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Abstract. Membrane Computing is a branch of Natural Computing
which starts from the assumption that the processes taking place in the
compartmental structure of a living cell can be interpreted as compu-
tations. In this framework, the solution of NP problems is obtained by
generating an exponential amount on workspace in polynomial time and
using parallelism to check simultaneously all the candidates to solution.
We present a solution to the Subset Sum problem for P systems where
new membranes are generated from objects.
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1 Introduction

Membrane Computing is a cross-disciplinary field with contributions by com-
puter scientists, biologists, formal linguists and complexity theoreticians, en-
riching each others with results, open problems and promising new research
lines.

This emergent branch of Natural Computing was introduced by Gh. Păun
in [11]. Since then it has received important attention from the scientific com-
munity. In fact, Membrane Computing has been selected by the Institute for
Scientific Information, USA, as a fast Emerging Research Front in Computer
Science, and [10] was mentioned in [14] as a highly cited paper in October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in
the compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner1.

In this paper we present a contribution to this new discipline from the compu-
tational eficiency point of view. We introduce a family of P systems, constructed

1 A layman-oriented introduction can be found in [12] and further bibliography at
[15].
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in an uniform way, that solves the Subset Sum problem. The search of polyno-
mial solution to NP-complete problems is done by trading time by space: An
exponential amount of membranes (workspace) is built in polynomial time.

Inspired in living cells, P systems abstract the way of obtaining new mem-
branes. These processes are basically two: mitosis (membrane division) and au-
topoiesis (membrane creation). Both ways of generating new membranes have
given rise to different variants of P systems: P systems with active membranes,
where the new workspace is generated by membrane division, and P systems
with membrane creation, where the new membranes are created from objects.

Both models are universal from a computational point of view, but tech-
nically, they are pretty different. In fact, nowadays there does not exist any
theoretical result which proves that these models can simulate each other in
polynomial time.

P systems with active membranes have been successfully used to design solu-
tions to well-known NP-complete problems, as SAT [9], Subset Sum [6], Knap-
sack [7], Bin Packing [8] and Partition [2], but as Gh. Păun pointed in [13]
“membrane division was much more carefully investigated than membrane cre-
ation as a way to obtain tractable solutions to hard problems”. Recently, the first
results related to the power and design of algorithms to solve NP problems in
these model have arisen (see [3, 4]).

The paper is organized as follows: first P systems with membrane creation
are recalled in the next section. In section 3 recognizer P systems (devices that
capture the intuitive idea underlying the concept of algorithm) are presented.
The solution in the framework of membrane creation to the Subset Sum problem
is given in section 4. Finally, some formal details and conclusions are given in
the last sections.

2 P Systems with Membrane Creation

Since Gh. Păun presented the cellular computation with membranes, many dif-
ferent variants have been proposed. If the membrane structure is considered to
set a classification among these different variants, two big groups are obtained:
P systems where the initial structure does not change along computations and
P systems where the tree structure of the membranes vary (or can do it) along
computation. The decrease of the number of membranes is made by applying a
so-called dissolution rule [a]e → b in which the object a inside a membrane with
label e produces the dissolution of the rule, a disappears and a new element b and
the rest of the multiset in the membrane go to its father (more precisely, they
go to the closest non-dissolved ancestor in the membrane hierarchy, since several
membranes can dissolve in the same step). Increasing the number of membranes
are usually made via division of existing ones or creating new ones from objects2

2 Recently, new operations to change the membrane structure have been explored as
merging membranes or the operations of endocytosis, exocytosis or gemmation.



Membranes are created in living cells, for instance, in the process of vesicle
mediated transport and in order to keep molecules close to each other to facilitate
their reactions. Membranes can also be created in a laboratory - see [5]. Here
we abstract the operation of creation of new membranes under the influence
of existing chemical substances to define P systems with membrane creation.
Recall that a P system with membrane creation is a construct of the form Π =
(O,H, µ,w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled (not neces-

sarily in a one-to-one manner) with elements of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of µ;
6. R is a finite set of rules, of the following forms:

(a) [a → v]h where h ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

(b) a[ ]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane possibly modified.

