute the full unsymmetrical boundary element system matrices and the convolution derived from

previous steps. However, the 3D time domain BEM can be accelerated by truncating the time convolution

process [43, 44].

In this study, previous ideas presented in 2D models [42, 45, 46, 47] were used to develop a 3D non-

linear time domain FEM-BEM numerical model to address soil-structure interaction problems. The BEM

formulation, based on element subdivision and the constant velocity approach [21], was improved by em-

ploying interpolation matrices to compute time-domain influence matrices. The FEM approach was based

on implicit Green’s functions and non-linear contact was considered at the FEM-BEM interface. Thus, this

methodology accounts for any uplifting or other contact effects.

The outline of this paper is as follows. The first section presents the BEM approach and assesses

its improvements. The second section summarizes the FEM methodology and the non-linear FEM-BEM

coupling. Non-linear coupling was based on Kuhn-Tucker constraints [48]. The last section analyses two

numerical examples: the propagation of waves in an elastic foundation and the dynamic response of a

structure to an incident wave field.

2. Boundary element approach

The 3D time domain boundary element (BE) formulation for transient problems is briefly summarized

in this section. This topic is addressed more thoroughly in Domı́nguez [1].

The integral representation of the displacement u at a point i on the boundary Γ of an elastic body at

time t with zero body forces and zero initial conditions can be written as:

cilku
i
k(x

i, t) =

∫ t+

0

∫

Γ

ulk(x, t− τ ;xi)pk(x, τ)dΓ(x)dτ −
∫ t+

0

∫

Γ

plk(x, t− τ ;xi)uk(x, τ)dΓ(x)dτ (1)
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where uk and pk stand for the k component of the displacement and traction, respectively; ulk(x, t− τ ;xi)

and plk(x, t− τ ;xi) are the full-space fundamental solution displacement and traction tensors, respectively,

at point x due to a point load at xi. The coefficient cilk depends only on the boundary geometry at point

i. Displacements and tractions over the boundary are approximated from their nodal values at each time

step m, umj
k and pmj

k , using the space interpolation functions φj(r) and ψj(r) and the time interpolation

functions ηm(τ) and µm(τ).

After interpolating the boundary variables, Equation (1) at time t = n∆t becomes:

cilku
ni
k =

n
∑

m=1

Q
∑

j=1

[{
∫

Γj

[

∫

∆tm

ulkµ
mdτ

]

ψjdΓ

}

pmj
k −

{
∫

Γj

[

∫

∆tm

plkη
mdτ

]

φjdΓ

}

umj
k

]

(2)

where Q is the total number of boundary nodes and Γj represents the elements to which node j belongs.

The integrals of ulkµ
m and plkη

m for each time step are usually called Unm
lk and Pnm

lk , respectively.

Thus, Equation (2) becomes:

cilku
ni
k =

n
∑

m=1

Q
∑

j=1

[{
∫

Γj

Unm
lk ψjdΓ

}

pmj
k −

{
∫

Γj

Pnm
lk φjdΓ

}

umj
k

]

(3)

which in a more compact form can be written as:

cilku
ni
k =

n
∑

m=1

Q
∑

j=1

[

Gnmij
lk pmj

k − Ĥnmij
lk umj

k

]

(4)

Once the independent term cilk is included in the system matrix, the integral representation for point i at

time t = n∆t becomes:
n
∑

m=1

Q
∑

j=1

Hnmij
lk umj

k =

n
∑

m=1

Q
∑

j=1

Gnmij
lk pmj

k (5)

and the system of equations for all the boundary nodes at time t = n∆t can be written in matrix form as:

Hnnun = Gnnpn +

n−1
∑

m=1

(Gnmpm −Hnmum) (6)

Once the boundary conditions are applied, Equation (6) yields a system of equations that can be solved step

by step to obtain the time variation of the boundary unknowns.

Piecewise constant time interpolation functions µm(τ) were used for tractions and piecewise linear func-

tions ηm(τ) were used for displacements. The time integrals in Equation (2) can be evaluated analytically

without much difficulty.

