
Cell-like and Tissue-like Membrane
Systems as Recognizer Devices

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez,
Agust́ın Riscos-Núñez, and Francisco J. Romero-Campero

Research Group on Natural Computing
Dpt. Computer Science and Artificial Intelligence, University of Sevilla, Sevilla, Spain
ETS Ingenieŕıa Informática, Avda. Reina Mercedes s/n
{magutier,marper,ariscosn,fran}@us.es

Abstract. Most of the variants of membrane systems found in the literature are generally thought
as generating devices. In this paper recognizer computational devices (cell–like and tissue–like) are
presented in the framework of Membrane Computing, using the biological membranes arranged hi-
erarchically, inspired from the structure of the cell, and using the biological membranes placed in
the nodes of a graph, inspired from the cell inter–communication in tissues. In this context, poly-
nomial complexity classes of recognizer membrane systems are introduced. The paper also addresses
the P versus NP problem, and the (efficient) solvability of computationally hard problems, in the
framework of these new complexity classes.

1 Introduction

One of the main goals of a computing model is to solve problems. In order to design computational
devices capable of attacking decision problems, we must decide how to represent by strings the
instances of the problem. In that context, to solve a decision problem consists of recognizing the
language associated with it.

Membrane Computing is a young branch of Natural Computing providing distributed parallel
computing models whose computational devices are called membrane systems, which are inspired
by some basic biological features, by the structure and functioning of the living cells, as well as from
the cooperation of cells in tissues, organs, and organisms.

In this area there are basically two ways to consider computational devices: cell–like mem-
brane systems and tissue–like membrane systems. The first one, using the biological membranes
arranged hierarchically, inspired from the structure of the cell, and the second one using the bio-
logical membranes placed in the nodes of a graph, inspired from the cell inter–communication in
tissues.

In this paper we present recognizer membrane systems (both cell–like and tissue–like variants)
as a framework to address ways to efficiently solving computationally hard problems, capturing the
true concept of algorithm in spite of providing a non–deterministic computing model.

2 Preliminaries

The computational devices of a model of computation are designed to handle inputs and outputs
that are strings over a finite alphabet.

Usually, NP-completeness has been studied in the framework of decision problems, but it is
not an important restriction because one can easily transform any optimization problem into a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132458657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

170 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

roughly equivalent decision problem by supplying a target value for the quantity to be optimized,
and asking the question whether this value can be attained.

Definition 1. A decision problem is a pair (I, θ) such that I is a language over a finite alphabet
(whose elements are called instances) and θ is a total boolean function (that is, a predicate) over I.

There exists a natural correspondence between languages and decision problems in the following
way. Each language L, over an alphabet Σ, has a decision problem, XL, associated with it as follows:
IXL = Σ∗, and θXL = {(u, 1) | u ∈ L}∪{(u, 0) | u ∈ Σ∗−L}; reciprocally, given a decision problem
X = (IX , θX), the language LX over the alphabet of IX corresponding to it is defined as follows:
LX = {u ∈ IX | θX(u) = 1}.

The P versus NP problem is the problem of determining whether every problem solvable by
some non-deterministic Turing machine in polynomial time can also be solved by some deterministic
Turing machine in polynomial time. It is one of the outstanding open problems in theoretical
computer science. A negative answer to this question would confirm that the majority of current
cryptographic systems are secure from a practical point of view. A positive answer would not only
show the uncertainty about the security of these systems, but also this kind of answer is expected
to come together with a general procedure that provides a deterministic algorithm solving most of
the NP–complete problems in polynomial time.

In the last years several computing models using powerful tools from nature have been devel-
oped (because of this, they are known as bio-inspired models) and several solutions in polynomial
time to problems from the class NP have been presented, making use of non-determinism and/or of
an exponential amount of space. This is the reason why a practical implementation of such models
(in biological, electronic, or other media) could provide a significant advance in the resolution of
computationally hard problems.

3 Cell–like recognizer membrane systems

In the structure and functioning of a cell, biological membranes play an essential role. The cell is
separated from its environment by means of a skin membrane, and it is internally compartmentalized
by means of internal membranes.

The main syntactic ingredients of a cell–like membrane system are the membrane structure,
the multisets, and the evolution rules.

• A membrane structure consists of several membranes arranged in a hierarchical structure inside
a main membrane (the skin), and delimiting regions (the space in–between a membrane and the
immediately inner membranes, if any). Each membrane identifies a region inside the system. A
membrane structure can be considered as a rooted tree.

• Regions defined by a membrane structure contain objects corresponding to chemical substances
present in the compartments of a cell. The objects can be described by symbols or by strings of
symbols, in such a way that multiset of objects are placed in regions of the membrane structure.

• The objects can evolve according to given evolution rules, associated with the regions (hence,
with the membranes).

