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Abstract

Real phenomena from different areas of Life Sciences can be de-
scribed by complex networks, whose structure is usually determining
their intrinsic dynamics. On the other hand, Dynamical Systems The-
ory is a powerful tool for the study of evolution processes in real sit-
uations. The concept of global attractor is the central one in this
theory. In the last decades there has been an intensive research in the
geometrical characterization of global attractors. However, there still
exists a weak connection between the asymptotic dynamics of a com-
plex network and the structure of associated global attractors. In this
paper we show that, in order to analyze the long-time behavior of the
dynamics on a complex network, it is the topological and geometrical
structure of the attractor the subject to take into account. In fact,
given a complex network, a global attractor can be understood as the
new attracting complex network which is really describing and deter-
mining the forwards dynamics of the phenomena. We illustrate our
discussion with models of differential equations related to mutualistic
complex networks in Economy and Ecology.
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1 Introduction

In any real phenomena complexity plays a crucial role, which can be char-
acterized from the following items:

- The reality under study is composed of a set of simpler elements.

- These elements organize a network of connections, building a complex
system.

- The weight of the links between nodes plays an important role.

- An finally, either the elements or the relationships between them evolves
in time, i.e, the network possesses an intrinsic dynamics.
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Figure 1: From topology of the network to its dynamics

The description of real phenomena as complex networks has emerged as
a powerful tool to understand the behavior of models in Life and Social Sci-
ences. In particular, it is observed that there is a strong relation between the
topological structure of the network (described as nodes, links and strength
in connections) and the forwards dynamics of the phenomena.

On the other hand, the theory of Dynamical Systems has a long history
in the Applied Mathematics. Indeed, Dynamical Systems is a very well
suited methodology for modelization as we get

- From a real phenomena, a complex graph.
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- From a graph, a mathematical formulation of each expression, describ-
ing the weight of links and the dynamics of connections.

- The network is then analyzed by a system of (ordinary or partial)
differential equations.

Thus, a possible strong mathematical formalism to study a Complex
Network is to describe it as a Dynamical System. Indeed, the theory of
dynamical systems becomes a powerful tool for the modelization of many
different and important real phenomena for multiple scientific areas. In par-
ticular, the study of compact attracting invariant sets has developed a large
and deep research area, providing essential information for an increasing
number of models from Physics, Biology, Economics, Engineering and oth-
ers. Indeed, the analysis of qualitative properties of semigroups in general
phase spaces (infinite-dimensional Banach spaces or general metric spaces)
has received a lot of attention throughout the last four decades (see, for
instance, [5], [6], [18], [21], [23], [29], [33] or [34]). In this framework, the
global attractor is a very consistent concept describing the long-time behav-
ior of dynamical systems. A global attractor is an invariant compact set
in the phase space determining all the asymptotic dynamics of the system
under consideration. The study of the structure of the global attractor has
received a lot of attention, going to a broad theory related to gradient sys-
tems, Morse Decomposition, Morse-Smale systems or chaotic dynamics in
the attractor (see, for instance, [14, 15, 20, 29]).

Our aim in this paper is to highlight the structure of a global attractor
as a complex network. Indeed, there is a natural relation between a phe-
nomenological complex network and the (even more complex) network given
by the geometrical characterization of the global attractor.
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Figure 2: The dynamics of a complex network associated to a real phenom-
ena, modelled by a system of differential equations, can be characterized
by the global attractor. When available, this attracting complex network
describes all the future scenarios of the phenomena.

For instance, consider the following two dimensional competitive Lotka-
Volterra system describing the interactions between two species which com-
pete for the same resources{

u′(t) = λ1u− β1u2 − γ1uv,
v′(t) = λ2v − β2v2 − γ2vu.

In this model the phenomenological network would be composed just
by two connected nodes. However, the long-time behavior of the system is
determined by the global attractor, one of its possible structures is described
in the picture below:

4



	  

Specie 1

Specie 2
No species Specie a

Specie b

Spec. a

Spec. b

Two Dimensional
Lotka-Volterra System

Network Connections Network inferred by the Dynamics

Figure 3: From the real network to the dynamical complex network given
by the structure of its global attractor

In this work we give mathematical evidence on the fact that is the de-
scription of these attracting complex networks what is really determining
the future scenarios of the real phenomena. Thus, the global attractor,
and the analysis of its structure as a dynamical complex network, emerge
as a key concept to explain how the architecture of reality is transformed
into an abstract attracting network determining the future behavior of the
phenomena.