In the present model, nine-node quadratic elements are used. Each side of the element is divided into

equal parts in the natural coordinates domain yielding and element subdivision. The spatial integration

extends only to those subdivisions, which mid-point is under the effects of the fundamental solution waves

according to the causality condition of each term of the fundamental solution. The subsequent integration

4



over each subdivision is done using a standard 2×2 Gauss quadrature always that the collocation point does

not belong to the subdivision, independently of whether it belongs to the same element or it does not. The

subdivision containing the collocation point are under the effects of non-zero fundamental solution terms

only when n = m. In that case a peak singularity of the type 1/r appears in the fundamental solution

displacement, and a strong singularity of the type 1/r2 appears in the fundamental solution traction. Both

integrals containing singularities are evaluated in a direct form [21]. No enclosing elements are needed in

unbounded domains to carry out the so-called rigid body motion procedure. The coefficient cilk is computed

using the methodology presented in references [49, 50].

As mentioned above, ensuring a stable stepping procedure is an important issue in time domain BEM.

An approach based on the idea of using a linear combination of equations for several time steps in order to

advance one step was applied [21]. Equation (6) became:

{

4Hnn +H(n+1)n
}

un =
{

4Gnn +G(n+1)n
}

pn +Hnnu(n−1) −Gnnp(n−1)

+

n−1
∑

m=1

{(

G(n+1)m + 2Gnm +G(n−1)m
)

pm −
(

H(n+1)m + 2Hnm +H(n−1)m
)

um
}

(7)

To reduce computational effort, the formulation presented by Soares and Mansur [44] for 2D problems

was extended to 3D analysis in the present study. The boundary element system matrices Hnm and Gnm

depend on the difference (n −m) rather than on the values of n and m. These matrices were interpolated

by k interpolating matrices Hj and Gj to compute influence matrices that appeared at the convolutions in

Equation (7) when (n −m)∆t exceeded a threshold time TL = L∆t. The kernels Unm
lk and Pnm

lk of these

integrals consisted of terms due to waves propagating with velocity cp (P-waves) and terms due to waves

propagating with velocity cs (S-waves). Each of these terms was different from zero only in those parts of a

given element that were under the effects of the waves leaving the collocation point during the time interval

(n−m)∆t ≥ t ≥ [n− (m+1)]∆t. That is, the parts of the element between two spherical surfaces of radius

rm = c(n−m)∆t and rm+1 = c[n− (m+ 1)]∆t, with c = cp or c = cs depending on the term. As rmax was

the maximum distance between the collocation point and any element in the discretization and cs was the

minimum wave velocity, from time TN = N∆t = rmax/cs approximately, the kernels Unm
lk and Pnm

lk were

equal to zero.

Equation (7) was rewritten accounting for the interpolation of the time convolution process and the
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stability improvement. After that, the upper index of the matrices indicated the difference (n−m+ 1):

{

4H1 +H2
}

un =
{

4G1 +G2
}

pn −
(

G1p(n−1) −H1u(n−1)
)

+
L−1
∑

m=1

{

Gm
(

pn−m+2 + 2pn−m+1 + pn−m
)

−Hm
(

un−m−2 + 2un−m+1 + un−m
)}

+

n−1
∑

m=L







k
∑

j=1

[GjI(m, j)]
(

pn−m+2 + 2pn−m+1 + pn−m
)

−
k

∑

j=1

[HjI(m, j)]
(

un−m−2 + 2un−m+1 + un−m
)







(8)

The interpolation coefficients I(m, j) can be computed according to Chebyshev-Lagrange (Equation (9)) or

multi-linear (Equation (10)) approaches:

I(m, j) =

k
∏

i=1,i6=j

m∆t− Ti
Tj − Ti

(9)

I(m, j) =
Tj+1 −m∆t

Tj+1 − Tj
m∆t ǫ [Tj, Tj+1] (10)

where interpolation time steps Tj for Chebyshev-Lagrange (Equation 11) and multi-linear (Equation 12)

approaches are:

Tj =
1

2

[

(TN − TL) cos

(

2j − 1

2k
π

)

+ (TN + TL)

]

j = 1, . . . , k (11)

Tj = TL + (TN − TL)

(

j − 1

k − 1

)kp

j = 1, . . . , k (12)

2.1. Verification example

The BEM technique summarized previously was used to study the motion of the surface of a uniform

elastic half-space caused by applying a point load p(t) = p0H(t) that varied with time as a Heaviside function.

