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Abstract. Cellular signalling pathways are fundamental to the control
and regulation of cell behaviour. Understanding the biosignalling net-
work functions are crucial for studying different diseases and for design-
ing effective therapeutic approaches to them. In this paper we present
P systems as a feasible computational modelling tool for cellular sig-
nalling pathways that takes into consideration the inherent randomness
occurring in biological phenomena and the discrete character of the com-
ponents of the system. We illustrate these cellular models simulating the
EGFR signalling cascade and the FAS–induced apoptosis using a deter-
ministic strategy for evolution of P systems.

1 Introduction

The complexity of biomolecular cell systems is currently the focus of intensive
experimental research, nevertheless the enormous amount of data about the func-
tion, activity, and interactions of such systems makes necessary the development
of models able to provide a better understanding of the dynamics and properties
of the systems.

A model is an abstraction of the real-world onto a mathematical/compu-
tational domain that highlights some key features while ignoring others that
are assumed to be not relevant. A good model should have four properties:
relevance, computability, understandability and extensibility. A model must be
relevant capturing the essential properties of the phenomenon investigated; and
computable so it can allow the simulation of its dynamic behaviour, as well as
the qualitative and quantitative reasoning about its properties. An understand-
able model will correspond well to the informal concepts and ideas of molecular
biology. Finally, a good model should be extensible to higher levels of organisa-
tions, like tissues, organs, organism, etc, in which molecular systems play a key
role.

P systems are an unconventional model of computation inspired by the struc-
ture and the functioning of living cells which takes into consideration the discrete
character of the quantity of components of the system by using rewriting rules
on multisets of objects, that represent chemical substances, and strings, that
represent the organisation of genes on the genome. The inherently randomness
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in biological phenomena is captured by using stochastic strategies . We believe
that P systems satisfy the above properties required to a good model.

Cellular signalling pathways are fundamental to the control and regulation
of cell behaviour. Understanding the biosignalling network functions are crucial
for studying different diseases and for designing effective therapeutic approaches
to them. The characterization of properties about whole–cell functions requires
mathematical/computational models that quantitatively describe the relation-
ship between different cellular components.

Ordinary differential equations (ODEs) have been successfully used to model
kinetics of conventional macroscopic chemical reactions. That is, the approach
followed by ODEs is referred as macroscopic chemistry since they model the
average evolution of the concentration of chemical substances across the whole
system. In this approach each chemical concentration with time is described, im-
plicitely assuming that the fluctuation around the average value of concentration
is small relative to the concentration. This assumption of homogeneity may be
reasonable in some circumstances but not in many cases due to internal struc-
ture and low numbers and non–uniform distributions of certain key molecules in
the cell. While differential equations models may produce useful results under
certain conditions, they provide a rather incomplete view of what is actually
happening in the cell [1].

Due to the complexity of cellular signalling pathways, large number of linked
ODEs are often necessary for a reaction kinetics model and the many interde-
pendent differenttial equations can be very sensitive to their initial conditions
and constants. Time delays and spatial effects (that play a important role on
pathway behaviour) are difficult to include in a ODE model [8] in which are also
very difficult to change and extend, because changes of network topology may
require substantial changes in most of the basic equations [2].

Recently, different agent–based approaches are being used to model a wide
variety of biological systems ([9], [10], [20]) and biological processes, including
biochemical pathways [8].

The microscopic approach considers the molecular dynamics for each single
molecule involved in the system taking into account their positions, momenta of
atoms, etc . This approach is computationally intractable because of the number
of atoms involved, the time scale and the uncertainty of initial conditions.

Our approach is referred as mesoscopic chemistry [19]. Like in the microscopic
approach one considers individual molecules like proteins, DNA and mRNA, but
ignores many molecules such as water and non-regulated parts of the cellular
machinery. Besides the position and momenta of the molecules are not modelled,
instead one deals with the statistics of which reactions occur and how often. This
approach is more tractable than microscopic chemistry but it provides a finer
and better understanding than the macroscopic chemistry.

This paper is organised as follows. In the next section we present a deter-
ministic strategy for the evolution of P systems. In Section 3 and 4 a study of
EGFR signalling cascade and of FAS–induced apoptotic signalling pathway are
given. Finally, conclusions are presented in the last section.