The semantics of the cell–like membrane systems is defined through a non deterministic and syn-
chronous model (in the sense that a global clock is assumed) as follows:

• A configuration of a cell–like membrane system consists of a membrane structure and a family
of multisets of objects associated with each region of the structure. At the beginning, there is
a configuration called the initial configuration of the system.

Cell–like and tissue–like membrane systems 171

• In each time unit we can transform a given configuration in another configuration by applying
the evolution rules to the objects placed inside the regions of the configurations, in a non–
deterministic, and maximally parallel manner (the rules are chosen in a non–deterministic way,
and in each region all objects that can evolve must do it). In this way, we get transitions from
one configuration of the system to the next one.

• A computation of the system is a (finite or infinite) sequence of configurations such that each
one is obtained from the previous one by a transition, and shows how the system is evolving.

• A computation which reaches a configuration where no more rules can be applied to the existing
objects, is called a halting computation.

• The result of a halting computation is usually defined through the multiset associated with a
specific output membrane (or the environment) in the final configuration.

In the basic version, cell–like membrane systems can be seen as generating devices, working in
a non–deterministic and maximally parallel manner, with output membrane, and without input
membrane.

But we are very interested in to use cell-like membrane systems in order to solve decision
problems. What are the necessary ingredients to solve problems with a computational device?

We will see that we must work with non–deterministic (but confluent) systems, using maximal
parallelism, without output membrane (the output will be in the enviroment), and with input
membrane.

Definition 2. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a P system, with working
alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets M1, . . . ,Mp associated
with them; (b) Σ is an (input) alphabet strictly contained in Γ and the initial multisets are over
Γ −Σ; and (c) iΠ is the label of a distinguished (input) membrane.

If m is a multiset over Σ, then the initial configuration of (Π, Σ, iΠ) with input m is (µ,M1, . . . ,MiΠ∪
m, . . .Mp).

Definition 3. A cell–like recognizer membrane system is a P system with input, (Π, Σ, iΠ), and with
external output such that: (1) The working alphabet contains two distinguished elements YES, NO;
(2) All computations halt; and (3) In every computation of Π, either some object YES or some
object NO (but not both) must have been released into the environment, and only in the last step
of the computation.

We say that C is an accepting (respectively, rejecting) computation if the object YES (respectively,
NO) appears in the environment associated with the corresponding halting configuration of C.

We denote by R the class of all cell–like recognizer membrane systems.

We propose to solve a decision problem through a family of P systems (constructed in a uniform
way) such that each element of the family processes all the instances of equivalent size, in some
sense (we say that these solutions are uniform solutions).

Next, we define what means to solve a decision problem in the framework of cell–like membrane
systems, and in an uniform way.

Definition 4. We say that a decision problem X = (IX , θX) is solvable in polynomial time by a
family Π = (Π(n))n∈N, of R, and we denote this by X ∈ PMCR, if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there exists a deterministic
Turing machine constructing Π(n) from n ∈ N in polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions whose domain is L, such
that:

– For each u ∈ L, s(u) is a natural number and cod(u) is an input multiset of Π(s(u)).

172 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

– The family Π is polynomially bounded with regard to (X, cod, s); that is, there exists a
polynomial function p, such that for each u ∈ IX every computation of Π(h(u)) with input
g(u) is halting and, moreover, it performs at most p(|u|) steps.

– The family Π is sound, with regard to (X, cod, s); that is, for each u ∈ IX it is verified that
if there exists an accepting computation of Π(h(u)) with input g(u), then θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX it is verified
that if θX(u) = 1, then every computation of Π(h(u)) with input g(u) is an accepting one.

In the above definition we have imposed every P system Π(n) to be confluent, in the following
sense: every computation with the same input produces the same output.

We have the class PMCR is closed under polynomial–time reduction and complement.
If systems without input membrane are used, constructing one specific system for each instance,

but keeping the ‘polynomially uniform by Turing machines’ condition, then we say that the obtained
solutions are semi–uniform. We shall denote by PMC∗

R the class of problems solvable in polynomial
time by a semi–uniform family of systems in R.

4 The P versus NP problem in the context of cell–like
recognizer membrane systems

We consider deterministic Turing machines as language recognizer devices. Then, we can associate
with each deterministic Turing machine a decision problem, which will permit us to define when
such a machine is simulated by a family of P systems (this issue was also addressed e.g. in [12,20]).

Definition 5. Let M be a Turing machine with input alphabet ΣM . The decision problem associated
with M is the problem XM = (I, θ), where I = Σ∗

M , and for every w ∈ Σ∗
M , θ(w) = 1 if and only if

M accepts w.

Obviously, the decision problem XM is solvable by the Turing machine M .