This problem was analytically studied by Pekeris [51], who obtained vertical and horizontal displacements

at the surface for a Poisson’s ratio ν = 0.25 (i.e. for the same Lamé constants µ and λ). Later, Rizos

and Karabalis computed the vertical displacement with a time domain BEM based on B-spline fundamental

solutions [52].

The half-space surface was discretized into quadrilateral nine-node elements as shown in Figure 1. A

surface of 36m× 36m was represented by 1296 elements. The wave propagation velocities of the half-space

were taken as cp = 548m/s and cs = 316m/s. Additionally, a density ρ = 2000 kg/m
3
was assumed for the

half-space. The time step for the boundary element analysis was set as ∆t = 7.5 × 10−4 s. The stability

parameter β = c∆t/l, where l is the distance between two nodes of an element, takes values 0.3 < β < 0.8.

Figure 2 shows vertical half-space surface dimensionless displacements ũ(t) = πµu(t)r/p0 at two time steps,

where r is the distance from the observation point to the load axis. The results showed a radial symmetry

about the point load and diffraction or refraction effects were not noticeable.
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p(t)

p0

t p

Figure 1: Half-space discretization

(a)−0.50 −0.26 −0.01 −0.23 0.60 (b)−0.50 −0.26 −0.01 −0.23 0.60

Figure 2: Vertical half-space surface dimensionless displacements ũ = πµu(t)r/p0 at (a) t = r/cs = 5m/316m/s = 0.0158 s

and (b) t = r/cs = 15m/316m/s = 0.0474 s

Figures 3 and 4 show horizontal and vertical dimensionless displacement versus dimensionless time τ =

cst/r at two points located at r = 5m and r = 15m, respectively. Both analytical and numerical results

were compared. Pekeris’ analytical solution [51] presents a perturbation when the P wave arrived at the

observation point (τ = 0.57) and became infinite upon the arrival of the Rayleigh wave (τ = 1.08). In

the numerical model the analytical response was only partially reproduced since the load was distributed

according to element shape functions. The maximum response was computed at a time between the arrivals

of the S wave (τ = 1.00) and the Rayleigh wave. As the r distance increased, the numerical result tended

to the analytical solution. Figures 3 and 4 also show computed displacements when the boundary element

matrices were interpolated by multi-linear (ML) and Chebyshev-Lagrange (CL) approaches from times τL =

csTL/r = 0.5, 1 and 1.5. The number k of interpolating matrices was set for computing exact matrices (Hj

and Gj) every 5 time steps. Table 1 presents saved CPU time and memory and error when the interpolated
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BEM formulation was used. At r = 5m a considerably good correlation between non-interpolated and

interpolated formulations was obtained for τL = 1.5, saving 71% CPU time and about 62% CPU memory

compared to the non-interpolated formulation. As the dimensionless threshold time τL decreased, error

increased because the correlation dropped at τ higher than τL in both multi-linear and non-equidistant

Chebyshev approaches. At r = 15m, since the distance from the load point increased, the arrival time of

the S wave increased and saved CPU time and memory decreased. A good correlation was obtained for

τL = 1.5, saving 15% CPU time and about 17% CPU memory. In this case, the computational time to solve

Equation (8) on a computer with 8 cores at 3.4GHz processor was about 25 minutes.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(a) τL = 0.5, k = 18

0 0.5 1 1.5 2
−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(b) τL = 0.5, k = 18

0 0.5 1 1.5 2
−1

−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(c) τL = 1.0, k = 17

0 0.5 1 1.5 2
−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(d) τL = 1.0, k = 17

0 0.5 1 1.5 2
−1

−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(e) τL = 1.5, k = 15

0 0.5 1 1.5 2
−0.5

0

0.5

Dimensionless time τ

ũ
(τ

)

(f) τL = 1.5, k = 15

Figure 3: (a,c,e) Horizontal and (b,d,f) vertical dimensionless displacement at r = 5m. Pekeris’ analytical solution (grey line),

non-interpolated BEM (black line), multi-linear interpolated BEM (black dot) and Chebyshev-Lagrange interpolated BEM

(black circle).