In Section 2 we describe the main concepts and results related to dynam-
ical systems, the existence of the global attractor and its internal character-
ization. In Section 3 we describe a general model by a system of differential
equations related to mutualistic complex networks associated to Ecological
and Economical phenomena in which cooperation among nodes plays an
essential role. We will describe the geometrical structure of the associated
global attractor. To illustrate the results, in Section 4 we present a simpli-
fied three dimensional (3D) model for which all the ideas of this work can
be highlighted by drawing some graphs and pictures. In a final Section we
write some conclusive remarks and open questions for a further research in
the near future.
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2 Dynamical systems and attractors

Suppose we have a system of ordinary or partial differential equations defined
in a (finite or infinite-dimensional) Banach space X

du

dt
= F (u(t))

u(0) = u0 ∈ X
(1)

with u(t) the unknown at time t ≥ 0 and F : X → X a nonlinear operator
on X. Suppose (1) has existence and uniqueness of solution u(t;u0), for all
t ≥ 0.

A family {T (t) : t > 0} is called a continuous semigroup if

(a) T (0) = IX , with IX being the identity in X,

(b) T (t+ s) = T (t)T (s), for all t, s ∈ R+ and

(c) the map R+ ×X 3 (t, x) 7→ T (t)x ∈ X is continuous.

T (t) on X describes the dynamics of each element u ∈ X. The phase space
X represents the framework in which the dynamics described by T (t) is
developed. In general, T (t)u0 = u(t;u0) is the solution of (1) at time t with
initial condition u0.

2.1 Global attractors

First we recall the definition of a global attractor for a nonlinear semigroup
{T (t) : t > 0} [6, 18, 21, 23, 33].

Definition 1. A set A ⊆ X is a global attractor for {T (t) : t ≥ 0} if it is

(i) compact,

(ii) invariant under {T (t) : t ≥ 0}, i.e. T (t)A = A for all t ≥ 0, and

(iii) attracts bounded subsets of X under {T (t) : t ≥ 0}; that is, for all
B ⊂ X bounded

lim
t→+∞

dist(T (t)B,A) −→ 0

where dist(D,A) := supd∈D infa∈A dist(d, a) is the Hausdorff semidis-
tance between two sets D,A ⊂ X.
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A global solution for a semigroup {T (t) : t ≥ 0} is a continuous function
ξ : R→ X such that T (t)ξ(s) = ξ(t+s) for all s ∈ R and all t ∈ R+. We say
that ξ : R → X is a global solution through z ∈ X if it is a global solution
with ξ(0) = z. The global attractor can be characterized as the collection
of all globally defined bounded solutions:

Lemma 2. If a semigroup T (·) has a global attractor A, then

A = {y ∈ X : there is a bounded global solution ξ : IR→ X with ξ(0) = y}.

It is well known that global attractors for semigroups are unique. For
the existence, we have the following general result (see [13]).

Theorem 3. There exists a global attractor for a semigroup T (·) if and
only if there exists a compact attracting set of bounded sets, i.e., a compact
set K ⊂ X such that dist(T (t)C,K) → 0 as t → +∞, for all C ⊂ X
bounded.

Definition 4. We say that u∗ ∈ X is an equilibrium point (or stationary
solution) for the semigroup T (t) if T (t)u∗ = u∗, for all t ≥ 0.

Definition 5. The unstable set of an invariant set Ξ is defined by

W u(Ξ) = {z ∈ X : there is a global solution ξ : IR→ X for T (t)
satisfying ξ(0) = z and such that limt→−∞ dist(ξ(t),Ξ) = 0}.

2.2 Attracting complex networks

In this section we will describe the geometrical structure of the global at-
tractor.

Definition 6. Let {T (t) : t ≥ 0} be a semigroup on X. We say that an
invariant set E ⊂ X for the semigroup {T (t) : t ≥ 0} is an isolated invariant
set if there is an ε > 0 such that E is the maximal invariant subset in the
neighbourhood Oε(E).

