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Abstract. L systems have been widely used to model and graphically
represent the growth of higher plants [20]. In this paper we continue
developing the framework introduced in [21], which make use of the
topology of membrane structures to model the morphology of branching
structures.

1 Introduction

The growth of plants, considered as a function of time, have attracted the at-
tention of scientific community for a long time. Features such as the bilateral 
symmetry of leaves, the central symmetry of flowers and, more recently, the study 
of self-similarity and fractal structure have been matter of study for computer 
scientists, mathematicians, and life scientists among others.

In 1968, Aristid Lindenmayer presented a theoretical framework for 
studying the development of simple multicellular organisms. The devices 
introduced in this framework are known as parallel rewriting systems or 
L systems.

L systems were introduced for modeling multicellular organisms in terms of di-
vision, growth, and death of individual cells [10,11]. These organisms are 
treated as an assembly of discrete units, which represent the individual cells. 
These sys-tems must be considered as dynamic models, which means that the 
form of the organism is the result of development along time. This development 
is described in terms of production rules, which are applied in parallel and are 
intended to capture the simultaneous progress of time in all parts of the 
growing organisms.

Several years later, the range of applications of L systems were extended to 
higher plants and complex branching structures [3,4]. In the first approach, the 
essence of development of less complex organisms is the replacement of individual 
cells by sets of cells, according to the production rules of the system. On the other 
hand, the units of information in L systems modeling higher plants represent 
complex structures, such as branches or leaves, instead of individual cells. These 
structures are replaced by other ones using the production rules.

In [5,6] a first approach for using P systems to simulate the growth and de-
velopment of living plants is presented. This approach mixes L systems and
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P systems, being in fact an L system “factorized” into several units, which are then
computed in the compartments delimited by the membranes of the P system.

L systems use strings as data structures, which fits in a natural way in sequen-
tial structures such as microorganisms, or linear structure of fractals such as the
Koch curve [8,9]. Nonetheless, the visual interpretation of strings of symbols as
branching structures needs to add memory pointers in order to remember the
location and orientation in which the branches were developed. These memory
facilities are the key for developing several branches from the same point.

The topology of P systems is inherently a branching structure based on the
inclusion relationship. This feature allowed us to present a framework for mod-
eling the topology of living plants, without the necessity of considering memory
pointers [21]. We think our approach is closer to reality than L systems, in the
sense that we do not make “rewriting” over the membrane structure, but instead
we use evolution rules to expand it. This is inspired by the fact that mature
structures in higher plants, such as trunks and branches, keep their morphol-
ogy along time. They change only in length and width, and the growth of new
structures (leaves, flowers, new branches, and so on) is started only from specific
points, already present.

In this paper we continue developing the framework introduced in [21], provid-
ing two means (randomness and non-determinism) for modeling the individual
variations among different specimens of a same species that occur in nature.

The paper is organized as follows: first L systems and the usual way to vi-
sualize them are recalled in Sections 2 and 3. In Section 4, the variant of P
systems used in this paper, a restricted version of P systems with membrane
creation, is presented. Section 5 is devoted to the graphical visualization of the
configurations of these P systems, whereas we discuss in Section 6 the differences
between the representations obtained when stochastic and non-deterministic P
systems are considered. Finally, conclusions and lines for future research are
presented.

2 L Systems

The key idea of L systems for formalizing the development of plants is that
of rewriting. This is a technique for defining complex objects by successively
replacing parts of a simple initial object by using production rules.

The first formal definition of rewriting systems operating on strings of symbols
was proposed by Thue at the beginning of the twentieth century (see [22]),
but rewriting systems started to be widely considered after Chomsky’s work on
formal grammars [2], where the concept of rewriting is used to describe natural
languages.

The essential difference of L systems with respect to Chomsky grammars lies in
the method of applying the production rules. In Chomsky grammars, production
rules are applied sequentially, whereas in L systems they are applied in parallel:
in a derivation step all symbols of the string are rewritten.



The simplest class of L systems are the deterministic and context-free ones.
Let V denote an alphabet, V ∗ the set of all words over V , and V + the set of all
nonempty words over V . A string 0L system is an ordered triplet G = 〈V, ω, P 〉
where V is the alphabet of the system, ω ∈ V + is a nonempty word called the
axiom and P ⊂ V × V ∗ is a finite set of production rules. A production rule
(a, v) is written as a → v. The letter a and the word v are called the predecessor
and the successor of this production rule, respectively. It is assumed that for any
letter a ∈ V , there is at least one word v ∈ V ∗ such that a → v ∈ P . A 0L
system is deterministic (noted D0L system) if and only if for each a ∈ V there
is exactly one v ∈ V ∗ such that a → v ∈ P .