Figures 5 and 6 show the time histories of the matrix elements Hij
lk and Gij

lk. The results presented

above depend on these elements, as shown by the convolutions in Equation (8). Very good approximations

of the Hm and Gm matrices were obtained for τL = 1.5. However, appreciable differences appeared as the

interpolation time zone was higher. The error increased when the threshold time was far from the arrival
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(a) τL = 0.5, k = 15
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ũ
(τ

)

(c) τL = 1.0, k = 10
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(d) τL = 1.0, k = 10
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(e) τL = 1.5, k = 6

0 0.5 1 1.5 2
−0.5

0
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Dimensionless time τ

ũ
(τ

)

(f) τL = 1.5, k = 6

Figure 4: (a,c,e) Horizontal and (b,d,f) vertical dimensionless displacement at r = 15m. Pekeris’ analytical solution (grey

line), non-interpolated BEM (black line), multi-linear interpolated BEM (black dot) and Chebyshev-Lagrange interpolated

BEM (black circle).

time of the S wave. Based on a more extensive parametric study, it was concluded that the interpolation of

the time convolution process is valid when τL is higher than τ = 1.08. This means when it is higher than

the arrival time of the Rayleigh wave so that the approximation of the time convolution process does not

significantly modify the wave propagation problem.

3. Finite element formulation based on implicit Green’s function

Dynamic analysis of structures using Green’s functions is usually performed with modal coordinates.

This technique decouples the system of equations in a set of independent equations of a single degree of

freedom [53]. Analysis of dynamic systems in nodal coordinates is limited by the existence of analytical

Green’s functions and involves a high computational cost. Numerical calculation of the explicit Green’s

functions of a system is only suitable for simplified models.
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Table 1: Interpolated BEM formulation: error and saved CPU time and memory.

r = 5m r = 15m

τL = TLcS/r 0.5 1 1.5 0.5 1 1.5

k 18 17 15 15 10 6

M
L

Vertical displacement error (%) 72.5 8.1 1.3 85.5 71.0 0.4

Horizontal displacement error (%) 73.4 9.4 0.8 83.8 68.5 0.2

Saved CPU time (%) 80 76 71 71 54 15

Saved CPU memory (%) 76 71 65 65 53 19

C
L

Vertical displacement error (%) 55.3 47.2 0.6 58.4 15.2 0.7

Horizontal displacement error (%) 59.6 47.3 0.8 59.3 16.7 0.6

Saved CPU time (%) 79 75 71 71 54 15

Saved CPU memory (%) 76 72 62 65 62 17

(a)
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G
33ij

Figure 5: Time history of the matrix elements (a,c,e) Hij
31

and (b,d,f) Gij
33

atxi(r = 0), xj(r = 5). Non-interpolated BEM

(grey line), multi-linear interpolated BEM (black dot) and Chebyshev-Lagrange interpolated BEM (black circle).

Soares and Mansur [45] recently presented a finite element formulation based on implicit Green’s func-

tions. The Green’s functions of the system and their time derivatives are obtained implicitly applying
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Figure 6: Time history of the matrix elements (a,c,e) Hij
31

and (b,d,f) Gij
33

at xi(r = 0), xj(r = 15). Non-interpolated BEM

(grey line), multi-linear interpolated BEM (black dot) and Chebyshev-Lagrange interpolated BEM (black circle).

Newmark’s method. Displacements and velocities at time t = n∆t are as follows:

un = D−1M(b4u
n−1 + b1u̇

n−1) + b2u
n−1 (13)

u̇n = b7D
−1M(b4u

n−1 + b1u̇
n−1) + b6u

n−1 + b2u̇
n−1 + fn∗ (14)

where M is the mass matrix, D the dynamic stiffness matrix:

D =
1

α∆t2
M+

δ

α∆t
C+K (15)

C and K are the damping and the stiffness matrices, respectively, and fn∗ is the effective force. These

expressions are valid assuming that the damping matrix is proportional to the mass matrix by the parameter

αm (C = αmM) and the integration constants satisfy the trapezoidal rule (δ2 = α). The time integration

procedure is unconditionally stable and second-order accurate if Newmark’s parameters are α = 0.25 and

β = 0.5 [45]. The effective force is given by:

fn∗ = M−1fn∆t (16)
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where fn is the applied force at time step n. In Equation (16) the mass matrix inverse is required to compute

the effective force. The computational cost of matrix inversion is considerably reduced if it is diagonalized.

