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1. Introduction – The present paper provides an analysis of the deformation capacity of a masonry 
structure caused by an angular distortion.  We are going to examine the geometric characteristic of the 
deformation, stress increase associated with this movement, and the resistance front shear and deflection. 
We have used as a reference the studies from A. Tena y E. Miranda 2001 [1], and the technical norms 
CTE-DB-SE-F [2] and NBE-FL-90 [3]. 
 
 
 
 
2. Experimental. 
 
2.1. Calculation of the structure deformation according to the cracks thickness. 
 
When a differential deformation takes place between two points in a wall, cracks appear orthogonally to 
the direction with the highest tensile and lengthening as shown in Figure 1. 
 
 

 
Figure 1. Geometric characteristic of the deformation 

 
The sum of all the cracks widths can be equal to the increase of the diagonal length BD. Given that these 
are small deformations, we can suppose that the segment BF is equal to the segment BD, and that the 
angle BDC is equal to the angle BED and to  . 
 

Therefore, the diagonal length increase is equivalent to the sum of the cracks thickness   , according 

to the following formula: 
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If we show the previous formula through the three variables   , HL /  and DE , we can relate 

geometrically the cracks thickness and the structure deformation to the span L and height H in a wall, 
according to the following formula:  
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2.2. Masonry structure strength against a deformation. 
 
According to A. Tena and E. Miranda 2001 [1], the total deformation strengthened by a masonry element 
which is subjected to some imposed deformations, is the sum of the shear-strengthened and the bending 
deformation. 
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Being 
A   Bending area    
I   Wall section inertia 
G   Cross elasticity modulus 
E   Secant elasticity modulus 

V   Shear stress 

  Coefficient that depends on the restrictions to the deformations of the ends and which is 
considered equal to 1 as a perfectly fixed structure.   

 
 
The regulation NBE-FL-90 establishes that if we only observe the piece deformation, we can consider 
that the maximum tensile stress in the section is equal to the shear stress .  All this depends on the shear 
stress and the section area, according to the formula (6) 
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Moreover, in order for the crack in a masonry element to happen, the shear stress   has to be equal to or 

higher than the shear strength vkf . As our objective is to know the structure strength against a 

deformation, we consider that vkf . 

 

This way, changing the value of the shear stress V  in the formulas (3) and (4) we will have:  
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Considering that deformation depends on the L, we can show formula (3) in the following way: 
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If we replace the variables (4) y (5) in to the equation (9) we obtain the following formula, where only 

there are two variables, the value dimensionless L/d and the shear strength vkf . 
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3. Results and Discussion.  
 
3.1. Abacus for the calculation of the structure deformation according to crack thickness. 
 
The following chart resolves the equation of two variables from the formula (2), and we obtain the 

following abacus, figure 2, which relates the sum of the crack thickness in millimetres , and the 

dimensionless value L/H with the deformation also measured in millimetres.  
 
 

 
Figure 2. Abacus for the calculation of the structure deformation according to crack thickness 

 
We deduce from the previous chart that a wall whose height H=3m and length L=3, that is a 
dimensionless value of L/H=1, and which shows a total crack thickness of 10mm, undergoes an 
approximate deformation of 15mm. 
   
3.2. Abacus to calculate the masonry structure strength against a deformation. 
 
In order to calculate the strength against a deformation, we define the constant corresponding to the 

secant elasticity modulus E, the cross elasticity modulus G, fixed level   and the shear strength vkf . 

 
According to the CTE-DB-SE-F, the secant elasticity modulus E of a masonry structure could be 

considered equal to the compression strength kf  by 1000. 

 
The table 4.4 from this regulation shows that the average compression strength in a masonry wall can 
vary from 2MPa for hollow brick to 11MPa for solid bricks with thin joints.  



For this paper we estimate a average compression strength of 7MPa for the hollow brick, whose 
corresponding secant elasticity modulus E = 7000MPa 
 
The CTE-DB-SE-F estimate that the cross elasticity modulus G can be considered as 40% os the secant 
elasticity modulus E, so we obtain an value G equal to 2800MPa. 
 
If we replace the previous constant in to the equation (10) we obtain the following formula: 





















2800

1

7000

1
2

H

L
f

L vk
T    (11) 

The following chart, figure 3, resolves the equation of two variables (10), through an abacus which relates 
the shear strength for values between 0.25MPa y 1MPa, and the dimensionless value L/H for values 
between 0.5 to 3, with the maximum angular distortion from which the masonry structure will crack. 
 

 
Figure 2. Abacus to calculate the masonry structure strength against a deformation 

 
Using as an example a wall whose height H=3m and length L=6, that is a dimensionless value of 

L/H=1.5, whit a shear strength vkf  = 0.2MPa, we can deduce from the previous chart that the maximum 

admissible angular distortion for the masonry structure will be L/1000. This will be the value from which 
the masonry structure will crack. 
 
4. Conclusions. 
 
The previous method of calculation allows us analyse what its deformation and structural damage are 
through the visual inspection of the cracks thickness. 
   
Moreover, knowing the shear strength of the structure we can specify what the maximum admissible 
angular distortion is, and from which deformation the wall will crack because of a lack of structural 
stability in the section. 
 
Finally, we confirm that the masonry structure shows such a high rigidity that when we have absolute 
distortion between L/1000 and L/2000 the structure will crack. This values will depend on the ratio L/H 
and therefore on the section rigidity. 
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