Let μ = a1 . . . am be an arbitrary word over V . The word ρ = φ1 . . . φm, with
φ1 . . . φm ∈ V ∗, is directly derived from (or generated by) μ, and we denote it
by μ ⇒ ρ, if and only if ai → φi ∈ P for all i ∈ {1, . . . , m}. Starting with the
axiom ω ∈ V +, a sequence of strings μ0 = ω, μ1, μ2, . . . is generated recursively,
where μi ⇒ μi+1, that is, the string μi+1 is obtained from the preceding string
μi by replacing simultaneously every symbol in μi according to production rules
of the system.

3 Graphical Representation of L Systems

Originally, L systems were conceived for the study of multicellular organisms and
the neighborhood relations between their different cells. After the incorporation
of geometric features, L systems became appropriate for computer graphics rep-
resentation that allows visualizations of these multicellular organism and their
developmental processes. The first steps in this line can be found in the eighties’
literature [17,23], but the most popular graphical interface for L systems was in-
troduced by P. Prusinkiewicz [18,19] based on the previous Papert’s concept of
turtle graphics [14]. In an informal description, we can consider a turtle standing
on a sheet of paper facing a given direction. The tail of the turtle is full of ink
and it traces a line on the sheet when the turtle moves. The turtle obeys several
commands: move forward by a fixed length l drawing or not the corresponding
segment; turn left or right by a fixed angle δ.

More formally, a state of the turtle is defined as a triplet (x, y, α), where
(x, y) represent the Cartesian coordinates of the turtle’s position and the angle
α represent the direction in which the turtle is facing. Given a step size l and
an angle increment δ, the turtle responds to the following commands:

– F : the state of the turtle changes from (x, y, α) to (x+ l cosα, y + l senα, α).
A line segment between (x, y) and (x + l cosα, y + l senα) is drawn.

– f : analogous to the previous command, the state of the turtle changes from
(x, y, α) to (x + l cosα, y + l senα, α). The segment is not drawn.

– +: the state of the turtle changes from (x, y, α) to (x, y, α + δ).
– −: the state of the turtle changes from (x, y, α) to (x, y, α − δ).



This method has been profusely used to interpret strings. For example, the
representation of the string F + F − −F + F with initial state (0, 0, 0), l = 2
cm and δ = 60 degrees is depicted in Figure 1.

Fig. 1. The string F + F − −F + F

According to these rules, the turtle interprets a character string as a sequence
of line segments. Note that different strings can lead to the same graphical
representation.

If we want to model tree-like shapes and branching structures then new fea-
tures have to be added. For that, an extension of turtle interpretation to strings
with brackets is considered. Two new symbols are introduced to delimit a branch:
the symbols “[” and “]”. The turtle interpretation of the symbols is the follow-
ing, when [ is read, the turtle should remember its current direction and posi-
tion. Then the branch can be drawn by the usual interpretation. Termination of
the branch is marked by ]. The turtle must then return to the location of the
branch point, which it remembers. The formal interpretation of the symbols is the
following.

– [ : push the current state of the turtle onto a push-down stack. The informa-
tion saved on the stack contains the turtle’s position and orientation, and
possibly other attributes such as the color and width of lines being drawn.

– ] : pop a state from the stack and make it the current state of the turtle. No
line is drawn, although in general the position of the turtle changes.

For example, the representation of the string F [+F [+F [+F ][F ]][F [F ][−F ]]]
[F [F [+F ][F ]][−F [+F ][F ]]] with initial state (0, 0, 90), l = 2 cm and δ = 22.5
degrees is shown in Figure 2.

4 P Systems with Membrane Creation

Membrane computing is a branch of natural computing which abstracts from the
structure and the functioning of the living cell. In the basic model, membrane
systems (also frequently called P systems) are distributed parallel computing
devices, processing multisets of symbol-objects, synchronously, in the compart-
ments defined by a cell-like membrane structure1.
1 A detailed description of P systems can be found in [15] and updated information

in [24].