(c) [a]h → [ ]h b where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ H, a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in
the rule can be modified.

(e) [a → [v]h2 ]h1 where h1, h2 ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

Rules are applied according to the following principles:

– Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, that is, in a maximal parallel way. In one step, each object in a
membrane can only be used for one rule (non deterministically chosen when
there are several possibilities), but any object which can evolve by a rule of
any form must do it (with the restrictions below indicated).

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.



– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the rules of type (d) since a membrane can
be dissolved only once.

3 Recognizer P Systems with Membrane Creation

Recognizer P systems were introduced in [7] and are the natural framework to
study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has
to be provided to the P system in order to compute the appropriate answer. This
is done by codifying each instance as a multiset3 placed in an input membrane.
The output of the computation (yes or no) is sent to the environment. In this way,
P systems with input and external output are devices which can be seen as black
boxes, in which the user provides the data before the computation starts and the
P system sends to the environment the output in the last step of the computation.
Another important feature of P systems is the non-determinism. The design of
a family of recognizer P system has to consider it, because all possibilities in the
non-deterministic computations have to output the same answer. This can be
summarized in the following definitions (taken from [1] ).

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (µ,w1, . . . , wiΠ

∪ m, . . . wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no

(but not both) must have been released into the environment, and only in
the last step of the computation. We say that C is an accepting computa-
tion (respectively, rejecting computation) if the object yes (respectively, no)
appears in the external environment associated to the corresponding halting
configuration of C.

3 Representing the data via multiset is inspired in the multiset of chemical compounds
inside living cells.



We denote by MC the class of recognizer P systems with membrane creation.

In the next section we present a solution to the Subset Sum problem in linear
time in the sense of the following definition.

Definition 3. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N in
polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions over the
set of instances IX such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u)).
− the family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most, p(|u|) steps.

− the family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1.

− the family Π is complete with regard to (X, cod, s); that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction and
complement, see [9]. In this paper we will deal with the class MC of recognizer
P systems with membrane creation.

4 Solving Subset Sum in Linear Time with Membrane
Creation

In this section we present a family
∏

of recognizer P systems that solves the
Subset Sum problem in linear time.

The Subset-Sum problem can be settled as follows: Given a finite set, A, a
weight function, w : A → N , and a constant k ∈ N, determine whether or not
there exists a subset B ⊆ A such that w(B) = k. If A has n elements with weights
w1, . . . , wn, one instance of the problem can be encoded as (n, (w1, . . . , wn), k).

As usual in the framework of P systems, the solution of the problem is based
on an algorithm of brute force where an exponential amount of workspace is
built in linear time. The algorithm is split in the following stages:



– Generation stage and weight calculation stage: for every subset of A, a mem-
brane is created. In each working membrane the weight of the associated
subset is calculated.

– Checking stage: in each membrane it is checked whether or not the weight
of its associated subset is exactly k.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer (yes or not) to the environment.

• Working alphabet:

Γ =

⎧
⎨

⎩

e2, . . . en, e+
1 , . . . , e+

n , e−1 , . . . , e−n , c0, c1, k1, k2, k3, t0, . . . , t2n+2k+7,
s, s+, s−, s1, . . . , sn, s+

2 , . . . , s+
n , s−2 , . . . , s−n , d1, . . . , dk+1,

a, p0, p1, p2, p3, q, q0, q1, yes0, yes1, yes, no0, no1, no2, no

⎫
⎬

⎭

• Initial membrane structure: µ = [ ]0
• Set of labels: H = {0, p, n, t, f, r, s, c}
• Initial Multiset: w0 = t0e

+
1 e−1

• Input: sw1
1 . . . swn

n

• The set of evolution rules, R(〈n, k〉), consists of the following rules (recall that
λ denotes the empty string):
1. [e+

j → [ej+1 k0]p]l for l = 0, p, n j = 1, . . . , n − 1
[e−j → [ej+1 k0]n]l for l = 0, p, n j = 1, . . . , n − 1
[ej → e+

j e−j ]l for l = p, n j = 2, . . . , n

[e+
n → [c0]t]l for l = 0, p, n

[e−n → [c0]f ]l for l = 0, p, n

The goal of these rules is to create one membrane for each possible subset of A.
The new membrane with label p, represents the partial subset in which we place
the the sum of the object a1; on the other hand the new membrane with label
n, represents the partial subset in which a1 is not considered.