56 M.J. Pérez-Jiménez

2 P Systems to simulate biosignalling cascades

In this paper we work with variant of P systems being tuples

Π = (O, L, µ, M1, M2, . . . , Mn, R1, . . . , Rn) ,
where:

– O is a finite alphabet of symbols representing objects (proteins and com-
plexes of proteins);

– L is a finite alphabet of symbols representing labels for the compartments;
– µ is a membrane structure containing n ≥ 1 membranes labelled with ele-

ments from L;
– Mi = (wi, li), 1 ≤ i ≤ n, are pairs which represent the initial configuration

of membrane i with li ∈ L and wi ∈ O∗;
– Ri, 1 ≤ i ≤ n, are finite sets of rules associated with the membrane i which

are of the form u [ v ]li → u′ [ v′ ]li , where u, v, u′, v′ ∈ O∗ are finite multisets
of objects and li is the label of membrane i.

Next, we discuss in more detail the rules that we will use in this paper.

(a) Transformation, complex formation and dissociation rules:

[ a ]l → [ b ]l

[ a, b ]l → [ c ]l

[ a ]l → [ b, c ]l























where a, b, c ∈ O, and l ∈ L

These rules are used to specify chemical reactions taking place inside a mem-
brane labelled by l ∈ L.

(b) Diffusing in and out:

[ a ]l → a [ ]l

a [ ]l → [ a ]l







where a ∈ O, and l ∈ L

We use these types of rules when chemical substances move or diffuse freely
from one compartment to another.

(c) Binding and debinding rules:

a [ b ]l → [ c ]l

[ a ]l → b [ c ]l







where a, b, c ∈ O, and l ∈ L

Using rules of the first type we can specify reactions consisting in the bind-
ing of a ligand swimming in one compartment to a receptor placed on the
membrane surface of another compartment. The reverse reaction, debinding
of substance from a receptor, can be described as well using the second rule.
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(d) Recruitment and releasing rules:

a [ b ]l → c [ ]l

c [ ]l → a [ b ]l







where a, b, c ∈ O, and l ∈ L

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rules a complex, c, located in one
compartment can dissociate into a and b, remaining a in the same compart-
ment as c, and b being released into the other compartment.

3 P Systems using Deterministic Waiting Times

Algorithm

In biological systems with large number of molecules deterministic approaches
are valid because the interactions between them follows the

√
n law of physics,

which says that randomness or fluctuation level in a system are inversely pro-
portional to the square root of the number of particles.

Next, we present a exact deterministic strategy providing a semantic to the
P systems defined above, that we will refer to as deterministic waiting times

algorithm. It is based on the fact that in vivo chemical reactions take place in
parallel in an asynchronous manner, i.e. different chemical reactions proceed at
different reaction rates and the same reaction may also have different reaction
rates at different times depending on the concentrations of reactants in the re-
gion. In the deterministic waiting time strategy, the time taken for formation
of each molecule, called waiting time, is calculated and the rule (reaction) with
the least waiting time is applied, changing the concentration in respective com-
partments. Each time when there is a change in the concentration of a molecule
in any compartment, then the waiting time for reactions “using” that molecule
needs to be recalculated for the compartment.

Exact deterministic method means that we do not approximate infinitesimal
intervals of time by ∆t as it is the case in ODEs, but we will associate a waiting
time, computed in a deterministic way, to each reaction and will use them to
determine the order in which the reactions take place.

P systems assume rates that determine the speed of reactions. In this respect,
we associate to each rule a stochastic constant which represents the average
number of application of the rule per time unit. This stochastic constant will
be used to compute the probability of applying a rule in a given configuration.
This is necessary to characterise the reality of the phenomenon to be modelled.
The necessity of taking into account these quantitative aspects has been made
clear in a few recent studies regarding the use of P systems to model biological
systems.
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In our models reversible complex formation reactions are frequent. In what
follows we discuss how to compute mesoscopic rate constants from the macro-
scopic ones used in differential equations.

Our rules model reactions of the form:

A + B kd



ka C

This reversible reaction converges to an equilibrium, in which the number of
chemical species A, B and C remains constant. The equilibrium constant, Keq ,
expresses the quantities of reactants A and B compared to complexes C once
the equilibrium is reached; that is:

Keq =
[C]

[A] · [B]
(1)

Keq can also be computed using the association ka and dissociation kd rate
constants:

Keq =
ka

kd

(2)

The association constant ka determines the speed of the association reaction.
It measures the number of chemicals A and B that form complexes C per mol
and second. For the case of regulatory proteins the association rate constant ka

can be determined experimentally. Keq can also be determined experimentally
using (1) and therefore kd can be computed using (2).