Definition 6. We say that a Turing machine, M , is simulated in polynomial time by a family of
systems of the class R, if XM ∈ PMCR.

In cell–like membrane systems, evolution rules, communication rules and rules involving dissolution
are called basic rules. That is, by applying this kind of rules the size of the membrane structure
does not increase. Hence, it is not possible to construct an exponential working space in polynomial
time using only basic rules in a cell–like membrane system.

We recall here a result from Chapter 9 of [22].

Proposition 1. Let M be a deterministic Turing machine working in polynomial time. Then M can
be simulated in polynomial time by a family of cell–like recognizer membrane systems using only
basic rules.

Reciprocally, in [20] the following result was proved:

Proposition 2. For every decision problem solvable in polynomial time by a family of cell–like recog-
nizer membrane systems using only basic rules, there exists a Turing machine solving it in polynomial
time.

Under the hypothesis P 6=NP, Zandron et al. [23] established the limitations of cell-like mem-
brane systems which use only basic rules concerning the efficient solution of NP-complete problems.
This result was generalized by Pérez–Jiménez et al. [20] obtaining the following two characteriza-
tions of the P 6= NP relation by means of unsolvability results in polynomial time for NP–complete
problems by families of cell–like recognizer membrane systems using only basic rules.

Cell–like and tissue–like membrane systems 173

Theorem 1. The following propositions are equivalent:

1. P 6= NP.
2. There exists an NP–complete decision problem unsolvable in polynomial time by a family cell–

like recognizer membrane systems using only basic rules.
3. Each NP–complete decision problem is unsolvable in polynomial time by a family of cell–like

recognizer membrane systems using only basic rules.

Let us denote by RB the class of cell–like recognizer membrane systems using only basic rules.
From the constructive proof given in [22], we deduce the following result characterizing the standard
complexity class P.

Theorem 2. P = PMCRB.

5 Recognizer cell–like membrane systems with active
membranes

A particularly interesting class of cell–like membrane systems are the systems with active mem-
branes, where the membrane division can be used in order to solve computationally hard problems,
e.g., NP-complete problems, in polynomial or even linear time, by a space–time trade-off.

Definition 7. A recognizer cell–like membrane system with active membranes is a recognizer cell–
like membrane system (Π, Σ, iΠ) where the rules of the associated P system are of the following
forms (H being the set of labels of Π):

1. [a → ω]αh for h ∈ H, α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗: An object a within a membrane labelled
with h and polarity α, evolves to a multiset ω.

2. a []α1
h → [b]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly transformed into
another object, and simultaneously, the polarity of the membrane can be changed.

3. [a]α1
h → b []α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into another object,
and simultaneously, the polarity of the membrane can be changed.

4. [a]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Σ: A membrane labelled with h is dissolved in
reaction with an object. The skin is never dissolved.

5. [a]α1
h → [b]α2

h [c]α3
h for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ: An elementary membrane

can be divided into two membranes with the same label, possibly transforming some objects
and their polarities.

6. [[]α1
h1

. . . []α1
hk

[]α2
hk+1

. . . []α2
hm

]α0
h0

→ [[]α3
h1

. . . []α3
hk

]α5
h0

[[]α4
hk+1

. . . []α4
hm

]α6
h0

, for k ≥ 1,

m > k, hi ∈ H for 0 ≤ i ≤ m, and α1, . . . , α6 ∈ {+,−, 0}, with {α1, α2} = {+,−}. These are
division rules for non–elementary membranes. If the membrane with label h0 contains other
membranes than those with labels h1, . . . , hm, then they must have neutral charge in order to
make this rule applicable; these membranes and their contents are duplicated and placed in both
new copies of the membrane h0. Besides, every object in region h0, as well as all membranes and
objects placed inside membranes h1, . . . , hm, are reproduced in the new copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step, one object of a
membrane can be used by only one rule (chosen in a non deterministic way), but any object
which can evolve by one rule of any form, must evolve.

174 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

• If a membrane is dissolved, its content (multiset and internal membranes) is left free in the
surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of type (e) and there are
objects in this membrane which evolve by means of rules of type (a), then we suppose that
first the evolution rules of type (a) are used, and then the division is produced. Of course, this
process takes only one step.

• The rules associated with membranes labelled by h are used for all copies of this membrane.
At one step, a membrane can be the subject of only one rule of types (b)-(e).

Let us denote by AM the class of recognizer P systems with active membranes using 2-division.
Different polynomial time solutions for NP–complete problems have been obtained using this class
of cell–like recognizer membrane systems: Knapsack ([14]), Subset Sum ([13]), Partition ([4]), SAT
([19]), Clique ([1]), Bin Packing ([15]), and CAP ([16]).

Having in mind that the complexity class PMCAM is closed under complement and polynomial
time reductions we have the following result.

