
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2013

Predicting project outcome leveraging socio-
technical network patterns
Didi SURIAN

Yuan TIAN
Singapore Management University, yuan.tian.2012@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Hong CHENG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1109/CSMR.2013.15

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
SURIAN, Didi; TIAN, Yuan; LO, David; CHENG, Hong; and LIM, Ee Peng. Predicting project outcome leveraging socio-technical
network patterns. (2013). CSMR 2013: Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering:
5-8 March 2013, Genova, Italy. 47-56. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1683

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13245863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CSMR.2013.15
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Predicting Project Outcome Leveraging Socio-Technical Network Patterns

Didi Surian∗, Yuan Tian†, David Lo†, Hong Cheng‡ and Ee-Peng Lim†
∗School of Information Technologies

University of Sydney, Australia
Email: dsur5833@uni.sydney.edu.au

†School of Information Systems
Singapore Management University, Singapore

Email: {yuan.tian.2012,davidlo,eplim}@smu.edu.sg
‡Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong, Hong Kong
Email: hcheng@se.cuhk.edu.hk

Abstract—There are many software projects started daily;
some are successful, while others are not. Successful projects
get completed, are used by many people, and bring benefits
to users. Failed projects do not bring similar benefits. In this
work, we are interested in developing an effective machine
learning solution that predicts project outcome (i.e., success or
failures) from developer socio-technical network.

To do so, we investigate successful and failed projects
to find factors that differentiate the two. We analyze the
socio-technical aspect of the software development process by
focusing at the people that contribute to these projects and
the interactions among them. We first form a collaboration
graph for each software project. We then create a training set
consisting of two graph databases corresponding to successful
and failed projects respectively. A new data mining approach
is then employed to extract discriminative rich patterns that
appear frequently on the successful projects but rarely on
the failed projects. We find that these automatically mined
patterns are effective features to predict project outcomes. We
experiment our solution on projects in SourceForge.Net, the
largest open source software development portal, and show that
under 10 fold cross validation, our approach could achieve an
accuracy of more than 90% and an AUC score of 0.86. We
also present and analyze some mined socio-technical patterns.

Keywords-software project; collaboration graph; discrimina-
tive pattern; graph mining

I. INTRODUCTION

Some software projects, either open source or industrial,
are successful. They are completed, used by many people,
and bring benefits to the various stakeholders including
users, developers, and companies. Many others however
remain uncompleted, buggy, or are only used by a few.
Investigating the nature of successful and failed projects
could shed light to reasons or factors why some projects
are successful while others fail. These factors in turn could
be used to build a machine learning model to predict project
outcome. Predicting project outcome is useful for planning,
mitigation, and management reasons.

Due to the advent of Web 2.0, open source code, and
software repositories, much information on past project suc-

cesses and failures could easily be obtained. Features related
to the various software projects could be extracted. This
study aims to leverage these features to find discriminative
patterns that differentiate successful from failed projects.
A pattern is discriminative if it appears frequently in the
successful projects but rarely in the failed projects and vice
versa. Discriminative patterns characterize features closely
associated to successful or failed projects. We use these
patterns as features and build an effective classifier to predict
project outcome.

First, we extract the socio-technical aspects of software
development process by performing a longitudinal study on
various snapshots of a super-repository. A super-repository
contains much information including the people contributing
to various projects and the number of downloads. Various
snapshots of the super-repository could be taken to form
a richly labeled graph that characterizes people involved
in various projects and the nature of the relationships
between them across time. We can characterize project
success or failures based on the number of downloads.
From this information, two sets of graph databases, one for
successful and another for failed projects could be formed.
Each graph in the database corresponds to a project with
nodes corresponding to people involved in the project and
edges corresponding to relationships among them. Various
features, e.g., number of completed projects, number of
collaborations, etc, could be attached as labels to the nodes
and edges.

Next, to analyze these graphs, we extend past studies on
discriminative graph mining that mine for subgraphs that
frequently occur in one set of graphs but rarely in the
opposing set [17], [5]. Past studies on discriminative graph
mining are only able to mine from simple graphs with single
labels on the nodes and edges. We extend their work to mine
from rich graphs containing multiple labels on the nodes
and edges. To realize this, we propose a novel approach to
translate a rich graph into a simple one and adopt an existing
algorithm [5] to mine for discriminative subgraphs from the



translated graphs. The results are then reverse translated to
form rich graphs. We show that our translation is sound and
complete.

Finally, based on the mined patterns, we train a machine
learning model to predict project outcome. Based on a
training data, a set of patterns would be mined, and the
existence or absence of the patterns in each data instance is
used as binary features for classifier construction. The mined
patterns and the classifier are then used to predict instances
on test data whose outcome is to be determined.

We experiment our solution on SourceForge.Net, one of
the most popular and largest sites to download open-source
software. Our experiments demonstrate that we can predict
project outcome with an accuracy of over 90% and an AUC
(Area under ROC) score of 0.86. We also show and analyze
the set of top-20 most discriminative patterns that we mine.

We describe the contributions of this work as follows:
1. We introduce a new problem of predicting project

outcome using socio-technical network patterns.
2. We extend a solution that mines discriminative sim-

ple graph patterns to mine discriminative rich graph
patterns. We do so by proposing a translation process
to map the problem to mining simple graph patterns
and reverse translate the mined simple graph patterns
to rich graph patterns.

3. We prove that our translation is sound and complete.
This means that all mined patterns are discriminative
and all discriminative rich graph patterns can be
mined.

4. We show the scalability of our approach in analyzing
SourceForge.Net dataset. Experiment results show
that our approach can predict project outcome with
high accuracy. We also present and analyze the mined
discriminative patterns.