Alternatively, what it can be determined experimentally is Gibbs free energy
∆G a notion from thermodynamics which measures the effort necessary for de-
complexation. Gibbs free energy is related to the equilibrium constant Keq as
follows:

Keq = exp(
−∆G

R · T ) (3)

where R = 1.9872 calmol−1 Kelvin−1 is the universal gas constant and T is the
absolute temperature at which the experiments are performed.

Therefore from (2) and (3) the dissociation constant can be determined.
The rate constants ka and kd we have dealt with up to now are macroscopic,

they do not depend on the actual number of molecules, but on concentration.
Gillespie’s algorithm and thus our approach uses mesoscopic rate constants re-
ferring to actual number of molecules and they are determined from their macro-
scopic counterparts as follows:

ca =
ka

A · V cd = kd

where A = 6.023 ·1023 is Avogadro’s number and V is the cell volume. Note that
we assume the cell volume to be constant while ignoring cell growth.

Given a P system, in this strategy each rule r (representing a chemical re-
action) in each membrane m has associated a velocity, vr, by multiplying the
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stochastic kinetic constant cr by the multiplicities of the reactants according to
the mass action law. Then we compute the waiting time for the first execution
of the rule r as τr = 1

vr
and return the triple (τr , r, m).

Below we give a detailed description of the deterministic waiting times algo-

rithm:

• Initialisation

? set time of the simulation t = 0;
? for every rule r associated with a membrane m in µ compute the triple

(τr , r, m) by using the procedure described before; construct a list con-
taining all such triples;

? sort the list of triple (τr, r, m) according to τr (in an ascendent order);

• Iteration

? extract the first triple, (τr , r, m) from the list;
? set time of the simulation t = t + τr;
? update the waiting time for the rest of the triples in the list by subtract-

ing τr;
? apply the rule r only once updating the multiplicities of objects in the

membranes affected by the application of the rule;
? for each membrane m′ affected by the application of the rule remove the

corresponding all the triples (τ ′

r′ , r′, m′) from the list;
? for each membrane m′ affected by the application of the rule r re-

calculate the waiting times;
? comparing the new waiting times with the existing ones, add the smallest

triple among the two in the list and sort this list according to each waiting
time;

? iterate the process.

• Termination

? Terminate simulation when time of the simulation t reaches or exceeds
a preset maximal time of simulation.

Note that in this algorithm every rule in each membrane has a waiting time
computed in a deterministic way that is used to determine the order in which
the rules are executed. Also highlight that in this method the time step varies
across the evolution of the system and it is computed in each step depending on
the current state of the system.

This strategy have been implemented using Scilab, a scientific software pack-
age for numerical computations providing a powerful open computing environ-
ment for engineering and scientific applications [23].

4 Modelling EGFR Signalling

In this section we study the EGFR Signalling Cascade where the deterministic
waiting times algorithm is suitable for describing its evolution.
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The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase
family of receptors. Binding of the epidermal growth factor (EGF) to the extra-
cellular domain of EGFR induces receptor dimerisation and autophosphorylation
of intracellular domains. Then a multitude of proteins are recruited starting a
complex signalling cascade and the receptor follows a process of internalisation
ubiquitination and degradation in endosomals.

In our model we consider two marginal pathways and two principal pathways
starting from the phosphorylated receptor.

In the first marginal pathway phospholipase C-γ (PLCγ) binds to the phos-
pholyrated receptor, then it is phosphorylated (PLC∗

γ) and released into the cy-
toplasm where it can be translocated to the cell membrane or desphosphorylated.
In the second marginal pathway the protein PI3K binds to the phospholyrated
receptor, then it is phosphorylated (PI3K∗) and released into the cytoplasm
where it regulates several proteins that we do not include in our model.

Both principal pathways lead to activation of Ras-GTP. The first pathway
does not depend on the concentration of the Src homology and collagen domain
protein (Shc). This pathway consist of a cycle where the proteins growth factor
receptor-binding protein 2 (Grb2) and Son of Sevenless homolog protein (SOS)
bind to the phosphorylated receptor. Later the complex Grb2-SOS is released in
the cytoplasm where it dissociates into Grb2 and SOS.