A disjoint family of isolated invariant sets is a family {E1, · · · , En} of
isolated invariant sets with the property that,

Oε(Ei) ∩ Oε(Ej) = ∅, 1 ≤ i < j ≤ n,

for some ε > 0.
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2.2.1 Morse decomposition of a global attractor

Next we introduce the notion of a Morse decomposition for the attractor
A of a semigroup {T (t) : t ≥ 0} (see [15], [25] or [29]). We start with the
notion of an attractor-repeller pair.

Definition 7. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A.
We say that a non-empty subset A of A is a local attractor if there is an
ε > 0 such that ω(Oε(A)) = A, where ω(B) is the ω-limit set of B, defined
as

ω(B) = {x ∈ X : S(tn)xn → x, for some xn ∈ B, tn →∞}.

The repeller A∗ associated with a local attractor A is the set defined by

A∗ := {x ∈ A : ω(x) ∩A = ∅}.

The pair (A,A∗) is called an attractor-repeller pair for {T (t) : t ≥ 0}.

Note that if A is a local attractor, then A∗ is closed and invariant.

Definition 8. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A,
of n + 1 local attractors, for j = 1, · · · , n, define Ej := Aj ∩ A∗j−1. The
ordered n- tuple E := {E1, E2, · · · , En} is called a Morse decomposition for
A.

An equivalent definition of a Morse decomposition for the attractor A of
a semigroup {T (t) : t ≥ 0} can be found at [2].

Definition 9. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A
and E = {E1, E2, · · · , En} is a Morse decomposition of A. We say that the
semigroup is dynamically gradient if for a given global solution ξ : R → A
of {T (t) : t ≥ 0}

i) either ξ(t) ∈ Ei, for all t ∈ R and some i = 1, · · · , n;

ii) or there exist 1 ≤ i < j ≤ n such that Ej
t→−∞← ξ(t)

t→∞→ Ei.

2.2.2 Lyapunov functions

Definition 10. We say that a semigroup {T (t) : t ≥ 0} with a global attrac-
tor A and a disjoint family of isolated invariant sets E = {E1, · · · , En} is
a gradient semigroup with respect to E if there exists a continuous function
V : X → R such that

(i) [0,∞) 3 t 7→ V (T (t)x) ∈ R is non-increasing for each x ∈ X;
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(ii) V is constant in Ei, for each 1 ≤ i ≤ n; and

(iii) V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
n⋃
i=1

Ei.

In this case we call V a Lyapunov functional related to E.

For gradient semigroups, the structure of the global attractor can be
described as follows:

Theorem 11. Let {T (t) : t ≥ 0} a gradient semigroup with respect to the
finite set E := {E1, E2, · · · , En}. If {T (t) : t ≥ 0} has a global attractor A,
then A can be written as the union of the unstable manifolds related to each
set in E, i.e,

A =
n⋃
j=1

W u (Ej) . (2)

Remark 12. When Ej are equilibria u∗j , the attractor is described as the
union of the unstable manifolds associated to them

A =
n⋃
j=1

W u
(
u∗j
)
.

This description shows a geometrical picture of the global attractor, in which
all the stationary points are ordered by connections related to its level of
attraction or stability.

Observe that each node given by a partially feasible equilibrium point
in the attractor represents an attracting complex network in the original
one. Thus, the attractor can be understood as a new complex dynamical
network describing all the possible feasible future networks. It contains all
the abstract information related to future scenarios of the model.

2.2.3 Energy levels

Any Morse decomposition E = {E1, · · · , En} of a compact invariant set A
leads to a partial order among the isolated invariant sets Ei; that is, we can
define an order between two isolated invariant sets Ei and Ej if there is a
chain of global solutions

{ξ`, 1 ≤ ` ≤ r} (3)

with
lim

t→−∞
ξ`(t) = E`
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and
lim
t→∞

ξ`(t) = E`+1

1 ≤ ` ≤ r − 1, with E1 = Ei and Er = Ej .
This implies that, given any dynamically gradient semigroup with re-

spect to the disjoint family of isolated invariant sets E = {E1, · · · , En},
there exists a partial order in E. In Aragao et al. [3] it is shown that
there exists a Morse decomposition given by the so-called energy levels
N = {N1,N2, · · · ,Np}, p ≤ n. Each of the levels Ni, 1 ≤ i ≤ p is made
of a finite union of the isolated invariant sets in E and N is totally ordered
by the dynamics defined in (3). The associated Lyapunov function has dif-
ferent values in any two different level-sets of N and any two elements of E
which are contained in the same element of N (same energy level) are not
connected.