Section II introduces the concept of rich graph which is
used to represent a software project. Section III outlines our
overall framework. We zoom into the various components of
the framework in the following sections. First, Section IV
elaborates our approach to model the socio-technical aspects
of projects. Next, Section V explains how discriminative
patterns are mined. Finally, Section VI describes our process
of utilizing mined patterns as effective features for project
outcome prediction. Section VII presents our experiments.
We present related work in Section VIII. We conclude and
present future work in Section IX.

II. PRELIMINARIES & NOTATIONS

We introduce the notions of simple graph and rich graph
along with some notations in Definitions 2.1 & 2.2 respec-
tively. The example for a simple graph and rich graph is
shown in Figure 1(a) and 1(b) respectively. We use a rich
graph to represent a software project based on the experience
history of its developers.

Definition 2.1 (Simple Graph): A simple graph is a set
of nodes N , edges E, and labels L. Each node and edge
could be attached with one label from L. Each edge (u,v)
is a pair of nodes in N . Since E is a set, each pair of nodes
could be linked by only one edge. Given a node n we denote
edges incident to it and its label by n.Edges and n.Label
respectively. We denote the label of an edge e by e.Label.
Given an edge e of a node n, we refer to the other node
connected to n by e as e.Target.

Definition 2.2 (Rich Graph): A rich graph is a set of
nodes N , node placeholders NP , edges E, edge placeholders
EP , and labels L. Each node and edge contains multiple
placeholders each of which contains one label from L. Each
edge (u,v) is a pair of nodes in N . Each pair of nodes could
be linked by one edge. Given a placeholder np ∈ {NP
∪ EP}, we denote its labels by np.Label. Given a node
n we denote edges incident to it and labels contained in
its placeholders by n.Edges and n.Labels respectively. We
denote the labels of an edge e contained in its placeholders
by e.Labels. Given an edge e of a node n, we refer to the
other node connected to n by e as e.Target. 

a 2 1 
(a)

 a,b 3,4 1,2 
(b)

Figure 1. Example: (a) Simple Graph (b) Rich Graph

III. OVERALL FRAMEWORK

Our framework has two phases: training and testing (or
deployment). In the training phase, we extract discriminative
features and learn a classifier from a training dataset con-
taining projects with known outcomes (i.e., success or fail).
In the testing phase, based on the existence or absence of
the discriminative features, we apply the learned classifier
to predict the outcome of the projects. Our framework is
illustrated in Figure 2.

Test Data

Training Data
Socio-Technical

Information 
Extraction

Discriminative
Rich Graph 

Mining
Classifier 

Construction

Outcome 
Prediction

Predicted 
Outcome

Training Phase

Testing Phase

Socio-Technical
Information 
Extraction

Figure 2. Overall Framework

During the training phase, we take as input a set of
projects, and developers that work on them. For each
project, we first extract socio-technical information from the
developers working on the project in the form of a rich
graph. Each node corresponds to a developer1 and each edge

1A developer could possibly register himself using several usernames,
however in this study we assume that each developer is identified by a
unique username, which is intuitive for a developer to keep his reputation
record. Studies on developer matching could potentially be applied [6], [8]
but we leave this for future work.



corresponds to the relationship between two developers. We
attach multiple labels capturing various information related
to developers and their relationships. Next, we mine discrim-
inative subgraph patterns that appear frequently in successful
projects but rarely in failed projects (or vice versa). We treat
the existence or absence of mined patterns as binary features
(each is assigned either 0 (absence) or 1 (existence) value)
and use them to build a classifier. The classifier and the
patterns are forwarded to the test/deployment phase.

During the testing phase, for each project with unknown
outcome, again we first extract its socio-technical informa-
tion as a graph. We then check the existence or absence
of the discriminative patterns in the graph and form binary
features. The learned classifier is then used to predict the
outcome of the project based on the binary features.

We provide more details on how socio-technical infor-
mation is extracted in Section IV. Additional information
on how discriminative patterns are mined are provided in
Section V. We elaborate classifier construction and output
prediction in Section VI.

IV. MODELING SOCIO-TECHNICAL
ASPECTS OF PROJECTS

Many super-repositories, e.g., SourceForge.Net, provide
information on the collaborations among software develop-
ers and contributors2 over various projects. Each project is
contributed by one or more persons. They could contribute to
the projects either in terms of source code, ideas, planning,
etc. Some of the developers of a particular project might
have worked together before, while others work together for
the first time. Some of the developers might have worked
on one or more successful projects before while others have
not. These socio-technical aspects of software development
process potentially affect the success or failure of a project.

Various measures could be used to identify project success
or failures. In our setting, we consider the number of down-
loads as an indicator of project success or failure. Intuitively,
successful projects are downloaded a large number of times,
while failed/unsuccessful projects are only downloaded a
few number of times by users.

For each project, whether successful or not, we could ex-
tract some features representing the socio-technical aspects
of the developers working on it. We consider 6 different fea-
tures characterizing the co-contributors collaborating on the
project and the socio-technical relationships between them.
Three of them characterize a single developer; the other three
characterize the relationship between two developers.

The first feature is the number of past successful projects
a developer has before he joins the current project. Past suc-
cessful projects potentially enrich a developer’s experience.
Intuitively, a project contributed by one or more experienced

2We use the terms developer and contributor interchangeably in this
paper.

contributors is more likely to be successful than another
with totally inexperienced contributors. We would like to
investigate if this is the case. The first feature is defined in
Definition 4.1.

Definition 4.1 (Past Successful Projects (PSP)): Consi-
der a developer D joining a project P at time t. The
number of past successful projects, denoted as PSP , is the
number of projects with D joining as a contributor before
t, and are successful.