2. [ki → ki+1]l for l = p, n i = 0, 1, 2
[k3]l → λ for l = p, n
[ti → ti+1]0 for i = 0, . . . , 2n + 2k + 6
[t2n+2k+7 → [no0]c ]0

These rules manage the counters k and t. When a new membrane labelled with p
or n is created, an object k0 is placed inside it. When this counter reaches k3, the
membrane is dissolved in the next stage. The counter t creates a new membrane
with the object no0 after an appropriate number of steps. If this membrane is
not dissolved by an element yes1, the answer no will be sent to the environment.

3. s+
j [ ]p → [sj−1]p for j = 2, . . . , n

s−j [ ]n → [sj−1]n for j = 2, . . . , n

[sj → s+
j s−j ]l for l = 0, p, n j = 2, . . . , n

[s → s+s−]l for l = 0, p, n
s+[ ]l → [s]l for l = p, t
s−[ ]l → [s]l for l = n, f
[s1 → s+]l for l = 0, p, n



These rules manage the weights of the elements and are applied simultaneously
with the rules of the set 1 which create the new workspace. By using the du-
plication of symbols and controlling the labels we can place the weight of each
different subset into a membrane. For that we need an exponential amount of
membranes.
4. [c0 → c1]l for l = t, f

[c1 → d1]l for l = t, f
[s → [ ]s]l for l = t, f
di[ ]s → [di]s for i = 1, . . . , k
[di]s → di+1 for j = 1, . . . , k

For each possible subset of A we have one membrane in which the weight of the
subset is represented in unary form via the object s. With help of these rules
we create as many new membranes labelled by s as objects s there are in the
membrane. If k is greater or equal to the number of objects s it the membrane,
an object dk+1 appears. If not, the computation inside this membrane halts.

5. [dk+1 → a q]l for l = t, f
[a → [p0]r]l for l = t, f
q[ ]s → [q0]s
[pi → pi+1]r for i = 0, 1, 2
[q0]s → q1

q1[ ]r → [q1]r
[q1]r → λ
[p3]r → yes0

As we saw above, if an object dk+1 appears in a membrane, then the weight
of the associated subset is less or equal to k. This set of rules check that both
amounts are the same. If so, an object yes0 is produced in the membrane.

6. [yes0]l → yes1 for l = t, f
yes1[ ]c → [yes1]c
[yes1]c → yes
[yes]0 → yes[ ]0
[noi → noi+1]c for l = 0, 1
[no2]c → no
[no]0 → no[ ]0

There is a counter noi in the membrane labelled with c. If an object yes1 is
obtained from one (or more) of the exponential amount of membranes which
check the subsets of A, this object will stop the counter noi and send the object
yes to the environment. If not, i.e., if in the checking stage none of the membranes
output yes1, the counter noi will not be stopped and an object no will be sent
to the environment.

4.1 An Overview of the Computation

First of all we prepare an input for the instance u = (n, (w1, . . . , wn), k) of
the Subset Sum problem. This instance will be processed by Π(s(u)), being



s(u) =< n, k >= (n+k)(n+k+1)
2 +n. The input is the multiset cod(u) = sw1 . . . swn

and we place it in the unique membrane of the initial configuration of Π(s(u))
and the computation starts.

At the beginning, the counter ti is started from t0 and when it reaches the
object t2n+2k+7 it will create a new membrane with the object no0 inside. If the
process is not stopped, the evolution of that object no0 will send the answer
no to the environment. This process only can be stopped if an object yes0 is
produced in the checking stage, i.e., we will create one membrane for each subset
of the initial set A and check if the whole sum in that subset is equal to k. If this
happens in one membrane, this membrane produces yes1. This object dissolves
the membrane where the counter noi is placed and send the object yes to the
environment.