In the other main pathway Shc plays a key role, it binds to the receptor
and it is phosphorylated. Then either Shc∗ is released in the cytoplasm or the
proteins Grb2 and SOS binds to the receptor yielding a four protein complex
(EGFR-EGF2*-Shc*-Grb2-SOS). Subsequently this complex dissociates into the
complexes Shc∗-Grb2-SOS, Shc∗-Grb2 and Grb2-SOS which in turn can also
dissociate to produce the proteins Shc∗, Grb2 and SOS.

Finally, Ras-GTP is activated by these two pathways and in turn it stimu-
lates the Mitogen Activated Protein (MAP) kinase cascade by phosphorylating
the proteins Raf, MEK and ERK. Subsequently phosphorylated ERK regulates
several cellular proteins and nuclear transcription factors that we do not include
in our model.

There exist cross-talks between different parts and cycles of the signalling
cascade which suggest a strong robustness of the system.

In Figure 1 it is shown a detailed graphical representation of the signalling
cascade.

We have developed a model of the signalling cascade described on the previ-
ous page using the following P system:

ΠEGF = (O, {e, s, c}, µ, (w1, e), (w2, s), (w3, c),Re,Rs,Rc)

Our model consists of more that 60 proteins and complexes of proteins and 160
chemical reactions. We will not give all the details of the model. A complete
description of ΠEGF with some supplementary information is available from the
web page www.gcn.us.es/egfr.pdf. In what follows we give an outline of our
model.



P systems–based Modelling of Cellular Signalling Pathways 61

Fig. 1. EGFR Signalling Cascade
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• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex

EGF Epidermal Growth Factor

EGFR EGF Receptor

EGFR-EGF2 Dimerazated Receptor

EGFR-EGF∗

2-Shc EGFR-EGF∗

2 and Shc complex
...

...

MEK Mitogenic external regulated kinase

ERK External regulated Kinase

• Membrane Structure: In the EGFR Signalling Cascade there are three
relevant regions, namely the environment, the cell surface and the cytoplasm.
We represent them in the membrane structure as the membranes labelled with:
e for the environment, s for the cell surface and c for the cytoplasm. The skin of
the structure is the environment, the cell surface is the son of the environment
and the father of the cytoplasm.
• Initial Multisets: In the initial multisets we represent the initial number of
molecules (nM) of the chemical substances in the environment, the cell surface
and the cytoplasm. These estimations has been obtained from [11, 18].

w1 = {EGF 200}
w2 = {EGFR250, Ras-GDP 200}
w3 = {Shc250, PLC150

γ , P I3K50, SOS40, Grb280, TP 100

1
, TP 450

2
, TP 450

3
, TP 125

4
,

Raf80, MEK400, ERK400, P 80

1
, P 80

2
, P 300

3
}

• Rules: Through the rules we model the 160 chemical reactions which form
the signalling cascade.

As it can be seen in the initial multisets specified before, in the system
of the EGFR Signalling Cascade the number of molecules is quite large, as a
consequence of the

√
n law important fluctuations and stochastic behaviour are

not expected in the evolution of the system. Because of this we have chosen the
deterministic waiting times algorithm as the strategy for the evolution of the P
system ΠEGF .

Next, we show two examples of rules of the system.
The set of rules associated with the environment, Re, consists only of one

rule r which models the binding of the signal, EGF , to the receptor EGFR.

EGF [ EGFR ]s → [ EGF -EGFR ]s , k = 0.003 nM−1s−1

The meaning of the previous rule is the following: the object EGF in the mem-
brane containing the membrane with label s (the environment), and the object
EGFR inside the membrane with label s (the cell surface) are replaced with the



P systems–based Modelling of Cellular Signalling Pathways 63

object EGFR-EGF in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the kinetic constant k,
which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr =
1

0.003 · |EGF | · |EGFR|
One example from the set of rules Rs associated to the cell surface is the dimeri-
sation of the receptor, that is the formation of a complex consisting of two
receptors:

[ EGFR, EGFR ]s → [ EGFR2 ]s , k = 0.011 nM−1s−1

When this rule r′ is executed two objects EGFR representing receptors are
replaced with one object EGFR2, representing a complex formed with two re-
ceptors, in the membrane with label s, the cell surface. The kinetic constant k

is used to computed the waiting time:

τr′ =
1

0.011 · |EGFR|2

4.1 Results and Discusions

Using the software mentioned in the previous section and developed in Scilab we
run some experiments; in what follows we present some of the results obtained.