Proposition 3. NP ⊆ PMCAM, and co-NP ⊆ PMCAM.

The complexity class PMCAM does not seem precise enough to describe classical complexity classes
below NP. Therefore, it is challenging to investigate weaker variants of cell–like membrane systems
able to characterize classical complexity classes.

In [2] universality has been achieved by removing the polarization of membranes from P systems
with active membranes but allowing the change of membrane labels.

Several efficient solutions to NP–complete problems have been obtained within the following
variant of membrane systems with active membranes:

• P systems using 2–division for elementary membranes, without cooperation, without priorities,
without label changing, but using only two electrical charges (A. Alhazov [2], A. Riscos [21]).

• P systems using 2–division for elementary membranes, without cooperation, without priorities,
without label changing, without polarizations, but using bi–stable catalysts (M.J. Pérez and
F.J Romero [17]).

• P systems without polarizations, without cooperation, without priorities, without label chang-
ing, without division, but using three types of membrane rules: separation, merging and release
(L. Pan et al. [7]).

• P systems with separation rules instead of division rules, in two different cases: (a) using
polarizations and separation rules; and (b) without polarizations, but using separation rules
with change of membrane labels (L. Pan and T.O. Ishdorj [8]).

It is possible to obtain polynomial time solutions to NP–complete problems through cell–like rec-
ognizer membrane systems with active membranes using 2-division for elementary membranes. But,
what happens if we remove polarizations? We denote by AM0 the class of this kind of recognizer
P systems.

Question: What is exactly the class of decision problems solvable in polynomial time by families
of systems belonging to AM0?

We denote by AM0(α, β), where α ∈ {−d, +d} and β ∈ {−ne, +ne}, the class of all cell–
like recognizer P systems with polarizationless active membranes such that: (a) if α = +d (resp.
α = −d) then dissolution rules are permitted (resp. forbidden); and (b) if β = +ne (resp. β = −ne)
then division rules for elementary and non–elementary (resp. only division rules for elementary)
membranes are permitted.

Proposition 4. For each α ∈ {−d, +d} and β ∈ {−ne, +ne} we have:

(1) PMCAM0(α,β) ⊆ PMC∗
AM0(α,β).

Cell–like and tissue–like membrane systems 175

(2) PMCAM0(α,−ne) ⊆ PMCAM0(α,+ne).

(3) PMC∗
AM0(α,−ne) ⊆ PMC∗

AM0(α,+ne).

(4) PMCAM0(−d,β) ⊆ PMCAM0(+d,β).

(5) PMC∗
AM0(−d,β) ⊆ PMC∗

AM0(+d,β).

In the framework of recognizer P systems with membrane division but without using polarizations it
has been shown a surprising role of the dissolution rules, as it makes the difference between efficiency
and non–efficiency for P systems with membrane division and without polarization ([3, 5]).

Theorem 3. We have the following:

(1) P = PMCAM0(−d,β) = PMC∗
AM0(−d,β), for each β ∈ {−ne, +ne}.

(2) NP ∪ co−NP ⊆ PMC∗
AM0(+d,+ne).

(3) PSPACE ⊆ PMCAM0(+d,+ne).

6 Tissue–like recognizer membrane systems with active
membranes

In this section we consider computational devices inspired from the cell inter–communication in
tissues, and adding the ingredient of cell division rules of the same form as in cell–like membrane
systems with active membranes, but without using polarizations.

In these systems, the rules are used in the non-deterministic maximally parallel way, but we
suppose that when a cell is divided, its interaction with other cells or with the environment is
blocked; that is, if a division rule is used for dividing a cell, then this cell does not participate in
any other rule, for division or communication. The set of communication rules implicitely provides
the graph associated with the system through the labels of the membranes. The cells obtained by
division have the same labels as the mother cell, hence the rules to be used for evolving them or
their objects are inherited.

Definition 8. A tissue–like membrane system with active membranes is a tuple

Π = (Γ, Σ,M1, . . . ,Mp, E, R, iin),

where:

1. p ≥ 1 (the initial degree of the system; the system contains p cells, labelled with 1, 2, . . . , p);
2. Γ is the working alphabet containing two distinguished objects YES and NO;
3. Σ is an (input) alphabet strictly contained in Γ .
4. M1, . . . ,Mp are multisets over Γ −Σ, describing the objects placed in the cells of the system

(we suppose that at least one copy of YES and NO is in some of these multisets);
5. E ⊆ Γ is the set of objects present in the environment in arbitrary many copies each (the

objects YES and NO are not present in E);
6. R is a finite set of developmental rules, of the following forms:

(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , p}, i 6= j, and u, v ∈ Γ ∗; 1, 2, . . . , p identify the cells of the
system, 0 is the environment: When applying a rule (i, x/y, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the objects of the
multiset v are sent from region j to region i;

(b) [a]
i
→ [b]

i
[c]

i
, where i ∈ {1, 2, . . . , p} and a, b, c ∈ Γ : Under the influence of object a,

the cell with label i is divided in two cells with the same label; in the first copy the object
a is replaced by b, in the second copy the object a is replaced by c; all other objects are
replicated and copies of them are placed in the two new cells.