The constants in Equations (13) and (14) are:

b0 =

(

1

2α
− 1

)

αm −
1

α∆t
(17)

b1 =

(

δ

α
− 1

)

αm −
(

∆t

2

)(

δ

α
− 2

)

α2
m − b0 (18)

b2 = 1−∆t(1− δ)αm + δ∆tb0 (19)

b3 =
δb1
α∆t

(20)

b4 = αmb1 + b3 (21)

b5 = αmb3 +
b1

α∆t2
(22)

b6 = αmb2 + b0 (23)

b7 = b3/b1 (24)

4. Non-linear FEM-BEM coupling

Next, a non-linear coupling method is presented to account for uplifting or other contact effects in SSI

problems. Contact analysis involves the resolution of a non-linear minimization problem subjected to Kuhn-

Tucker constraints at the interface [48]. The proposed algorithm is based on the evaluation of Kuhn-Tucker

constraints at time step n:

gnN ≥ 0 , −pnN + pC ≥ 0 , (−pnN + pC) gN = 0 (25)

where gnN is the normal gap between the soil and the structure, pnN represents the normal traction on the

interface surface, and pC is the cohesion limit that allows for considering cohesive effects.

Finite element displacement un at time step n (Equation (13)) depends on displacement and velocity

at previous time steps un−1 and u̇n−1, respectively, but it does not depend on fn. Therefore, FEM and

BEM equations can be decoupled and solved separately [42]. Next, the coupling of both methods is ensured

by imposing compatibility and equilibrium conditions at the interface after evaluation of Kuhn-Tucker

constraints (Equation (25)) at time step n:

un
b = un

f (26)

fnf = −fnb (27)

where f and b subscripts refer to interface nodes belonging to finite element and boundary element dis-

cretizations, respectively, and nodal force fnb is obtained from nodal traction pn
b , as can be found in reference

12



[23]. Normal gap and normal traction at the interface surface are given by:

gnN =
(

un−1
b − un

f

)

· nf (28)

pnN = pn
b · nb (29)

where nf and nb are the external normals.

The proposed method can be used to solve dynamic contact problems efficiently and is quite simple to

implement in standard BEM-FEM codes. Table 2 shows further details on the proposed algorithm.

Table 2: Algorithm for the solution of dynamic soil-structure interaction problems accounting for contact effects.

A Initial settings:

A.1 Compute BEM and FEM matrices (Hn, G
n, Hj , Gj and D) and select interpolation procedure and Tj

time steps.

B For each time step n:

B.1 Compute FEM displacement un with Equation (13).

B.2 Evaluate Kuhn-Tucker constraints (Equation (28)) and establish compatibility condition (Equation (26)).

B.3 Solve BEM problem (Equation (8)).

B.4 Evaluate Kuhn-Tucker constraints (Equation (29)) and establish appropriate equilibrium condition (Equa-

tion (27)).

B.5 Compute effective force accounting for equilibrium condition f
n∗ = M

−1(fn + f
n
f )∆t.

B.6 Compute FE velocity u̇
n (Equation (14)).

5. Numerical examples

In this section, two engineering problems are studied with the proposed numerical model. In the first

case, the dynamic behaviour of a foundation is analysed accounting for non-linear soil-structure contact.

The second case is an analysis of the dynamic response of a structure to an incident wave field.

5.1. Propagation of waves in an elastic foundation

The following is an analysis of the propagation of waves in an elastic foundation on a homogeneous soil.

Similar studies have previously been conducted on linear [2, 15, 54] and non-linear [42, 55] behaviour. In this

study, linear and non-linear soil-foundation contact models were taken into account in the computations.

Thus, any uplifting or other contact effects can be considered by the proposed methodology.