In Figure 2 it is depicted the evolution of the number of autophosphorylated
receptors and, in Figure 3 the number of doubly phosphorylated MEK (Mito-
gen External Kinase), one of the target proteins of the signalling cascade that
regulates some nuclear transcription factors involved in the cell division.

Note that the activation of the receptor is very fast reaching its maximum
within the first 5 seconds and then it decays fast to very low levels; on the other
hand the number of doubly phosphorylated MEK is more sustained around 3
nM. These results agree well with empirical observations, see [11, 18].

In tumours it has been reported an overexpression of signals EGF in the
environment and of receptors, EGFR, on the cell surface of cancerous cells. Here
we investigate the effect of different EGF concentrations and number of receptors
on the signalling cascade.

First, we study the effect on the evolution of the number of autophospho-
rylated receptors and doubly phosphorylated MEK of a range of signals, EGF,
from 100 nM to 2000 nM.

In Figure 4, it can be seen that the receptor autophosphorylation is clearly
concentration dependent showing different peaks for different number of signals
in the environment. According to the variance in the receptor activation it is
intuitive to expect different cell responses to different EGF concentrations. Here
we will see that this is not the case.
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Fig. 2. Autophosphorylated EGFR evolution
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Fig. 3. Doubly Phosphorylated MEK evolution

Observe, in Figure 5, that the number of doubly phosphorylated MEK does
not depend on the number of signals in the environment. This shows the surpris-
ing robustness of the signalling cascade with regard to the number of signals from
outside due to EGF concentration. The signal is either attenuated or amplified
to get the same concentration of one of the most relevant kinases in the signalling
cascade, MEK. Note that after 100 seconds, when the response gets sustained,
the lines representing the response to different external EGF concentrations are
identical.

Now we analyse the effect on the dynamics of the signalling cascade of dif-
ferent numbers of receptors on the cell surface.
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Fig. 4. Receptor Autophosphorylation for different environmental EGF concentrations
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Fig. 5. MEK phosphorylation for different environmental EGF concentrations

In Figure 6, it is shown the evolution of the number of doubly phosphorylated
MEK when there is 100 nM and 1000 nM of receptors on the cell surface. Note
that now the response is considerably different; the number of activated MEK
is greater when there is an overexpression of receptors on the cell surface. As
a consequence of this high number of activated MEK the cells will undergo an
uncontrolled process of proliferation.

The key role played by the overexpression of EGFR on the uncontrolled
growth of tumours has been reported before, as a consequence of this, EGFR
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0 40 80 120 160 200 240
0

1

2

3

4

5

6

time (s)

Molecules (nM)

100nM
1000nM

Fig. 6. MEK phosphorylation for different number of receptors

is one of the main biological targets for the development of novel anticancer
therapies.

Finally, stress that for this system we have used a deterministic approach
obtaining results that map well experimental data. This is not always the case,
in the next section we analyse a system where a stochastic approach is necessary
to describe properly its behaviour.

5 Modelling FAS–apoptosis

The term apoptosis (also known as programmed cell death) was coined by Kerr
et al. [7] as a means of distinguishing a morphologically distinctive form of cell
death which was associated with normal physiology. In contrast to necrosis (a
form of cell death that occurs when cells are damaged by injury), apoptosis is
carried out in an ordered process without releasing intracellular materials from
the dying cells.

Apoptosis is a cellular response to a cellular insult that starts a cascade of
events which lead to the destruction of the cell. This mechanism is an innate re-
sponse of the cell that helps the unwanted, injured, or improperly developed cells
to commit suicide. Apoptosis protects the rest of the organism from a potentially
harmful agent and dysregulation of apoptosis can contribute to development of
autoimmune diseases and cancers.