176 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

7. iin ∈ {1, . . . , n} is the label of the input membrane.

Let m be a multiset over Σ. The initial configuration of Π with input m is the tuple (M1, . . . ,Miin∪
m, . . . ,Mp).

The rules of a tissue–like membrane system as above are used in the non-deterministic maxi-
mally parallel manner as customary in membrane computing. In each step, we apply a set of rules
which is maximal (no further rule can be added), with the following important restriction: if a cell is
divided, then the division rule is the only one which is applied for that cell in that step, its objects
do not participate in any communication rule.

The computation starts from the initial configuration and proceeds as defined above; only
halting computations give a result, and the result is given by the presence of a distinguished object
in the environment.

Definition 9. A tissue–like membrane system with active membranes Π is a recognizer system if:
(a) all computations halt; and (b) in every computation of Π, either a copy of the object YES or a
copy of the object NO (but not both) is sent into the environment.

We say that C is an accepting (rejecting) computation if the object YES (respectively, the object
NO) appears in the environment associated with the corresponding halting configuration of C.

We denote by T R the class of tissue–like recognizer membrane systems with active membranes.
In order to present the concept of uniform solvability in the framework of membrane systems

as above, we define the concept of polynomial encoding from a language in a family of tissue–like
recognizer membrane systems with active membranes.

Definition 10. Let L be a language, and Π = (Π(n))n∈N a family of tissue–like recognizer mem-
brane systems of T R. A polynomial encoding of L in Π is a pair (cod, s) of polynomial-time
computable functions whose domain is L, and for each u ∈ L, s(u) is a natural number and cod(u)
is an input multiset of the system Π(s(u)).

In the present paper we are interested in the computing efficiency. That is why we have introduced
a variant of tissue–like systems with membrane division.

Next we define the concept of solvability in this new framework and in a similar way to
Definition 4.

Definition 11. We say that a decision problem X = (IX , θX) is solvable in polynomial time by a
family Π = (Π(n))n∈N, of tissue–like recognizer membrane systems with active membranes, and
we denote this by X ∈ PMCT R, if the following is true:

• The family Π is polynomially uniform by Turing machines.
• There exists a polynomial encoding (cod, s) from IX to Π such that the family Π is polynomially

bounded, sound and complete with regard to (X, cod, s).

We also have the class PMCT R is closed under polynomial–time reduction and complement.
We have said nothing about the way the computations proceed; in particular, they can be

non-deterministic, as standard in membrane computing. It is important however to remark that the
systems always stop and they always send out an object which is the correct answer to the instance
of the problem that they are processing.

This natural extension of tissue P systems provides the possibility of solving SAT in polynomial
time, in a confluent way: at precise times, one of the objects YES, NO is sent to the environment,
giving the answer to the question whether the input propositional formula is satisfiable. We refer
to [11] for a more detailed presentation of the following design.

Let us consider a propositional formula ϕ = C1 ∧ · · · ∧ Cm, consisting of m clauses Cj =
yj,1 ∨ · · · ∨ yj,kj , where yj,i ∈ {xl,¬xl | 1 ≤ l ≤ n} (there are used n variables). Without loss of
generality, we may assume that no clause contains two occurrences of some xi or two occurrences

Cell–like and tissue–like membrane systems 177

of some ¬xi (the formula is not redundant at the level of clauses), or both xi and ¬xi (otherwise
such a clause is trivially satisfiable, hence can be removed).

We consider the family Π = {Π(〈n, m〉) : n, m ∈ N} of tissue–like recognizer membrane

systems, being 〈n, m〉 = (n+m)·(n+m+1)
2

+ n.

The tissue–like recognizer membrane system

Π(〈n, m〉) = (Γ (〈n, m〉), Σ(〈n, m〉),M1,M2, E(〈n, m〉), R(〈n, m〉), iin)

will process all Boolean formulae in conjunctive normal form with n variables and m clauses, and
is defined as follows:

Γ (〈n, m〉) = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m}
∪ {Ti,1, Fi,1 | 1 ≤ i ≤ n} ∪ {T ′i,j , F ′i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1}
∪ {si,j , s

′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

∪ {bi | 1 ≤ i ≤ 3n + m + 1} ∪ {ci | 1 ≤ i ≤ n + 1}
∪ {di | 1 ≤ i ≤ 3n + nm + m + 2} ∪ {ei | 1 ≤ i ≤ 3n + nm + m + 4}
∪ {f, g, Y ES, NO},

Σ(〈n, m〉) = {si,j , s
′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

M1 = Y ES NO b1c1d1e1,

M2 = fga1a2 . . . an,

E(〈n, m〉) = Γ (〈n, m〉)− {Y ES, NO},
iin = 2,

and the following rules.