2.2.4 Structural stability: robustness under perturbation

A detailed understanding of the behaviour of isolated invariant sets and
their associated unstable manifolds is one of the key facts used to prove the
characterization of attractors as the union of unstable manifolds. Moreover,
similar properties are used to prove that a gradient system with a finite
number of hyperbolic equilibria (see [18, 19]) can be completely characterized
by the internal dynamics between equilibria: every global solution connects
two different equilibria and there are no homoclinic structures connecting
equilibria (see [11, 13]).

It has been proved in [2] that a semigroup {T (t) : t ≥ 0} is gradient
with respect to E if and only if it is dynamically gradient with respect to
E. Indeed, we have the following result

Theorem 13. Given a disjoint family of isolated invariant sets E = {E1, · · · , En}
for a semigroup T (t), the following three properties are equivalent:

i) T (·) is dynamically gradient;

ii) there exists an associated ordered family of local attractor-repellers;
and

iii) there exists a Lyapunov functional related to E.

Moreover, in [11] (see also [4] and [12]) it is shown that a dynamically
gradient system (then, a gradient one or a system with a Morse decom-
position of its global attractor) is robust under small perturbation of the
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parameters and/or the linear and nonlinear operator in the equations. This
means that the structure of a gradient-like global attractor is robust under
perturbation. Indeed, the results in [11] show dynamically gradient non-
linear semigroups are stable under perturbation, so that we conclude that
gradient semigroups are stable under perturbation as well; that is, the ex-
istence of a continuous Lyapunov function is robust under perturbation of
parameters (see [14] and the references therein).

3 Mutualistic complex networks: real phenomena

In the last decade there has been an intensive interdisciplinary research on
mutualistic complex networks, mainly based on Ecology models (see, for
instance, [1, 7, 8, 9, 10, 22, 24, 28, 30, 32]). The results have also been
applied to complex networks in Economy, in particular to the modellization
of the cooperative interactions between designers and their contractors in the
New York City garment industry. Indeed, this industry is characterized by
a dynamic environment where resource exchanges among firms and survival
depends on mutualistic connections between firms (see [26, 27]).

In general, a mutualistic network implies dozens or even hundreds of
nodes building a complex net of interdependencies. In [26, 27], nodes corre-
spond to an individual designer or contractor firm, and links between nodes
indicate that a designer exchanged money for the contractors production
services. In [7, 8, 9, 10, 28], nodes show density of population of different
species in a particular environment. Mutualism means collaborative interac-
tion between nodes (species) of mutual benefits for both of them. We found
two different set of species (two modes network leading to bipartite graphs):
plant and pollinators, or plant and seed dispersal, or firms of different busi-
ness groups.
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Figure 4: Mutualistic complex network: a bipartite graph; each part (A -
fourteen nodes- and P -twelve nodes) is in competition among its group.
Links represent cooperative interactions between the two groups in the
graph.

One of the main discovers in this framework, it that, despite of its dif-
ferent nature, most of these mutualistic networks show a similar structure.
What is more, a common architecture (similar patter formation), which in
fact explains the robustness of the network [7, 8, 9, 10, 28]. Robustness is
defined as the strength of the net to lose its components under perturba-
tion. This is why these complex networks in Ecology have been defined as
the architecture of Biodiversity ([9]).

The main characteristics of these networks are the following:

a) Distribution degree: measures the distribution of the number of con-
nections. It is observed heterogeneity, in the sense that

i) Most of the species are specialists: they are connected to a small
number of nodes.
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ii) A few species are generalists, they are connected to a huge number
of nodes.

b) Nestedness: show a patron of interdependencies in which a specialist
connects with subsets of the set of connections of a generalist.

c) Asymmetries: The connections between two species have different
weights depending the direction of connection. Specialists of one group
tend to have a strong interaction with generalists of the other group.