The second feature is the number of past unsuccessful
projects a developer has before he joins the current project.
It is possible that past failures correlate with future failures.
On the other hand, developers could potentially learn from
past failures to eventually contribute to a successful project.
We define the second feature in Definition 4.2.

Definition 4.2 (Past Failed Proj. (PFP)): Consider a
developer D joining a project P at time t. The number
of past failed projects, denoted as PFP , is the number of
projects with D joining as a contributor before t, and are
failed.

The third feature is the length of time a developer has
joined the super-repository at the time he joins a project.
A senior member could be more aware of the demand of
the potential clients and could be more adept in selecting
suitable group members to build a good software together.
This feature is defined in Definition 4.3.

Definition 4.3 (Length of Membership (LOM)): Con-
sider a contributor D registered in the super repository
at time s and joins a project P at time t. The length of
membership, denoted as LOM, is the period of time from
s to t, or mathematically, t - s.

The fourth feature characterizes the relationship between
two developers. We consider the number of past successful
collaborations two developers have before they start to work
together3 in the current project. Intuitively, if two developers
have already had many successful collaborations before, the
current collaboration would more likely be a successful one
too. For such cases, the developers would likely know the
working or coding style of one another well and are able
to work well together thus contributing to project success.
Definition 4.4 defines the fourth feature.

Definition 4.4 (Past Successful Collab. (PSC)): Consi-
der t as the time when a developer D1 starts to collaborate
with a developer D2 in a project P . The number of past
successful collaborations, denoted as PSC, is the number
of projects with D1 and D2 joining as contributors before
t, and are successful.

The fifth feature is the number of past failed projects two
developers have before they start to collaborate in the current
project. Bad experiences could either lower morale or act as
stepping stones towards successful collaborations. We define
this in Definition 4.5.

3We assume that a developer still contributes to a project if he is still
recorded in the repository.



Definition 4.5 (Past Failed Collab. (PFC)): Consider t
as the time when a developer D1 starts to collaborate with
another developer D2 in a project P . The number of failed
collaborations, denoted as PFC , is the number of projects
with D1 and D2 joining as contributors before t, and are
failed.

The last feature we consider is the length of time that
has passed, since the first time two developers worked
together, prior to the current project. A long collaboration
history might increase the likelihood of developing a good
project. On the other hand, although two developers have
a long history, if they rarely work together, they might
not collaborate well anymore. We present this feature in
Definition 4.6.

Definition 4.6 (Len. of Collab. History (LCH)): Con-
sider s as the time a developer D1 collaborates with another
developer D2 for the first time. Let t be the the time D1
collaborates with D2 in the current project P . The length of
D1’s and D2’s collaboration history when they collaborate
on P , is the period of time from s to t, or mathematically,
t - s.

For each project, we extract the above socio-technical
features and express them as an undirected graph. Each node
in the graph corresponds to a developer, while each edge
corresponds to a relationship between two developers. We
attach labels to the nodes and edges of the graph to capture
the above six features. Three of them relate to the individual
developers and are thus mapped to node labels. The other
three relate to the relationships between two developers and
are thus mapped to edge labels. Thus, every node is attached
with PSP , PFP , and LOM . Also, every edge is attached
with PSC , PFC , and LCH . We refer to such a graph as a
socio-technical graph. Note that a socio-technical graph is
a rich graph.

We would analyze a set of socio-technical graphs from
many projects, some of which are successful projects while
others are failed projects, to empirically validate whether
any combinations of the above features could discriminate
successful from failed projects and predict project outcome.

V. MINING DISCRIMINATIVE RICH SUB-GRAPH
PATTERNS

In this section, we first describe discriminative sub-graph
mining that could be applied to mine for discriminative
success-failure patterns. We then present our solution that
extends the state-of-the-art work on mining discriminative
simple subgraphs to mine for discriminative rich subgraphs
where each node and edge can contain multiple labels.

A. Discriminative Sub-Graph Mining

Given a set of socio-technical graphs representing a set
of successful projects and another set representing failed
projects, we aim to find discriminative subgraphs that could
distinguish successful projects from failed ones. Intuitively,

a subgraph is discriminative if it occurs frequently in the
socio-technical graphs of the successful projects but rarely
in those of the failed ones (and vice versa). Theoretically,
we could design an objective function F (g) to evaluate the
discriminative score of a subgraph g. Then our goal becomes
finding the optimal subgraph wrt. the objective function F .
Formally, the mining problem is defined as:

Definition 5.1 (Mining Discriminative Subgraph):
Given a set of graphs with class labels D={gi,yi|1<=i<=n},
where gi is a graph representing a project and yi ∈ {−1,+1}
is the class label representing a successful or unsuccessful
project, an objective function F which measures the
discriminative score of a subgraph, find a subgraph g∗ such
that g∗ = argmaxgF (g).

In data mining, discriminative measures such as informa-
tion gain, cross entropy and Fisher score are popularly used
to evaluate the capacity of a feature in distinguishing in-
stances from different classes. In this work, we use informa-
tion gain as the objective function. A subgraph which occurs
frequently in the socio-technical graphs of the successful
projects but rarely in those of the failed ones will have
a very large information gain score. Such a discriminative
graph highlights the structural contrast between successful
and failed projects. If we use c to denote the class label of the
projects, and use g to represent a subgraph, then information
gain of g is defined as:

IG(c|g) = H(c)−H(c|g) (1)

where H(c) = −
∑

ci∈{0,1} p(ci) log p(ci) is the entropy
and H(c|g) = −

∑
p(g)

∑
ci∈{0,1} p(ci|g) log p(ci|g) is the

conditional entropy given the subgraph g.
To efficiently mine the most discriminative subgraph from

the successful and failed projects, we adopt a recently
proposed graph mining algorithm LEAP [17]. We invoke
the LEAP algorithm k times to mine the top-k discriminative
subgraphs following a similar approach in [5]. The returned
result is a ranked list of k discriminative subgraphs with
decreasing information gain scores. We denote the discrim-
inative subgraph mining operation by DGM.