Figure 7.(a) shows the problem geometry and the associated discretization. The soil was discretized

using quadrilateral nine-node boundary elements. A length of L = 2.5m around the origin of the coordinate

system was represented by 145 elements [1]. The soil was assumed to be an elastic half-space with the

13



following properties: cp = 42m/s, cs = 20m/s, cR = 19m/s and ρ = 1800 kg/m
3
. The concrete foundation

(1m× 1m× 0.5m) was discretized by using 400 eight-node brick elements. The concrete properties were:

Young’s modulus E = 300 × 106N/m
2
, Poisson’s ratio ν = 0.2 and density ρ = 2000 kg/m

3
. The bottom

of the foundation was coupled to the soil. The top of the foundation was excited vertically by a pressure

load according to p(t) = −p0(H(t) − H(t − 0.025 s)) where p0 = 1000N/m
2
. Figures 7.(b)-(c) show the

symmetrical and antisymmetrical load cases studied, respectively. The time step for the analysis was set

at ∆t = 6.25 × 10−3 s. The stability parameter β = c∆t/l takes values 0.31 < β < 1.25. To reduce

computational effort, the influence matrices were interpolated from TL =
√
2L/cR = 0.17 s by k = 2

interpolating matrices using a Chebyshev-Lagrange approach.

(a)

x1 x2

x3

(b)

p(t)

A B

(c)

p(t)

A B

(d)

Af Bf

Ab Bb

Figure 7: (a) Soil-foundation discretization and load cases: (b) symmetry and (c) antisymmetry.

Figure 8 shows the dimensionless response ũ = πµu(t)r/p0 of the soil-foundation system in the sym-

metrical load case accounting for linear and non-linear contact, where r = ((x1 − x1i)
2 + (x2 − x2i)

2)0.5 is

the in-plane distance to the centre of the foundation (x1i = 0 and x2i = 0). Displacement compatibility

depended on interface behaviour: a light uplifting was observed in Figure 8.(b), where an adhesive limit

pC = 500N/m
2
was considered. Figure 9 shows the time histories of the vertical displacement at four

points of the soil-foundation interface (Figure 7.(d)). Points As and Bs were located at the soil surface, and

points Af and Bf belonged to the foundation. In all points of the interface, displacement compatibility was

satisfied while the load was applied. Although a gap appeared in the non-linear response when the load was

withdrawn, it became negligible as the inertia forces decreased.

The dynamic behaviour of the soil and the foundation in the antisymmetrical load case is shown in

Figure 10. In this load case, differences between the linear and non-linear response were noticeable. Because
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Figure 8: Dimensionless dynamic response ũ = πµu(t)r/p0 of the soil-foundation system in the symmetrical load case accounting

for (a) linear and (b) non-linear contact.
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Figure 9: Time history of the vertical displacement at the soil-foundation interface at As (grey dotted line), Af (grey dots),

Bs (black solid line) and Bf (black circles) in the symmetrical load case accounting for (a) linear and (b) non-linear contact.

of non-linear effects, displacement compatibility was not satisfied in one half of the soil-structure interface.

The time histories of the vertical displacement at the interface are shown in Figure 11. The linear problem

presented an antisymmetrical response that was lost when non-linear contact was taken into account. As

regards the linear problem, the minimum displacement at point Bs increased and the maximum displacement

at point As decreased since soil and foundation were separated. However, the maximum displacement at

point Af increased because this area of the foundation did not pull the soil.

5.2. Dynamic response of a structure to an incident wave field

This section analyses the dynamic response of a structure to a wave field induced by an impulsive load.

Figure 12 shows a drawing of the building and the load case considered. The dimensions of the three-

storey building were 14.4m× 10.8m × 9m. The structure consisted of concrete columns and beams with

0.5m×0.5m and 0.3m×0.5m sections, respectively. The floors were simply supported concrete slabs with a

thickness of 0.3m and a mass per unit area of 330 kg/m
2
. Masses of non-structural elements (e.g. partition

and other walls, tiles) were considered to amount to 100 kg/m
2
on the floors, 220 kg/m

2
on the roof and
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Figure 10: Dimensionless dynamic response υ = πµu(t)r/p0 of the soil-foundation system in the antisymmetrical load case

accounting for (a) linear and (b) non-linear contact.
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Figure 11: Time history of the vertical displacement at the soil-foundation interface at As (grey dotted line), Af (grey dots),

Bs (black solid line) and Bf (black circles) in the antisymmetrical load case accounting for (a) linear and (b) non-linear contact.