1. [ai]2 → [Ti,1]2 [Fi,1]2, for all i = 1, 2, . . . , n.

2. (1, bi/b2
i+1, 0), for all i = 1, 2, . . . , n + 1.

3. (1, ci/c2
i+1, 0), for all i = 1, 2, . . . , n + 1.

4. (1, di/d2
i+1, 0), for all i = 1, 2, . . . , n + 1.

5. (1, ei/ei+1, 0), for all i = 1, 2, . . . , 3n + nm + m + 3.

6. (1, bn+1cn+1/f, 2).

7. (1, dn+1/g, 2).

8. (2, cn+1Ti,1/cn+1T
′
i,1, 0).

9. (2, cn+1Fi,1/cn+1F
′
i,1, 0), for each i = 1, 2, . . . , n.

10. (2, T ′i,j/tiT
′
i,j+1, 0).

11. (2, F ′i,j/fiF
′
i,j+1, 0), for each i = 1, 2, . . . , n and j = 1, 2, . . . , m.

12. (2, bi/bi+1, 0).

13. (2, di/di+1, 0), for all i = n + 1, . . . , (n + 1) + (2n + m)− 1.

14. (2, b3n+m+1tisi,j/b3n+m+1rj , 0).

15. (2, b3n+m+1fis
′
i,j/b3n+m+1rj , 0), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

16. (2, di/di+1, 0), for all i = 3n + m + 1, . . . , (3n + m + 1) + nm− 1.

17. (2, d3n+nm+m+iri/d3n+nm+m+i+1, 0), for all i = 1, 2, . . . , m.

18. (2, d3n+nm+2m+1/f Y ES, 1).

19. (2, Y ES/λ, 0).

20. (1, e3n+nm+2m+2f NO/λ, 2).

21. (2, NO/λ, 0).

178 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

6.1 An overview of the computation

Membrane 2 is repeatedly divided, each time expanding one object ai, corresponding to a variable
xi, into Ti,1 and Fi,1, corresponding to the values true and false which this variable may assume. In
this way, in n steps, we get 2n cells with label 2, each one containing one of the 2n possible truth
assignments for the n variables. The objects f, g are duplicated, hence a copy of each of them will
appear in each cell.

In parallel with the operation of dividing cell 2, the counters bi, ci, di, ei from cell 1 grow their
subscripts. In each step, the number of copies of objects of the first three types is doubled, hence
after n steps we get 2n copies of bn+1, cn+1 and dn+1. Objects bi will check which clauses are satisfied
by a given truth assignment, objects ci are used in order to multiply the number of copies of ti, fi

as we will see immediately, di are used to check whether there is at least one truth assignment
which satisfies all clauses, and if such an assignment does not exists, then ei will be used in order
to produce the object NO at the end of the computation.

In step n + 1, the counters bn+1, cn+1, dn+1 are brought in cells with label 2, in exchange of f
and g. Because we have 2n copies of each object of these types and 2n cells 2, each one containing
exactly one copy of f and one of g, due to the maximality of the parallelism of using the rules, each
cell 2 gets precisely one copy of each of bn+1, cn+1, dn+1. Note that cells 2 cannot divide anymore,
because the objects ai were exhausted.

In the presence of cn+1, the objects Ti,1, Fi,1 get primed, which initiates the possibility of
introducing m copies of each ti and fi in each cell 2. As we have m clauses, then in order to check
their values for a given truth assignment, we need for each clause one set of objects encoding the
values of all variables. Note that this phase needs 2n steps for priming the objects Ti,1, Fi,1 – for
each object we need one step, because we have only one copy of cn+1 available – then m further
steps for each T ′i,1, F

′
i,1; all these steps are done in parallel, but for the last primed Ti,1, Fi,1 we have

to continue m steps after the 2n necessary for priming. Thus, the total number of steps performed
in this process is 2n + m.

In parallel with the previous operations, the counters bi and di increase their subscripts, until
reaching the value 3n+m+1. This is done in all cells 2 at the same time. Simultaneosly, ei increases
its subscript in cell 1.

In the presence of b3n+m+1 – and not before – we check the values assumed by clauses for the
truth assignments from each cell 2. We have only one copy of b3n+m+1 in each cell, hence we need at
most nm steps for this: each clause contains at most n literals, and we have m clauses. In parallel,
d increases the subscript, until reaching the value 3n + nm + m + 1.