B. Extending to Rich Sub-Graphs

The algorithms in [5], [17] described in Section V-A
only mine from a set of simple graphs. In this section, we
describe how we extend them to mine for discriminative rich
subgraphs with multiple node and edge labels.

We handle the problem of mining discriminative rich
subgraphs by introducing an equivalent simple graph repre-
sentation of a rich graph. We thus propose a novel mapping
between mining discriminative rich subgraphs to mining
simple discriminative subgraphs. We show that the trans-
lation to simple graphs only increases the size of the rich
subgraphs by a factor linear to the maximum number of
labels per node and the maximum number of node labels per



edge. We also prove that all discriminative rich subgraphs
could be mined using the approach in Section V-A from the
corresponding simple graph translations.

Our process proceeds in the following steps:

• Convert the rich graphs to their corresponding simple
graphs representations DB REP .

• Mine discriminative subgraphs from DB REP using
the approach in Section V-A.

• Convert mined simple subgraph patterns to its corre-
sponding rich subgraph patterns.

The next sub-section describes our translation process.
A reverse translation process is presented next. We then
analyze some properties of our translation process.

1) Translation Process: A rich graph can have multiple
node and edge labels. Our translation process converts a rich
graph into a simple graph by performing node and edge
replication operations. Each replica only retains one of the
potentially many labels of the original node or edge that it
replicates.

We first introduce the notions of translated simple graph in
Definitions 5.2. In a translated simple graph, the replicas of
the same rich graph’s node (i.e., its siblings) are connected
together with a special edge.

Definition 5.2 (Translated Simple Graph): A trans-
lated simple graph is a simple graph with a special edge
named sibling-replicated edge (SRE). This edge connects
all replicated nodes that are originating from the same node
in the original rich graph.

Nodes and edges are replicated due to two reasons:

1) There are multiple node labels in a node of a rich
graph. This node would be split into multiple simple
graph nodes each with a single label.

2) There are multiple edge labels attached to an edge
of a rich graph. As a simple graph does not allow
for two edges between two nodes, either of the nodes
connected by it would need to be replicated.

We refer to the replicas created due to the first reason as
NL-Replicas. We refer to the ones created due to the latter
reason as EL-Replicas. Our translation process first creates
NL-Replicas. EL-Replicas are constructed next.

Creating NL-Replicas. To create NL-Replicas from a rich
graph, for each node, we split it according to the number
of labels that it has. The edges of the original node are
transferred to each of its replicas. We also add SRE edges
to connect all the nodes originating from the same rich node.
The original rich nodes are then removed from the original
graph. After all NL-Replicas have been created and rich
nodes removed, all nodes in the graph would each have a
single node label. The introduction of new edges ensures
that the structures expressed in the rich graph are preserved
after the introduction of NL-Replicas.

Figure 3 shows the pseudo-code realizing this4. We over-
lay the NL-Replicas on top of the original graph. We create
the NL-Replicas one by one and eliminate the original nodes
and edges step-by-step. Note that the order of which the
nodes are being processed would not affect the NL-Replicas
introduced. If two rich nodes n1 and n2 are connected,
each of the NL-replicas of n1 is connected to all the NL-
replicas of n2 (and vice versa). We illustrate the NL-Replicas
creation process in Figure 4.

Procedure CreateNLReplicas
Inputs:

G = (N,NP , E,EP , L) : A rich graph with
the set of nodes N ,
node placeholders NP , edges E,
edge placeholders EP , and labels L

Output: G with nodes replaced with NL-Replicas
Method:
1: Let Orig N = Shallow copy of N
2: For each n ∈ Orig N
3: Let NSet[] = Create a node array of size |n.Labels|
4: For every ith node in NSet
5: Let NSet[i].Label = n.Labels[i]
6: For every edge e in n.Edges
7: Add an edge with labels e.Labels from NSet[i]

to e.Target
8: Add SREs that connect nodes in NSet to one another
9: Remove n and all edges connected to it from N and E

respectively
10: For every node nnew in NSet[]
11: Add nnew to N
12: Output (N,NP , E,EP , L)

Figure 3. Creation of NL-Replicas

1,2 c 3,4

1 3

2 4

c
c

c
c

Figure 4. NL-Replicas: Illustration. Edges shown in dashed lines are SREs.

Creating EL-Replicas. To create EL-Replicas from a rich
graph, for each edge with multiple labels, we replicate one of
the two nodes (or at most both nodes) connected by it. Given
a node n, connected to a multi-labeled edge e, we create EL-
Replicas, by duplicating the node according to the number
of labels e has. The original node would be connected with
an edge with one of e’s labels. Each of the newly introduced
EL-Replica nodes would be connected with a new edge with
one of the remaining e’s labels. The newly introduced EL-
Replica nodes are connected to the other replica nodes of the
same original rich node by SREs. After all the EL-Replicas
are created, the resultant graph would be a simple translated
graph composed of NL-Replicas (nodes and edges) and EL-
Replicas (nodes and edges).

4We only handle the case where there is no self-loop, which is not
existent in software socio-technical dataset.