918 kg/m and 486 kg/m on the exterior and interior beams, respectively. The structure was founded on a

0.5m thick concrete slab. The concrete had the following properties: Young’s modulus E = 30× 109N/m
2
,

Poisson’s ratio ν = 0.2 and density ρ = 2500 kg/m
3
. The structural response was governed by dynamic soil-

structure interaction effects. The soil was represented as an elastic half-space with the following properties:

cp = 208m/s, cs = 100m/s, cR = 93m/s and ρ = 1800 kg/m
3
.

Figure 13 shows the discretization of the soil-structure system. The soil was discretized by using 398

quadrilateral nine-node boundary elements 18m around the building. The structure was considered by 1176

two-node beam elements and 1728 four-node shell elements.

The building was affected by a wave field induced by an impulsive load p(t) applied 14.5m from the

structure, where p(t) = p0(H(t) − H(t − 0.025, s)) with p0 = 1000N/m
2
. The time step for the analysis

was set at ∆t = 5 × 10−3 s. The stability parameter β = cs∆t/l took values 0.4 < β < 1.2. To reduce

computational effort, the influence matrices were interpolated from TL = 0.27 s by k = 20 interpolating

matrices using a Chebyshev-Lagrange approach. Once the initial settings were done, the running time to
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Figure 12: Building geometry and load case: (a) elevation and (b) plan.

x1
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Figure 13: Soil and building discretization.

solve this problem was approximately 1 hour.

Figure 14 shows translational mode shapes of the structure according to the direction of wave propagation

x1 and mode shapes associated with slab bending. Torsional and x2 translational mode shapes are not shown.

To compute these mode shapes, soil-structure interaction was neglected. The same structural damping
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ζ = 2% was considered for all modes that contributed significantly to the response of the structure, shown

in Figure 14 [53]. A value of αm = 0.68 s−1 was obtained.

(a) Mode shape 1: f1 = 3.52Hz (b) Mode shape 4: f4 =

11.20Hz

(c) Mode shape 7: f7 =

18.95Hz

(d) Mode shape: f9 = 20.57Hz (e) Mode shape 11: f11 =

29.37Hz

(f) Mode shape 12: f12 =

31.30Hz

Figure 14: Translational and slab bending mode shapes. SSI is not considered.

Figure 15 shows the dimensionless response ũ = πµu(t)r/p0 of the soil-foundation system at time t =

0.35 s, where r is the distance between the observation point and the load. The incident wave field induces a

deformation of the foundation that is transmitted along the structure. Soil-foundation interaction leads to

higher free field displacements than soil-foundation interface displacements due to the foundation’s stiffness.

Figure 16 shows the time history and frequency content of the x1 in-plane and vertical acceleration

at two points of the building. The dynamic response of the upper floor was greater than that of the

foundation. Both vertical responses were in phase but the horizontal responses had a different phase due to

the translational mode shapes. The response was attenuated once the incident wave crossed the building.

The frequency content shows peaks associated with the resonance frequencies f̃1 = 3.09Hz, f̃4 = 10.48Hz,

f̃7 = 17.70Hz, f̃9 = 19.76Hz, f̃11 = 28.01Hz and f̃12 = 29.73Hz. These frequencies are slightly lower than

those presented in Figure 14 because soil-structure interaction was taken into account.
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Figure 15: Dimensionless dynamic soil-structure response ũ = πµu(t)r/p0 at t = 0.35 s.
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Figure 16: (a,b) Time history and (c,d) frequency content of the (a,c) in-plane and (b,d) vertical acceleration at A (grey line)

and B (black line).

6. Conclusions

This paper analysed the need for a 3D non-linear time domain FEM-BEM numerical model studying two

soil-structure interaction problems. The BEM formulation was improved by using interpolation matrices to
19



compute time-domain influence matrices. The FEM approach was based on implicit Green’s functions.

In the first example, the propagation of waves in an elastic foundation on a homogeneous soil was analysed

accounting for linear and non-linear contact effects. A comparison of the computed results shows that the

problem requires including non-linear behaviour to represent any uplifting or other effects.

In the second example, the dynamic response of a structure to an incident wave field was considered. The

proposed methodology made it possible to rigorously account for soil-structure interaction. In this example,

non-linear contact effects were not noticeable.

The proposed model is limited to linear and elastic soil behaviour. Problems that involve estimations

of the initial states of stress in soils and of the changes in these stresses during loading, e.g. studies of

settlements under conditions in which the induced stress varies spatially, could not be analysed.
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