In each cell with label 2 we check whether or not all clauses are satisfied by the corresponding
truth assignment. For each clause which is satisfied, we increase by one the subscript of d, hence
the subscript reaches the value 3n + nm + 2m + 1 if and only if all clauses are satisfied.

If one of the truth assignments from a cell 2 has satisfied all clauses, then we reach d3n+nm+2m+1,
which is sent to cell 1 in exchange of the objects YES and f .

In the next step, the object YES leaves the system, signaling the fact that the formula is
satisfiable. In cell 1, the counter e will increase one more step its subscript, but after that it will
remain unchanged – it can leave cell 1 only in the presence of f , but this object was already moved
to cell 2.

If the counter e reaches the subscript 3n + nm + 2m + 2 and the object f is still in cell 1,
then the object NO can be moved to a cell 2, randomly chosen, and from there it exits the system,
signaling that the formula is not satisfiable.

6.2 Some formal details

We consider the polynomial encoding (cod, s) from ISAT to Π, defined as follows: if the formula ϕ is
an instance of SAT with size parameters n (number of variables) and m (number of clauses), then

Cell–like and tissue–like membrane systems 179

s(ϕ) = 〈n, m〉 and cod(ϕ) is the set

[

1≤i≤n,1≤j≤m,1≤r≤kj

{si,j | yj,r = xi} ∪ {s′i,j | yj,r = ¬xi, }

That is, in the multiset cod(ϕ) we replace each variable xi from each clause Cj with si,j and each
negated variable ¬xi from each clause Cj with s′i,j , then we remove all parentheses and connectives.
In this way we pass from ϕ to cod(ϕ) in a number of steps which is linear with respect to n ·m.

The presented family of tissue–like recognizer membrane systems is polynomially uniform by
Turing machines, because the definition of the family is done in a recursive manner from a given
instance of SAT, in particular from the constants n (number of variables) and m (number of clauses).
Furthermore the required resources to build the element Π(〈n, m〉) of the family are the following:

• Size of the working alphabet: 5nm + 17n + 4m + 12 ∈ O((max{n, m})2).
• Number of membranes: 2 ∈ Θ(1).

• |M1|+ |M2| = n + 8 ∈ Θ(n).

• Maximum length of the rules: 3.

Finally, we can prove, using a formal description of the computations, that the family Π is sound
and complete with regard to (SAT, cod, s). The number of steps of the computations is polynomial
in terms of n and m: the answer YES is sent out in step 3n + nm + 2m + 2, while the answer NO
is sent out in step 3n + nm + 2m + 4.

From the above we deduce the following results:

Theorem 4.

1. SAT ∈ PMCT R.

2. NP ⊆ PMCT R, and NP ∪ co−NP ⊆ PMCT R.

7 Conclusions

In this paper, we have presented cell–like (inspired from the structure of the cell) and tissue–like (in-
spired from the cell inter–communication in tissues) recognizer membrane systems as computational
devices specially suitable to attack the efficient solvability of computationally hard problems.

In that new framework, two characterizations of the relation P = NP have been described
through the solvability of NP–complete problems by a family of cell–like recognizer membrane
systems using only basic rules.

The main contribution of this paper is to present, in the framework of tissue–like recognizer
membrane systems, a formal definition of the cellular complexity class PMCT R.

Recognizer membrane systems with active membranes have been studied in the variants cell–
like and tissue–like, and an efficient and uniform solution to the satisfiability problem by tissue–like
recognizer membrane systems with cell division has been presented.

Acknowledgement

The authors wish to acknowledge the support of the project TIN2005-09345-C04-01 of the Ministerio
de Educación y Ciencia of Spain, cofinanced by FEDER funds.

180 M.A. Gutiérrez, M.J. Pérez, A. Riscos and F.J. Romero

References

1. A. Alhazov, C. Mart́ın–Vide, L. Pan. Solving graph problems by P systems with restricted
elementary active membranes. In N. Jonoska, Gh. Păun, and G. Rozenberg, editors, Aspects of
Molecular Computing: Essays Dedicated to Tom Head, on the Occasion of His 70th Birthday,
pages 1–22. Lecture Notes in Computer Science, 2950, 2004.

2. A. Alhazov, L. Pan, Gh. Păun. Trading polarizations for labels in P systems with active
membranes. Acta Informaticae, 41(2-3):111–144, 2004.

3. A. Alhazov and M.J. Pérez–Jiménez. Uniform solution of QSAT using polarizationless active
membranes. In M.A. Gutiérrez–Naranjo et al., editors, Proceedings of the Fourth Brainstorming
Week on Membrane Computing (vol. I), pages 29–40. Report RGNC 02/2006, 2006.

4. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, and A. Riscos–Núñez. A fast P system for finding
a balanced 2-partition. Soft Computing, 9(9):673–678, September 2005.

5. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez, and F.J. Romero–Campero.
On the power of dissolution in P systems with active membranes. Lecture Notes in Computer
Science, 3850:224–240, 2006.

6. T. Head, M. Yamamura, and S. Gal. Aqueous computing: writing on molecules. Proceedings of
the Congress on Evolutionary Computation 1999, pages 1006–1010. IEEE Service Center, 1999.
Piscataway, NJ.

7. L. Pan, A. Alhazov, and T.O. Ishdorj. Further remarks on P systems with active membranes,
separation, merging, and release rules. In Gh. Păun et al., editors, Proceedings of the Second
Brainstorming Week on Membrane Computing, pages 316–324. Report RGNC 01/04, 2004.

8. L. Pan and T.O. Ishdorj. P systems with active membranes and separation rules. Journal of
Universal Computer Science, 10(5):630–649, 2004.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000, and Turku Center for Computer Science - TUCS Report 208, November 1998,
www.tucs.fi

10. Gh. Păun. Membrane Computing. An introduction. Springer-Verlag, Berlin, 2002.
11. Gh. Păun, M.J. Pérez–Jiménez, and A. Riscos–Núñez. Tissue P systems with cell division. In

Gh. Păun et al., editors, Proceedings of the Second Brainstorming Week on Membrane Com-
puting, pages 380–386. Report RGNC 01/04, 2004.

12. M.J. Pérez–Jiménez. An approach to computational complexity in Membrane Computing. In
G. Mauri, Gh. Păun, M.J. Pérez–Jiménez, Gr. Rozenberg, and A. Salomaa, editors, Membrane
Computing, 5th International Workshop, WMC5, Revised Selected and Invited Papers, pages
85–109. Lecture Notes in Computer Science, 3365, 2005.

13. M.J. Pérez–Jiménez and A. Riscos–Núñez. Solving the Subset-Sum problem by P systems with
active membranes. New Generation Computing, 23(4):367–384, 2005.

14. M.J. Pérez–Jiménez and A. Riscos–Núñez. A linear-time solution to the knapsack problem
using P systems with active membranes. In C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, and
A. Salomaa, editors, Membrane Computing, pages 248–266. Lecture Notes in Computer Science,
2933, 2004.

15. M.J. Pérez–Jiménez and F.J. Romero–Campero. An efficient family of P systems for packing
items into bins. Journal of Universal Computer Science, 10(5):650–670, 2004.

16. M.J. Pérez–Jiménez and F.J. Romero–Campero. Attacking the Common Algorithmic Problem
by recognizer P systems. In M. Margenstern, editor, Machines, Computations and Universality,
MCU’2004, pages 304–315. Lecture Notes in Computer Science, 3354, 2005.

17. M.J. Pérez–Jiménez and F.J. Romero–Campero. Trading polarizations for bi-stable catalysts in
P systems with active membranes. In G. Mauri, Gh. Păun, M.J. Pérez–Jiménez, Gr. Rozenberg,
and A. Salomaa, editors, Membrane Computing, 5th International Workshop, WMC5, Revised
Selected and Invited Papers, pages 373–388. Lecture Notes in Computer Science, 3365, 2005.

18. M.J. Pérez–Jiménez, A. Romero–Jiménez, and F. Sancho–Caparrini. Teoŕıa de la Complejidad
en modelos de computación con membranas. Ed. Kronos, Sevilla, 2002.

Cell–like and tissue–like membrane systems 181

19. M.J. Pérez–Jiménez, A. Romero–Jiménez, and F. Sancho–Caparrini. Complexity classes in
cellular computing with membranes. Natural Computing, 2(3):265–285, 2003.

20. M.J. Pérez–Jiménez, A. Romero–Jiménez, and F. Sancho–Caparrini. The P versus NP problem
through cellular computing with membranes. In N. Jonoska, Gh. Păun, and G. Rozenberg,
editors, Aspects of Molecular Computing: Essays Dedicated to Tom Head, on the Occasion of
His 70th Birthday, pages 338–352. Lecture Notes in Computer Science, 2950, 2004.

21. A. Riscos–Núñez. Cellular Programming: efficient resolution of NP–complete numerical prob-
lems. PhD. Thesis, University of Seville, Spain, 2004.

22. A. Romero–Jiménez. Complexity and Universality in Cellular computing models. PhD. Thesis,
University of Seville, Spain, 2003.

23. C. Zandron, C. Ferreti, and G. Mauri. Solving NP-Complete Problems Using P Systems with
Active Membranes. In I. Antoniou, C.S. Calude and M.J. Dinneen, editors, Unconventional
Models of Computation, UMC’2K, pages 289–301. Springer-Verlag, 2000.