Procedure CreateELReplicas
Inputs:

G = (N,NP , E,EP , L) : A graph with NL-Replicas
and rich edges

Output: An equivalent translated simple graph with
NL- & EL-Replicas

Method:
1: Let Orig E = Shallow copy of E
2: For each e ∈ Orig E
3: Let OTR = The node(s) conn. by e to be replicated
4: For every node n of OTR
5: Let NSet = Replicate n, |e.Labels| times
6: For every ith node n′ in NSet
7: Let l be the ith label in e.Labels
8: Add an edge from n′ to e.Target with label l
9: For every node nnew in NSet[]
10: Add nnew to N
11: Remove n and all edges connected to it from N and

E respectively
12: Add SREs that connect nodes in NSet to one another
13: Remove e from E
14: Output (N,E,L)

Figure 5. Creation of EL-Replicas

The remaining ambiguity is which of the two nodes
should be replicated. We use the label of the two nodes to
decide. Due to the creation of NL-Replicas, the nodes would
have single labels. For a multi-labeled edge connecting two
nodes n1 and n2, there are 3 cases5:

1) If n1 .Label < n2 .Label , we would create EL-Replicas
of n1.

2) If n1 .Label > n2 .Label , we would create EL-Replicas
of n2.

3) If n1 .Label = n2 .Label , we would create EL-Replicas
for both n1 and n2.

The above cases are used to ensure that the same EL-
Replicas are introduced no matter which edges are processed
first.

Figure 5 shows the pseudo-code realizing this. We illus-
trate the EL-Replicas creation process in Figure 6.

Given a rich graph g, its translated simple graph is denoted
as TL(g). Also, given a set of rich graphs DB, we denote the
corresponding set of translated simple graphs as TL(DB).
In the implementation, we combine the NL-Replicas and
EL-Replicas creation process so that only one pass through
the nodes in the graph is needed. An end-to-end example of
how a rich graph is translated into a simple translated graph
is shown in Figure 7.

2) Reverse Translation Process: The reverse translation
operation is straightforward. We just need to merge every
nodes connected by SRE together. These nodes map to the
same original rich node. When we merge the nodes we take
the union of their node labels. Due to the merging of the
nodes, two nodes might have more than one edge connecting
them. We would then merge the edges too by again taking

5Any arbitrary total ordering on the labels could be used to decide the
cases.

1 3 
a,b c d 

1 3 
a 

1 
b 

c d 

3 1 
a,b c d 

3 1 
a 

1 

b 

c d 

b 

b 

Case 1 Case 2 

Case 3 

c 
d 

a 

1 

1 1 

c d 

1 
d c 

c a,b 
1 1 

d 

Figure 6. EL-Replicas: Illustration.
 

1 

2 

3 

4 

1 

2 

x 

x 

x 
x 

y 

y 

y 
y 

n1 

n1 

n2 

n2 

n1 

n1 
1,2 3,4 

x,y 

All nodes marked with n1 are 
connected via SREs. Similarly 
with nodes marked with n2. 

Figure 7. Translation Process

the union of their edge labels. Note that as the set union
operation is commutative, associative, and distributive, it
does not matter as to which nodes and edges are merged
first. The reverse translation operation is deterministic, given
one input graph, it would always produce one output graph
no matter what nodes and edges are merged first.

We denote the reverse translation operation by RTL.
Given a translated simple graph g, the corresponding rich
graph after the reverse translation operation is performed is
denoted by RTL(g). Also, given a set of translated simple
graphs DB, we denote the corresponding set of rich graphs
after the reverse translation operations are performed as
RTL(DB).

3) Analysis: Theorem 1 assures the correctness of our
translation process. We start by translating rich graphs to
simple graphs, and then perform mining operation, and
finally reverse translate the mined patterns to rich subgraph
patterns. The whole process is sound and complete. It
is sound as all resultant reverse translated rich subgraphs
are discriminative. It is complete as no discriminative rich
subgraphs are missed due to the translation and reverse
translation processes. Due to space limitation, we move
the proof along with its supporting lemmas and the low
level details of the algorithm in an accompanying technical
report [1].

Theorem 1 (Sound & Complete): All reverse translated
subgraphs mined from TL(DBrich) are discriminative.
Also, all discriminative rich subgraphs could be mined from



TL(DBrich). In other words, the set of discriminative rich
subgraphs is the set:

RTL(DGM(TL(DBrich)))

Next, let’s analyze the size of the resultant translated
graphs. Consider an arbitrary node n. Let e be the edge with
the most labels in n. For this n, at most n.Labels×e.Labels
new nodes are introduced. Thus, the number of nodes in the
new translated graph grows linearly to the maximum number
of labels per node and the maximum number of labels per
edge.

VI. CLASSIFIER CONSTRUCTION AND OUTCOME
PREDICTION

We consider the existence or absence of the discriminative
patterns mined from the training dataset as binary features.
Each of the training and testing data point (which is a
software project), represented by its corresponding socio-
technical graph, is then mapped to a set of binary features
corresponding to the existence or absence of the patterns.
We use LibSVM [4] to learn our classifier based on training
data. This classifier is then used to assign labels to the test
instances, in effect, classifying the project as successful or
failed. We show the pseudocodes of classifier construction
and outcome prediction in Figures 8 & 9.

Procedure ConstructClassifier
Inputs:

GSet : A set of socio-technical graphs from training data
PSet : A set of mined discriminative patterns from GSet

Output: A classifier learned from GSet based on PSet
Method:
1: Let fvSet = {}
2: For each g ∈ GSet
3: Find patterns in PSet that occur in g
4: Let fv = Binary features corresponding to patterns that

occur/absent in g
5: Add fv to fvSet
6: Let Classifier = Learn a classifier from fvSet
7: Output Classifier

Figure 8. Classifier Construction

Procedure PredictOutput
Inputs:

TSet : A set of socio-technical graphs from test data
PSet : A set of mined discriminative patterns from

training data
Classifier : Classifier learned from training data

Output: Labels of instances in TSet
Method:
1: For each g ∈ TSet
2: Find patterns in PSet that occur in g
3: Let fv = Binary features corresponding to patterns that

occur/absent in g
4: Let label = Predict label of fv using Classifier
5: Output label

Figure 9. Output Prediction

VII. EXPERIMENTS

In this section, we describe our experimental settings,
followed by our results.