Fig. 2. The string F [+F [+F [+F ][F ]][F [F ][−F ]]][F [F [+F ][F ]][−F [+F ][F ]]]

In this paper we will consider P systems which make use of membrane creation
rules, which was first introduced in [7,12]. However, our needs are far simpler
than what the models found in the literature provide. This is the reason why we
introduce the new variant of restricted P systems with membrane creation.

A restricted P system with membrane creation is a tuple Π = (O, μ,
w1, . . . , wm, R) where:

1. O is the alphabet of objects.
2. μ is the initial membrane structure, consisting of a hierarchical structure of

m membranes (all of them with the same label; for the sake of simplicity we
omit the label).

3. w1, . . . , wm are the multisets of objects initially placed in the m regions
delimited by the membranes of μ.

4. R is a finite set of evolution rules associated with every membrane, which
can be of the two following kinds:
(a) a → v, where a ∈ O and v is a multiset over O. This rule replaces an

object a present in a membrane of μ by the multiset of objects v.
(b) a → [v], where a ∈ O and v is a multiset over O. This rule replaces an

object a present in a membrane of μ by a new membrane with the same
label and containing the multiset of objects v.

A membrane structure (extending the membrane structure μ) together with
the objects contained in the regions defined by its membranes constitute a con-
figuration of the system. A computation step is performed applying to a config-
uration the evolution rules of the system in the usual way within the framework
of membrane computing, that is, in a non-deterministic maximal parallel way;
a rule in a region is applied if and only if the object occurring on its left–hand
side is available in that region; this object is then consumed and the objects
indicated in the right–hand side of the rule are created inside the membrane.
The rules are applied in all the membranes simultaneously, and all the objects
in them that can trigger a rule must do it. When there are several possibilities
to choose the evolution rules to apply, non-determinism takes place.



5 Graphical Representation of Restricted P Systems
with Membrane Creation

In this section we show how to use, through a suitable graphical representation,
restricted P systems with membrane creation to model branching structures.2
The key point of the representation relies on the fact that a membrane structure
is a rooted tree of membranes, whose root is the skin membrane and whose leaves
are the elementary membranes. It seems therefore a perfect frame to encode the
branching structure.

Once we have a membrane structure establishing the topology of the object we
want to model, we will follow a variant of the turtle interpretation of L systems.
Let us suppose that the alphabet O of objects contains the objects F, + and −
and let us fix the length l and the angle δ.

A simple model to graphically represent a membrane structure is to make a
depth-first search of it, drawing, for each membrane containing the object F , a
segment of length m× l, where m is the multiplicity of F . If the number of copies
of F in a membrane increases along the computation, the graphical interpretation
is that the corresponding branch is lengthening. This segment is drawn rotated
with respect to the segment corresponding to the parent membrane with an
angle of n × δ, where n is the multiplicity of objects “+” minus the multiplicity
of objects “−” in the membrane. That is, each object “+” means that the rotation
angle is increased by δ whereas each object “−” means that it is decreased by δ.

In the real world, the branches of a plant not only lengthen but also widen
themselves. Thus, we also fix the width w and use a new symbol W whose
multiplicity will specify the width of the segments to be drawn as follows: if the
number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n × w.

For a better understanding let us consider the following example: let Π1 be
the restricted P system with membrane creation such that

– The alphabet of objects is O = {L, E, W, F, +, −, BL, BR, BS1 , BS2}.
– The initial membrane structure together with the initial multiset of objects

is [LEWFBLBS1 ].
– The rules are:

BS1 → [LEWFBS2BR] BL → [+LEWFBLBS1 ]
BS2 → [LEWFBLBS1 ] BR → [−LEWFBLBS1 ]

L → LF E → EW

In this system, the objects BS1 and BS2 represent straight branches to be created,
whereas the objects BL and BR represent branches to be created rotated to the
left and to the right, respectively. The objects F and W will determine the length
and the width of the corresponding branch. The objects L and E do not have a
graphical interpretation; they can be considered as seeds for growing the branch
in length and width.
2 A preliminary version with simpler examples can be found in [21].



Fig. 3. First four configurations

Fig. 4. Graphical representation of the configurations

This way, a thorough analysis of the initial membrane structure and of the
rules shows that Π1 models a branching structure consisting of a main trunk
from which branches to the left and to the right come out alternatively. These
new branches behave in the same way as the main trunk. Figure 3 shows the
evolution of the system along three computation steps, and we can see in Figure 4
the corresponding graphical representation of each configuration, where we fix a
bottom-up orientation with a length l of 1 cm, a width w of 0.4 pt and an angle
δ of 22.5 degrees.