The consequence of this network structure is robustness. In particular,
for Ecological systems:

- The nestedness configuration allows alternative routes for the persis-
tence of the system: there exists a low number of intermediate con-
nections to join any two nodes.

- Generalists tend to be very spread and common species, very robust to
changes. This is crucial, as specialists then tend to depend of abundant
species, allowing their coexistence.

- New invasive species tend also to interact with generalist, being then
well integrated to the whole network.

- Asymmetries allows the network to coexist even if a specialist dies.

3.1 The abstract model: dynamical system approach

Bascompte and Jordano [8] (see also [24, 28]), after a description of the
phenomenological properties on mutualistic complex network, introduce the
following model in order to study the forwards dynamics of nodes and rela-
tions in the net.

Suppose that the P nodes of a group (and the A nodes of the other
group) are in competition and P-nodes and A-nodes have cooperative links.

dSpi
dt

= αpiSpi −
P∑
j=1

βpijSpiSpj +

A∑
k=1

γpikSpiSak

1 + hP
∑A

l=1 γpilSal

dSai
dt

= αaiSai −
A∑
j=1

βaijSaiSaj +
P∑
k=1

γaikSaiSpk

1 + hA
∑P

l=1 γailSpl
Spi(0) = Spi0 ,
Sai(0) = Sai0

(4)
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with pi ∈ {p1, . . . , pP }, ai ∈ {a1, . . . , aA}; αpi and αai represent the intrinsic
growth rates, βpij ≥ 0 and βaij ≥ 0 competitive interactions, γpij ≥ 0 and
γaij ≥ 0 the mutualistic interactions, hA ≥ 0 and hP ≥ 0 can be interpreted
as handling times.

With this mathematical model of differential equations, which has an
associated dynamical system {T (t) : t ≥ 0}, we are able to describe all the
main structure properties of the network. Note that the original network is
drawn into the abstract model, given by the positiveness or nulness of the
mutualistic γpij , γaij parameters, related to the associated adjacency matrix
of the network.

From now on, we assume that hA = hP = 0. The following results have
been proved in Guerrero et al. [16]:

Theorem 14. a) Assume that β = min{βpij , βaij} < 1, γ1 = max{γpij},
γ2 = max{γaij} and

γ1γ2 <
1 + β(P − 1)

P

1 + β(A− 1)

A
. (5)

Then, there exists a unique positive solution of (4), for all t > 0.

b) Assume that β = βpij = βaij , γ1 = γpij , γ2 = γaij , α = αpi = αai > 0
for all i, j and

γ1γ2 >
1 + β(P − 1)

P

1 + β(A− 1)

A
. (6)

Then, any positive solution of (4) blows up in finite time.

Furthermore, in order to simplify some of the following calculations, we
consider that the competition and mutualistic matrices are of mean-field
type, that is βpij = β1, βaij = β2, γpij = γ1 and γaij = γ2.

Let n = P + A. Denote by αi = αpi for i = 1, . . . , P and αi = αai for
i = 1, . . . , A. Observe that in this case, (4) can also be written as

dSi
dt

= Si(αi +M ∗ S(t)), i = 1, . . . , n, (7)

for S(t) = (Sp1(t), . . . , SpP (t), Sa1(t), . . . , SaA(t)) := (SP (t), SA(t)), and

M =

[
B1 Γ1

Γ2 B2

]
(P+A)×(P+A)

.
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where, for k = 1, 2,

Bk =


−1 −βk · · · −βk
−βk −1 · · · −βk
...

...
. . .

...
−βk −βk · · · −1


and

Γk =


γk γk · · · γk
γk γk · · · γk
...

...
. . .

...
γk γk · · · γk

 .
As we are interested in positive solutions, we define the positive cone

IRn
+ = {u ∈ IRn : ui ≥ 0, for all i = 1, . . . , n}.

Recall that, given an initial condition (SP0 , SA0) = {(Spi0 , Sai0){i = 1, . . . , n}},
T (t)(SP0 , SA0) = (SP (t), SA(t)) denotes the solution of (4) at time t starting
in (SP0 , SA0) at time 0.