A. Experimental Settings

We analyze SourceForge.Net, the largest open source soft-
ware development portal. In particular, we use the database
dumps of SourceForge.Net collected by Madey et al. [2].
From February 2005 onwards, Madey et al. collect Source-
Forge.Net database dumps monthly. We take 64 snapshots
which are the dumps for the period starting from February
2005 until May 2010. Each snapshot has many tables and
we focus on those containing the information on the various
projects hosted in SourceForge.Net and the developers that
work on those projects.

We initiate our experiment by extracting projects that have
at least one developer from May 2010 snapshot. There are
in total 227,922 projects with 289,316 registered developers.
We divide the 227,922 projects into three groups: successful
projects, failed projects, and others. We use the number
of downloads to categorize projects. Projects with more
than 100,000 downloads are considered successful. Projects
with less than 100 downloads are considered failed. Projects
with number of downloads between 100 and 100,000 are
considered as belonging to the others group6. Unfortunately,
SourceForge.net database dumps do not contain any accurate
information on the number of downloads. Thus, we crawl
the SourceForge.Net website to obtain the download history
of each project. We find 2,448 projects (1.07% of all May
2010 projects) are categorized as successful, and 140,796
projects (61.77%) are categorized as failed.

We filter out projects with only one developer. From the
2,448 successful projects, 1,859 projects (75.94% of the
successful projects) have more than one developer. Moreover
from the 140,796 failed projects, 28,802 projects (20.46% of
failed projects) have more than one developer. We also filter
projects that exist on February 2005 as for those projects we
could not ascertain the time the contributors join the project7.
After we exclude those projects, we have 224 successful
projects and 3,826 failed projects.

From these projects, we extract the socio-technical graphs
along with the 6 features described in Section IV. To extract
the features, we need to first determine the time when a
developer joins a project. This information is not directly
available from the dump. Fortunately, we have the monthly
snapshots and by contrasting the reported developers in
two consecutive months, we could find the month when a
developer joins a project. For consistency, for all features,
we use month granularity.

Four features: Past Successful Projects (PSP ), Past Failed
Projects (PFP ), Past Successful Collaborations (PSC),

6We exclude this group from our analysis.
7This information is not recorded in SourceForge.Net dumps.



and Past Failed Collaborations (PFC), are obtained by
analyzing the monthly dumps one by one. We need to
compare the month when a developer or a pair of developers
joins a past project with the month when the developer or the
pair of developers joins the current project. If a past project
under comparison is either successful or failed, the counts
of the corresponding features among the four are updated.

Following our definition of Length of Membership
(LOM ), we count the period of time that has passed since
a developer first registered in SourceForge until he joins
the current project. SourceForge database dumps provide the
time when a developer becomes a member of SourceForge.
To compute the feature: Length of Collaboration History
(LCH), we analyze the monthly dumps in chronological
order and for relevant pairs of developers, we find the month
that they first work together in a single project.

At the end of the above process, we have 224 socio-
technical graphs corresponding to successful projects and
3,826 graphs corresponding to failed ones. These socio-
technical graphs are rich graphs with multiple labels in
the nodes and edges. The 224 successful project graphs
have an average size of 3.76 nodes and 5.92 edges. The
maximum number of nodes and edges for the successful
project graphs are 32 nodes and 195 edges respectively. The
3,826 failed project graphs have an average size of 2.86
nodes and 3.98 edges. The maximum number of nodes and
edges for the failed project graphs are 73 nodes and 1,081
edges respectively. We process our graph dataset following
the procedure in Section V and mine rich subgraph patterns
that differentiate successful and failed projects.

We run our translation algorithm on an Intel(R) Xeon(R)
3.17GHz server with 24 GB of RAM running 64-bit Win-
dows Server Standard Edition, Service Pack 2. The algo-
rithm is written in Visual C#.Net. The top-K discriminative
graph mining algorithm (Top-K LEAP) [5] is written in
C++ and is run on a Dell PowerEdge R900 server with
2.67GHz six-core CPU and 8GB main memory running
Linux RedHat.

B. Experimental Results

We first describe the runtime of our approach and the sizes
of the translated graphs. Next, we show the effectiveness of
the mined patterns in predicting project outcome. Finally,
we present our mined patterns.

Runtime & Translated Graph Size. The translation process
for successful projects translates 224 rich graphs in 1.4 s. For
the failed projects, the translation process translates 3,826
rich graphs in 9.7 s. The 224 resultant translated simple
graphs for the successful projects have an average size of
31.54 nodes and 287.25 edges. The 3,826 resultant translated
simple graphs for the failed projects have an average size of
23.93 nodes and 204.68 edges. In terms of the number of
nodes, after translation, the graphs grow by 8.37-8.39 times,

which is less than the number of node labels multiplied by
the number of edge labels (i.e., 3 × 3 = 9). This is in line
with our analysis presented in Section V-B3.

We run Top-K LEAP by Cheng et al. [5] on the translated
simple graphs. It completes within 4 hours to mine 20 most
discriminative graph patterns.

Project Outcome Prediction. We measure the effective-
ness of our approach by classification accuracy and area
under the ROC curve. Classification accuracy, defined as
the percentage of projects correctly classified, is used as one
measure. Due to the skewed class distribution, the measure
AUC which is the area under a ROC curve is also used.
ROC curve shows the trade-off between true positive rate
and false positive rate for a given classifier [7]. A good
classifier would produce a ROC curve as close to the top-left
corner as possible. AUC is a measure of the model accuracy,
in the range of [0, 1.0]. The best possible classifier would
generate an optimal AUC value of 1.0.