Apoptosis is mediated by a family of proteases called caspases divided into
two subgroups. The first group consists of caspase 8, caspase 9, and caspase
10, and they function as initiators of the cell death process. The second group
contains caspase 3, caspase 6, and caspase 7, and they work as effectors. The
other effector molecule in apoptosis is Apaf-1, which, together with cytochrome
c, stimulates the processing of pro-caspase 9 to the mature enzyme.
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The other regulators of apoptosis are the Bcl2 family members, divided into
three subgroups based on their structure. Members of the first subgroup, rep-
resented by Bcl2 and Bcl-xL, have an anti-apoptotic function. The second sub-
group, represented by Bax and Bak, and the third subgroup, represented by Bid
and Bad, are pro-apoptotic molecules.

Apoptotic death can be triggered by a wide variety of stimuli. Among the
more studied death stimuli are DNA damage which in many cells leads to apop-
totic death via a pathway dependent on p53, and the signalling pathways for
FAS-induced apoptosis that was shown to be one of the most relevant processes
for understanding and combating cancer, AIDS and neurodegenerative diseases
such as Parkinson’s disease, Alzheimer, etc.

Two pathways activated by FAS have been identified [17], and are referred to
as type I (death receptor pathway) and type II (mitochondrial pathway), where
caspases play a crucial role for both the initiation and execution apoptosis. The
pathways diverge after activation of initiator caspases and converge at the end by
activating executor caspases. In the type I pathway, initiator caspases activate
executor caspases directly. In the type II pathway, a more complicated cascade
is activated involving the disruption of mitochondrial membrane potential.

Fig. 7. FAS signalling pathways

Despite many molecular components of these apoptotic pathways heve been
identified, we need understand how they work together into a consistent network.
A way to understand complex biological processes, in general, and the complex
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signalling behaviour of these pathways, in particular, is by modelling them in a
computational framework and simulating them in electronic computers.

In [5] the two pathways activated by FAS starting with the stimulation of
FASL (FAS ligand) until the activation of the effector caspase 3, have been
modeled using ordinary differential equations in which biochemical reactions
where used to describe molecular interactions.

In this section we present a P system using deterministic waiting times algo-
rithm for modelling FAS induced apoptosis, implementing all the rules described
in [5] for both pathways.

ΠFAS = (O, {e, s, c, m}, µ, (w1, e), (w2, s), (w3, c), (w4, m),Re,Rs,Rc,Rm)

Our model consists of 53 proteins and complexes of proteins and 99 chemical
reactions. We will not give all the details of the model. A complete description
of ΠFAS with some supplementary information is in [4]. In what follows we give
an outline of our model.
• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex

FAS Fas protein, member of the Tumor Necrosis Factor family

FASL Fas Ligand

FADD Fas–associating protein with death domain
...

...

Apaf Apoptotic protease activating factor

Smac Second mitochondria–derived activator of caspase

XIAP X–linked inhibitor of apoptosis protein

• Membrane Structure: In the FAS signalling pathways there are three rel-
evant regions, namely the environment, the cell surface, the cytoplasm and the
mitochondria. We represent them in the membrane structure as the membranes
labelled with: e for the environment, s for the cell surface, c for the cytoplasm,
and m for the mitochondria. The skin of the structure is the environment, the
cell surface is the son of the environment, the father of the cytoplasm, and the
grandfather of the mitochondria.
• Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, the
cytoplasm, the mitochondria. These estimations has been obtained from [5].

w1 = {FASL12500}
w2 = {FAS6023}
w3 = {FADD10040, CASP820074, FLIP 48786, CASP3120460, Bid15057,

Bax50189, XIAP 18069, Apaf60230, CASP912046}
w4 = {Smac60230, Cyto.c60230, Bcl245172}
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• Rules: Through the rules we model the 99 chemical reactions which form the
signalling pathways. The rules can be found in [4] and they are described in our
model as in the case of the system ΠEGFR (with different rules in the alternative
cases of type II pathway in next subsection).

The set of rules associated with the environment, Re, consists only of one
rule r1 which models the binding of the FAS ligand to the receptor FAS.

FASL [ FAS ]s → [ FASC ]s , k1 = 9.09E − 05 nM−1s−1

The meaning of the previous rule is the following: the object FASL in the
membrane containing the membrane with label s (the environment), and the
object FAS inside the membrane with label s (the cell surface) are replaced
with the object FASC in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the kinetic constant k1,
which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr1
=

1

9.09E − 05 · |EGF | · |EGFR|

5.1 Results and Discusions

We implemented in Java a preliminary simulator for the P system. It accepts as
input an SBML (Systems Biology Markup Language) file containing the rules
to be simulated and initial concentrations for the molecules in the system.