Theorem 15. Suppose (5), then (4) has a global attractor A ⊂ IRn associ-
ated to {T (t) : t ≥ 0}.

Once we know the existence of a global attractor, we can try to describe
it as an attracting complex network. In this sense, the structure of the
attractor becomes the crucial complex network to take into account.

Note that the set of equilibria (stationary points) for (4) is given by
solving the system of equations

Si(αi +M ∗ S) = 0, i = 1, . . . , n.

Denote by E := {E1, E2, · · · , Em} ⊂ IRP+A the set of equilibria related
to (4). Observe that if M is a regular matrix, at most, there is only one
equilibrium with all its components strictly positive, give by the solution
of the linear system α + M ∗ S = 0, where α = (α1, . . . , αn). Any other
equilibria possesses, at least, one null component.

Definition 16. A matrix M ∈ IRn×n is said to be Volterra-Lyapunov stable
if there exists a positive diagonal matrix D > 0 such that DM + M tD is
negative definite, i.e., ut(DM +M tD)u < 0 for all u ∈ IRn.
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Definition 17. We say that an equilibrium u∗ is globally asymptotically
stable in a region D ⊂ IRn if

lim
t→+∞

dist(T (t)u, u∗) = 0, for all u ∈ D.

In [31], the following result is proved:

Theorem 18. Suppose M in (7) is Volterra-Lyapunov stable. Then there
exists a unique globally stable equilibrium in the positive cone IRn

+.

The following result comes from [16], and describes a Morse decomposi-
tion on global attractor for (4)

Theorem 19. Assume (5). Then

a) There exists a Morse decomposition of the global attractor on the pos-
itive cone, with E := {E1, E2, · · · , Em} the set of positive equilibria.

b) The associated dynamical system is gradient with respect to E.

c) Thus, the global attractor can be described by

A =
m⋃
i=1

W u (Ei) . (8)

It is important to observe that each equilibrium is a vector in IRP+A

and that its P + A components correspond to the P + A nodes of the phe-
nomenological complex network. In this sense, it is remarkable that each
of the stationary points is highlighting a subnet of the former complex net-
work. Indeed, the strictly positive components of each equilibrium point out
a subset of nodes and connections of the original network. In particular, the
first local attractor in E, is indeed the complex network of the phenomena
showing the future biodiversity of the Ecological system, or the joint success
(firms which do not dissappear) in an Economical framework.

Note that a) and (8) is not only saying that all the asymptotic behavior
of the system is concentrated around A, but it is describing the way in which
the attraction takes place. In particular, it is not only showing that there
exists a unique globally stable equilibrium in the positive cone IRn

+, but
how this stationary point is connected to any other, building some energy
levels which organize the attraction rates. In summary, all the equilibria
are ordered and oriented connected, i.e., the connections are just in one
direction, determined by the forwards dynamical of the system. In this
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sense, it is the structure of the global attractor which is showing a complex
network with a natural intrinsic dynamics. In fact, as each node of this
attracting network is a subnet of the former network, the global attractor
in this case can be understood as a network of subnetworks of the original
one, which, moreover, is dynamically organized to describe all the possible
future scenarios of the phenomena.

4 A 3D model

To illustrate our ideas, we now develop a simple model from (4) (see [17]),
so that we can make some pictures in order to highlight our previous con-
clusions.

Thus, we consider a model consisting of three differential equations, two
nodes in the first group (u1 and u2) and just another node in the second
group (u3) with cooperative relations with the first ones. We have

u′1 = u1(α1 − u1 − βu2 + γ1u3)
u′2 = u2(α2 − u2 − βu1 + γ1u3)
u′3 = u3(α3 − u3 + γ2u1 + γ2u2),
(u1(0), u2(0), u3(0)) = (u01, u

0
2, u

0
3),

(9)

where α1, α2, α3 ∈ IR, 0 < β < 1, γ1, γ2 > 0 and we suppose positive initial
data.

Assume that

γ1γ2 <
1 + β

2
.

Then, there exists a unique solution for (9), and we can define a semigroup
which possesses a global attractor A ⊂ IR3. Observe that, in this case, the
initial real network is just composed of three nodes, connected as show in
the figure:
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Figure 5: Phenomenological simple network in the 3D case.