Note how the graphical representation of the configurations shows that the
growth of the branching structure being modeled is not made by replacing seg-
ments by complex and repetitive modules, but by expanding the figure from



specific points with new segments (similar to how branches of higher plants
spring from buds).

6 Stochastic Versus Non-deterministic P Systems

In the previous section we have introduced a technique to construct somehow
realistic representations of branching structures in the framework of P systems.
Each configuration of a given restricted P system with membrane creation can be
translated to a set of graphical commands which produce the required picture.

An important drawback, as the example above shows, is that all the trees
generated by the same deterministic P system are identical. It is then necessary
to introduce specimen-to-specimen variations that preserve the general aspects
of the branching structure but modify its details.

One possible way to achieve this is to consider stochastic P systems. Several
alternatives to incorporate randomness into membrane systems can be found
in the literature (see [1,13,16] and the references therein). One of them is to
associate each rule of the P system with a probability. Thus, to pass from a
configuration of the system to the next one we apply to every object present
in the configuration a rule chosen at random, according to those probabilities,
among all the rules whose left–hand side coincides with the object.

For example, let us consider Π2 the following restricted P system with mem-
brane creation:

– The alphabet of objects is O = {L, E, W, F, +, −, T, B}.
– The initial membrane structure together with the initial multiset of objects

is [LEWFTB].
– The rules are:

T → [LEWFTB] L → LF

B
2/3−−→ [+LEWFTB] E → EW

B
1/3−−→ [−LEWFTB]

Note that we do not make explicit the probability of the rule when this is
one. Also, it is easy to see from the probabilities assigned to the rules with left–
hand side equal to B, that the trees generated by this system favors developing
branches to the left.

Let us fix a length l of 1 cm, a width w of 0.4 pt and an angle δ of 22.5 degrees.
Thus, after two computation steps we could have obtain, depending on the rules
chosen for the object B, any of the trees shown in Fig. 5, with the upper left
one being the most probable, and this probability decreasing as we go from left
to right and from top to bottom.

On the other hand, for non-deterministic P systems we could consider together
all the trees generated by all of its computations. We would obtain in this way
a “forest”. Thus, taking Π2 as a non-deterministic system instead of a stochastic
one, we would obtain after two computation steps the graphical representation



Fig. 5. Trees obtained from Π2

depicted in Figure 5 (here the trees have been arranged in a 2 × 4 rectangular
grid, but another methods to place the trees are possible).

7 Final Remarks

In this paper we have shown the suitability of P systems for modeling the growth
of branching structures. It is our opinion that using membrane computing for
this task could be an alternative to L systems, the model most widely studied
nowadays, for several reasons: the process of growing is closer to reality, since for
example a plant does not grow by “rewriting” its branches, but by lengthening,
widening and ramifying them; the membrane structure of P systems supports
better and clearer the differentiation of the system into small units, easier to
understand and possibly with different behaviors; the computational power of
membrane systems can provide tools to easily simulate more complex models of
growing, for example taking into account the flow of nutrients or hormones.

Nevertheless, it is still necessary a deeper study of several features of our pro-
posed framework as compared with that of Lindenmayer systems. Two aspects
that have to be investigated are the complexity of the models that can be con-
structed, and the computational efficiency in order to generate their graphical
representation. On one hand, the use of the ingredients of membrane computing
can lead to more intuitive models; on the other hand, we lose the linear sequence
of graphical commands that characterize the parsing algorithm of L systems.

It is also fundamental to develop computer tools that make easier the genera-
tion, within our framework, of the graphical representations from given models.
For that, it should be interesting to analyze the possibility of transforming the
models of higher plants constructed using membrane computing into equivalent
ones using Lindenmayer systems. This way, we could reuse the available software
for these latter systems.



The computation model considered here, restricted P system with membrane
computing, is a very simple one (at least, in terms of membrane computing). We
finish the paper by proposing extensions to this model in several ways that we
think are interesting enough to be considered and studied:

– A labeling of the membranes could be useful to distinguish between different
parts of the plant being modeled.

– The use of communication rules, allowing objects to cross the membranes of
the system, are basic for modeling the flow of nutrients and hormones.

– Rules of the form o → μ, where o is an object and μ is a membrane structure,
could lead to a clearer, faster and more compact representation of a plant.
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