We perform 10-fold cross validation, where for each we
keep 1/10 of the data for testing and the other for training.
Under this setting, we are able to predict the labels of
the projects with 94.99% accuracy and 0.86 AUC thus
demonstrating the effectiveness of our proposed approach.

Most Discriminative Patterns. Figure 10 shows the top-20
most discriminative patterns sorted in a descending order of
their discriminative scores. We also show the percentages of
successful and failed projects exhibiting the patterns.

We could note the following from the mined patterns:
1) The most discriminative pattern is the pattern P1:

92.42% of the failed projects follow this pattern,
whereas only 26.34% of the successful projects follow
it. The pattern describes a collaboration including two
contributors where none of them has a successful
project before. The two contributors have also no past
history of successful collaborations. The two develop-
ers are likely to be inexperienced and there is little
positive socio-technical links between the two before
the developers join the current project. Thus, from
the dataset, empirically we observe that the lack of
experience and the weak socio-technical ties between
co-contributors seem to be some factors related to
project failure.

2) More than 40% of the successful projects follow
patterns P2 - P19 (18 patterns) whereas no more than
9% of the failed projects follow them. The patterns
have one thing in common: there is at least 1 developer
with 1 successful past project (PSP ) or there is at
least 1 successful collaboration in the past (PSC).
Fourteen of the patterns (77.78%) specify that there
is at least 1 developer with 1 past successful project
(patterns P4 - P5, P7, and P9 - 19). Moreover, 12
of the 18 patterns (66.67%) show that there is at



# Pattern Successful Projects (%) Failed Projects (%) Score # Pattern Successful Projects (%) Failed Projects (%) Score 1  26.34 92.42 0.0952 11  62.05 4.78 0.0857 2  63.39 4.34 0.0923 12  60.71 4.40 0.0855 3  63.39 4.34 0.0923 13  48.66 4.57 0.0579 4  65.63 5.12 0.0917 14  51.34 5.54 0.0576 5  67.41 5.80 0.0912 15  48.21 4.52 0.0573 6  66.52 5.70 0.0898 16  48.21 4.52 0.0573 7  66.07 5.59 0.0894 17  47.77 4.47 0.0568 8  70.98 8.05 0.0861 18  47.77 4.47 0.0568 9  60.71 4.34 0.0859 19  47.77 4.52 0.0564 10  60.71 4.34 0.0859 20  53.57 95.22 0.0523     

1,x,x x,0,x 1,0,x x,0,x 

 1,x,x  1,0,x 
0,x,x  0,x,x  0,x,x 1,0,x  x,0,x  x,0,x 1,x,x  x,0,x  x,0,x 1,0,x  x,0,x  1,x,x x,0,x  x,0,x  1,x,x 1,x,x  x,0,x  1,x,x 1,0,x  x,0,x  1,0,x 1,x,x  1,0,x  x,0,x 

x,0,x  1,0,x  x,0,x 
1,x,x  1,x,x  1,x,x 1,0,x  1,x,x  1,x,x x,0,x  1,x,x  1,x,x 1,0,x  1,x,x  1,0,x 

 0,x,x x,0,x  1,x,x  1,0,x 1,x,x  1,x,x  1,0,x 

 x,0,x  x,0,x  1,x,x  x,0,x  1,x,x  1,x,x 

a = Number of Past Successful Projects (PSP) b = Number of Past Failed Projects (PFP) c = Length of Membership (LOM)  a,b,c d = Number of Past Successful Collaboration (PSC) e = Number of Past Failed Collaboration (PFC) f = Length of Collaboration History (LCH) d,e,f x denotes “don’t care value”,  the feature could take any value 
Figure 10. Top-20 Discriminative Patterns Mined

least 1 successful collaboration between the developers
(patterns P2 - P4, P7, P9 - 10, P12 - P15, P17, and
P19). This emphasizes that if developers have already
had past successful collaborations, then the current
collaboration would more likely be successful too.

3) The pattern with the highest proportion of successful
projects exhibiting it is P8. It simply states that there is
a contributor with one past successful project. For this
pattern, the proportion of successful projects following
it is almost 9 times more than that of failed projects. It
highlights that a contributor’s past positive experience
is related with the likelihood of project success.

4) On the other hand, the pattern with the highest pro-
portion of failed projects exhibiting it is P20. It is also
a single node pattern. Opposite to P8, P20 represents
a scenario where there is a developer with zero past
successful projects. This seems to show that having
one inexperienced member could lower the chance
of project success. The decrement is not very much
though as the difference between the proportion of
successful projects exhibiting it is not very far from
that of failed projects.

5) There are 2 patterns, i.e., pattern P12 and P13, that
show collaborations between 3 developers. More than
60% of the successful projects follow pattern P12 and
almost 50% of the successful projects follow pattern
P13. However no more than 5% of failed project
follow any of the two patterns. From these two 3-

developer patterns, there are several things in common:
1) there is at least 1 developer with 1 past successful
project, 2) there exists 1 past successful collaboration
between two contributors, and 3) there is at least 1
developer with zero number of unsuccessful projects.
Also, note that pattern P12 extends pattern P4 with
one node. It extends P4 by adding the rightmost node.
Adding a developer with no past experience of failed
project seems to only slightly increase the likelihood
of project success ( 65.635.12 → 60.71

4.40 = 12.82 → 13.78).
6) It is interesting to note that none of top 20 most

discriminative patterns include a concrete value for
LOM (length of membership) and LCH (length of
collaboration history). This result could be due to the
fact that there is a large spread of possible values for
LOM and LCH or that LOM and LCH have less
influence on project success or failure.