For (9), it is easy to show that the eight stationary points

E := {Eijk} , i, j, k = 0, 1,

are given by

E000 = (0, 0, 0), E100 = (α1, 0, 0), E010 = (0, α2, 0), E001 = (0, 0, α3),

E011 =

(
0,
α2 + γ1α3

1− γ1γ2
,
α3 + γ2α2

1− γ1γ2

)
,

E101 =

(
α1 + γ1α3

1− γ1γ2
, 0,

α3 + γ2α1

1− γ1γ2

)
,

E110 =

(
α1 − βα2

1− β2
,
α2 − βα1

1− β2
, 0

)
,

E111 =



α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β)

(1− β)(1 + β − 2γ1γ2)

α1(γ1γ2 − β) + α2(1− γ1γ2) + α3γ1(1− β)

(1− β)(1 + β − 2γ1γ2)

(α1 + α2)γ2 + α3(1 + β)

1 + β − 2γ1γ2



t

.
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4.1 Stability of equilibria

To analyze the stability of these points, we calculate the eigenvalues of the
Jacobian matrix at a stationary point (u1, u2, u3) given by

J(u1, u2, u3) =

 α1−2u1−βu2+γ1u3 −βu1 γ1u1
−βu2 α2−2u2−βu1+γ1u3 γ1u2
γ2u3 γ2u3 α3−2u3+γ2(u1 + u2)

 .

We have the following result (see [17]):

Theorem 20. a) Assume that the three components of E111 are strictly
positive, then E111 is locally stable.

b) When the components of E111 are strictly positive then the semi-trivial
stationary points E011, E101 and E110 are unstable.

c) Assume that E111 exists. Then, it is globally asymptotically stable in
the interior of IR3

+. As a consequence, system (9) is permanent, i.e.,
asymptotically there exists coexistence of the three nodes.

d) The global attractor A ⊂ IR3 is given by

A =
1⋃

i,j,k=0

W u (Eijk) .

This simplified model allows us to describe in detail the dependence of
the associated attracting networks on parameters, showing that, in partic-
ular, to a fix phenomenological network of three species (Figure 5), cor-
responds a bigger and more complex set of possible future configurations
given by different architectures of the global attractor, described from the
equilibria and his oriented connections, as show in the Figure 6.
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Figure 6: Two possible attracting complex networks in the 3D case. Left
network shows the case in which E111 exists and it is asymptotically globally
stable; in this case E111 is the stationary point with the lower energy level.
In the right picture E111 is not present, and the global configuration of the
attracting network changes, now with E011 as the asymptotically globally
stable equilibrium. Other networks could be also reached, depending the
values of the parameters in (9). Observe that all this network of possible
attracting networks correspond to the same phenomenological characteriza-
tion given in Figure 5.

Item d) of Theorem 20 shows that the global attractor is gradient-like. In
fact, as the associated semigroup for (9) is dynamically gradient, the station-
ary points in the global attractor are the Morse sets of an associated Morse
decomposition of it. In particular, we can order the equilibria by energy
levels (given by the associated Lyapunov functional), which describes the
hierarchy on how the long-time dynamics develops with respect to positive
solutions (see Figure 7).
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	   Level	  	   1	   	   	   	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  E111	  
	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	   	   	  

	   	  

	   Level	  	   2	   	   E110	   	   	   E101	   	   	   E011	  
	   	   	   	   	  

	  

	   Level	  	   3	   	   E100	   	   	   E010	   	   	   E001	  
	  

	  

	   Level	  	   4	   	   	   	   	   E000	   	   	   	   	   	   	  

	  

	  	  	  	  	  

	  
Figure 7: Organization of stationary points in the global attractor by Energy
Levels. Upper level shows the minimum energy (given by the Lyapunov
function), attracting every strictly positive solution. Blue arrows shows
the direction of the forwards dynamics. The second level is achieved if
E111 does not exists and any of the E110, E101 or E011 exists. The third
level is only reached if any of the equilibria in upper levels are not present.
E000 = (0, 0, 0) is asymptotically globally stable only if any of the stationary
points in an upper level exist.