In the first stage, from each object ej we obtain two copies: e+
j and e−j .

These object create new membranes labelled, respectively, with p and n. Since
the index j vary along the computation, we obtain an exponential amount of
membranes in linear time (it only depends on n).

Simultaneously, the multiset sw1 . . . swn which codifies the input trigger the
appropriate rules to copy the weights in the new membranes. The use of the
labels allow us to handle the flow of elements from one membrane to others and
after 2n steps we have 2n membranes which the appropriate number of objects
s inside. At this point, the checking stage starts.

In this stage, for each membrane we have an object d1 and as many mem-
branes with label s as the weight of the subset associated to the membrane. The
element d1 goes inside one of this membranes, dissolves it and is changed to d2.
This new object d2 does the same: it dissolves a membrane with label s and
changes to d3. If the number of membranes labelled with s is greater or equal to
k, a new object dk+1 is created after 2k steps.

Then we have to check if k is greater of equal to number of membranes
labelled with s. In other words, if there remains any membrane labelled with s
after the apparition of dk+1. This is checked by the rules of the set 5. If there
does not remain any membrane; i.e., if the weight of the subset associated to
this membrane is equal to k an object yes0 is produced. If not, the computation
in this membrane halts.

When the checking stage finish, for each of the 2n checking membranes we
have one of the following cases: The membrane produces yes1 in the skin or the
computation has halted and nothing has been sent to the skin. At this point the
output stage starts.

In the skin we have a membrane labelled by c, produced by the counter ti
when it reached t2n+2k+7, with a counter noi inside. If an element yes1 has
been produced, this means that at least in one of the 2n checking membrane the
weight of the associated subset is equal to k. In this case, the object yes1 goes
inside the membrane with label c, it dissolves it (it stops the counter noi) and
finally the object yes is sent to the environment. If not, the counter noi is not
stopped and in the last step, the object no is sent to the environment.



5 Some Formal Details

In the previous section we have presented a uniform family Π of recognizer P
systems which solves the Subset Sum problem. For each n and k a P system
Π(〈n, k〉) is constructed, where n is the number of elements of the initial set
and k is the constant to be reached. First of all, observe that the evolution rules
of Π(〈n, k〉) are defined in a recursive manner from n and k. The necessary
resources to construct the P system are polynomially bounded by n and k,
therefore a Turing machine can build the P system in polynomial time with
respect to n and k. It can also be proved that the family Π solves the Subset
Sum problem in the sense of definition 3 in section 3. Recall that the input of
Π(< n, k >) is given in a unary representation.

Finally, a formal description of the computation let prove that the P system
always halts and sends to the environment the object yes or no in the last step.
The number of steps of the P system is 2n + 2k + 11 if the output is yes and
2n + 2k + 12 if the output is no, therefore there exists a linear bound for the
number of steps of the computation.

From the above discussion we deduce that Subset Sum belongs to PMCMC ,
therefore since this class is closed under polynomial-time reduction and comple-
ment we have NP ∪ co-NP ⊆ PMCMC .

Recently, we have proved that this variant of P systems with membrane
creation is PSPACE powerful; this result will be published in a forthcoming
paper.

6 Conclusions and Future Work

Membrane Computing is a young branch of Natural Computing which has
reached an important success in its short life. In these years many results have
been presented related to the computational power of membrane devices, but up
to now no implementation in electronic or biochemical media has been carried
out. This paper deals with the study of algorithms to solve well-known prob-
lems and in this sense it is placed between the theoretical results, mainly related
to computational completeness and computational efficiency, and the real im-
plementation of the devices. Moreover this paper represents a new step in the
study of algorithms in the framework of P systems because it exploits membrane
creation (a variant poorly studied) to solve NP-complete problems. The next
steps are, on the one hand, a deeper study of the processes inside living cells
in order to improve the models and make them closer to Biology and, on the
other hand, to go on with theoretical and computational aspects which allow us
to improve the designs and algorithms.
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