We compared our results with both the experimental data and with the ODEs
simulation data reported in the paper [5].

One of the major proteins in the pathway, caspase 3 was compared to the
experimental data. In the ODEs simulation, caspase 3 was activated at 4 hours,
and it was considered close to the experimental results where it was obtained
that it activated at 6 hours (see the Figure 8).

The same pathway is modeled in the membrane computing framework using
the same reactions and initial conditions. The caspase 3 activation dynamics is
studied when Bcl2 is at baseline value. Caspase 3 is activated in our simulator
after about 7 hours which is a very good approximation of the experimental data
and also the simulated pathway in [5].

There are cells (as thymocytes and fibroblasts) which are not sensitive to
Bcl2 overexpression as described in [17]. In these cells caspase 8 directly activates
caspase 3.

Scaffidi et al. has suggested in [17] that the type of pathway is chosen based on
the concentration of caspase 8 generated in active form following FASL binding.
If the caspase 8 concentration is high, then the caspase 3 is activated directly,
on the other hand, if the concentration of caspase 8 is low, the type II path-
way is chosen so that the system is amplifying the death signal through the
mitochondria to be able to induce the cell death.
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Fig. 8. Comparison between experimental data (top left), previous ODE simulation
data (top right) and the P system simulation data (down).

To check this hypothesis, the active caspase 8 formation is increased by hav-
ing the initial concentration of caspase 8 set to a value 20 times greater than its
baseline value while everything else was kept the same in the system. We per-
formed the same simulation with the increase in caspase 8 initial concentration,
this resulted in faster caspase 3 activation also in our simulation and is agree
well with the results obtained in [17].

The Bcl2 concentration is also increased 100 times to test the sensitivity of
caspase 3 activation to Bcl2. The Figure 9 shows that the caspase 3 activation
is not sensitive to the increase in Bcl2 concentration.

Bcl2 is known to block the mitochondrial pathway; however, it is not clear
the mechanism through which Bcl2 can block the pathway of type II. Next, we
analyze the caspase 3 activation kinetics in this pathway by considering different
mechanisms to block the mitochondrial pathway suggested in [3], [12] and [21]:
Bcl2 might bind with (a) Bax, (b) Bid, (c) tBid, or (d) bind to both Bax and
tBid.
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Fig. 9. Left the P system simulation, right the ODE simulation for the change in
caspase 8 initial concentration.

We design four different P systems having the rules:

– r1, . . . , r95, r96, r97 for the case (a).
– r1, . . . , r95, r

′

96
, r′

97
for the case (b).

– r1, . . . , r95, r
′′

96
, r′′

97
for the case (c).

– r1, . . . , r97, r98, r99 for the case (d).

All the other rules remain the same for all the cases (see [4] for details).
The dynamics of caspase 3 activation is studied by varying the Bcl2 con-

centration 10 times or 100 times the baseline value. It was concluded that Bcl2
binding to both Bax and tBid is the most efficient mechanism for the pathway in
comparison with the results obtained for the cases (a), (b) or (c). The same con-
clusions were obtained also after using our simulator for all the previous changes
in the pathway.

The Figure 10 shows only the case (d) as a comparison between the ODE
simulator and cellular simulator.

Fig. 10. Left the P system simulation, right the ODE simulation for the change in
caspase 3 sensitivity to changes in initial concentration for Bcl2 when Bcl2 is able to
bind to both Bax and tBid.
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6 Conclusions

In this paper we have presented P systems as a new computational modelling tool
for the dynamic behaviour of integrated signalling systems through a mesoscopic
chemistry approach.

P systems are also general specification of the biological phenomena that can
be evolved using different strategies/algorithms. A deterministic waiting times

algorithm has been introduced, and it is based on the fact that in vivo chemical
reactions take place in parallel in an asynchronous manner.

That strategy has been illustrated with the simulation of two relevant biolog-
ical phenomena: the EGFR Signalling Cascade and the signalling pathways for
FAS–induced apoptosis. These studies can be a guide to combining models and
experiments to understand complex biological processes as integrated systems.

Our results show good correlation with the experimental data reported in the
literature and with simulators based on ODEs. So, it justify the reliability of P
systems as computational modelling tools to produce postdiction, and perhaps
they will be able to produce plausible predictions.
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