5 Conclusions

We now enumerate some conclusions and open problems of the approach we
have developed in this chapter.

a) From a real phenomena we build a complex network of nodes and
connections. To model the dynamics on this complex network we build
a system of ordinary or partial differential equation with an associated
dynamical system.

b) A new complex network appears, described by the structure of the
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global attractor of the dynamical system, which includes dynamics
and dependence on parameters.

c) New mathematically open problems appear:

i) The dependence of the structure of an attractor on parameters
of the system is usually unknown.

ii) In this sense, a theory on Attractor Bifurcation on parameters
would be needed.

iii) It still remains the challenging problem of dynamical complex
networks, i.e., a network with time dependent parameters.
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Continuity of dynamical structures for non-autonomous evolution equa-
tions under singular perturbations. J. Dyn. Diff. Eq. 24, 427-481.

[5] Babin, A.V. & Vishik, M. (1983) Regular attractors of semigroups and
evolution equations. J. Math. Pures Appl. 62, 441–491.

[6] Babin, A.V. & Vishik, M.I. (1992) Attractors of Evolution Equations.
North Holland, Amsterdam.

[7] Bascompte, J., Jordano, P. Melián, C.J., Olesen, J.M. (2003) The
nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad.
Sci. USA 100, 9383-9387.

[8] Bascompte, J., Jordano, P., Olesen, J.M. (2006) Asymmetric coevolu-
tionary networks facilitate biodiversity maintenance. Science 312, 431-
433.

22

https://www.researchgate.net/publication/221841411_Stability_Criteria_for_Complex_Ecosystems?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/221841411_Stability_Criteria_for_Complex_Ecosystems?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/10643246_The_nested_assembly_of_plant-animal_mutualistic_networks?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/10643246_The_nested_assembly_of_plant-animal_mutualistic_networks?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/10643246_The_nested_assembly_of_plant-animal_mutualistic_networks?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/231076423_Stability_of_gradient_semigroups_under_perturbation?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/231076423_Stability_of_gradient_semigroups_under_perturbation?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/231076423_Stability_of_gradient_semigroups_under_perturbation?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/257586631_Continuity_of_Dynamical_Structures_for_Nonautonomous_Evolution_Equations_Under_Singular_Perturbations?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/257586631_Continuity_of_Dynamical_Structures_for_Nonautonomous_Evolution_Equations_Under_Singular_Perturbations?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/257586631_Continuity_of_Dynamical_Structures_for_Nonautonomous_Evolution_Equations_Under_Singular_Perturbations?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/266008267_Regular_attractors_of_semigroups_and_evolution_equation?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/266008267_Regular_attractors_of_semigroups_and_evolution_equation?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/266705115_Continuity_of_Lyapunov_functions_and_of_energy_level_for_a_generalized_gradient_semigroup?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/266705115_Continuity_of_Lyapunov_functions_and_of_energy_level_for_a_generalized_gradient_semigroup?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/266705115_Continuity_of_Lyapunov_functions_and_of_energy_level_for_a_generalized_gradient_semigroup?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/237129465_Attractors_of_evolution_equations_North-Holland?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/237129465_Attractors_of_evolution_equations_North-Holland?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/230881386_Asymmetric_coevolutionary_networks_facilitate_biodiversity_maintenance?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/230881386_Asymmetric_coevolutionary_networks_facilitate_biodiversity_maintenance?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==
https://www.researchgate.net/publication/230881386_Asymmetric_coevolutionary_networks_facilitate_biodiversity_maintenance?el=1_x_8&enrichId=rgreq-845361ce6cfccb335700ba01ba09bedc-XXX&enrichSource=Y292ZXJQYWdlOzMwODEyNDEzMDtBUzo0NDYxNDMwOTMwNTU0ODlAMTQ4MzM4MDIxMDE5NQ==


[9] Bascompte, J., Jordano, P. (2007) The structure of plant-animal mu-
tualistic networks: the architecture of biodiversity. Annu. Rev. Ecol.
Evol. Syst. 38, 567-593.

[10] Bastolla, U., Fortuna, M.A., Pascual-Garćıa, A., Ferrera, A., Luque,
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[16] Guerrero, G., Langa, J.A., Suárez, A. (2015) Architecture of attractor
determines dynamics on mutualistic complex networks, preprint.
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