Threats to Validity. In this study we have only analyzed
projects in SourceForge.Net. In the future, we could reduce
this threat of external validity by also analyzing projects in
GitHub. In this study, we measure the success of a project
by the number of downloads; other measures of success
could also be employed. We also assume that a developer is
identified by a unique user name and contributes to a project
if he/she is listed in SourceForge.Net as a contributor.

VIII. RELATED WORK

There has been a number of work in software engineering
that leverages social network among developers. One of



the early work is the work by Bird et al. that extracts a
social network from developer email communication [3].
They find that the level of email activity strongly correlates
with the level of activity in the source code. Many recent
studies also show the power of analyzing social network to
predict for failures [15], [11]. This work complements past
studies by recovering discriminative developer collaboration
patterns that differentiate successful and failed projects in a
large super-repository of open-source projects, i.e., Source-
Forge.Net, and utilizing them to predict project outcome.

Lungu et al. propose an approach to visualize a super-
repository [9]. A related visualization study is also per-
formed by Sarma et al. [13]. Surian et al. mine for frequent
patterns of collaborations [14]. We extend their study by
mining for discriminative patterns from a super-repository
containing thousands of diversified projects. Furthermore,
we also extend the study by investigating multiple snapshots
of SourceForge.Net instead of only a single snapshot.

Madey et al. show the power law relationship between
the number of nodes in collaboration clusters and their
frequency in a snapshot of SourceForge.Net [10]. Xu et al.
investigate the small-world phenomenon on a snapshot of
SourceForge.Net [16]. Verner et al. interview software de-
velopers in various countries and identify factors that relate
with project success. Cheng et al. [5] extend the approach
by Yan et al. [17] to mine for top-k most discriminative
graph patterns. Procaccino et al. perform a survey to find
how developers view project success [12]. In this work, we
extend the above studies to mine for discriminative patterns
from rich rather than simple graphs. We also consider a
new problem domain by mining discriminative graphs to
find socio-technical collaboration features that relate to and
could be leveraged to predict project outcome.

IX. CONCLUSION

In this work, we perform a longitudinal study of projects
in SourceForge.Net and detect discriminative graph pat-
terns from developer and their collaboration history that
differentiate successful from failed projects. These socio-
technical patterns form effective features that could be
leveraged to predict project outcome. We take 64 snapshots
of SourceForge collected on the period from February 2005
to May 2010. We extract some socio-technical features from
the 64 snapshots and model them in the form of graphs.
Each project is mapped to a graph which is labeled as
either successful or failed depending on the number of
downloads. We propose a new graph mining problem of
extracting the top-k most discriminative rich graph patterns
from a graph database. To address this problem we built
upon an existing top-k most discriminative simple graph
mining algorithm by proposing a novel translation strategy.
We show that the translation could conserve some properties
that allow for all discriminative patterns to be mined. We
apply our mining solution on the socio-technical graphs from

SourceForge. We show that these patterns could classify
project outcome with an accuracy of over 90% and an AUC
score of 0.86. Additionally, we present and analyze the top-
20 most discriminative patterns that we mine. As a future
work, we plan to consider industrial datasets in addition to
SourceForge.Net data.

Acknowledgement. This research is supported by the Singa-
pore National Research Foundation under its International
Research Centre @ Singapore Funding Initiative and admin-
istered by the IDM Programme Office, and the Hong Kong
Research Grants Council (RGC) General Research Fund
(GRF) Project No. CUHK 411310. We would like to thank
Greg Madey for sharing with us the SourceForge.Net dataset.
This work was done while the first author was with School
of Information Systems, Singapore Management University.

REFERENCES

[1] “Mining rich graphs: A graph transformation approach,”
http://www.mysmu.edu/faculty/davidlo/papers/richgraphtr.pdf.

[2] M. Antwerp and G. Madey, “Advancess in the sourceforge research
data archive (SRDA),” in OSS, 2008.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in MSR, 2006.

[4] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
support vector machines, 2001, software available at
http://www.csie.ntu.edu.tw/∼/cjlin/libsvm.

[5] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in ISSTA, 2009, pp.
141–152.

[6] M. Goeminne and T. Mens, “A comparison of identity merge algo-
rithms for software repositories,” in Science of Computer Program-
ming, 2012.

[7] J. Han and M. Kamber, Data Mining: Concepts and Techniques (2nd
ed.). Morgan Kaufmann, 2006.

[8] E. Kouters, B. Vasilescu, A. Serebrenik, and M. V. D. Brand, “Who’s
who in gnome: using lsa to merge software repository identities,” in
ICSM, 2012.

[9] M. Lungu, M. Lanza, T. Girba, and R. Heeck, “Reverse engineering
super-repositories,” in WCRE, 2007.

[10] G. Madey, V. Freeh, and R. Tynan, “The open source software
development phenomenon: An analysis based on social network
theory,” in AMCIS, 2002.

[11] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer social
networks predict failures?” in FSE, 2008.

[12] J. Procaccino and J. Verner, “Software developers’ views of end-
users and project success,” Commun. ACM, vol. 52, pp. 113–116,
2009.

[13] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in
software development,” in ICSE, 2009.

[14] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE, 2010.

[15] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in ICSE, 2009.

[16] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of
the open source software development community,” in HICSS, 2005.

[17] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph
patterns by scalable leap search,” in SIGMOD, 2008, pp. 433–444.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2013

	Predicting project outcome leveraging socio-technical network patterns
	Didi SURIAN
	Yuan TIAN
	David LO
	Hong CHENG
	Ee Peng LIM
	Citation


	tmp.1488795373.pdf.y2kZs

