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Abstract In this paper we analyse an elliptic equation that combines linear
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1 Introduction

In this paper we study the set of positive solutions of the following elliptic
problem with nonlinear diffusion{

−∆(u+ a(x)ur) = λu− bup in Ω,
u = 0 on ∂Ω,
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where Ω is a bounded and smooth domain of IRN , N ≥ 1, λ ∈ IR, b ≥ 0, 0 <
r < 1 < p and a : Ω → [0,∞) is a non-trivial regular function that can vanish
on regions of Ω. Thus, we will denote by

Ωa+ := {x ∈ Ω; a(x) > 0}

and

Ωa0 := Ω \Ωa+.

Once that r < 1, equation (1) provides us with the steady states of a porous
medium equation where diffusion is linear in Ωa0 and fast in Ωa+. Thus, in the
context of population dynamics, Ω represents an habitat, u(x) the density of
the population of a species at x ∈ Ω and −∆(u+a(x)ur) describes the diffusion
of the species, that is, the spacial movement, which is fast in some region of Ω
(Ωa+) and linear (or simple) in other (Ωa0). The function λu − bup is called
logistic reaction term and, from biological point of view, λ the intrinsic rate of
natural increase of the species and b denotes the maximum density supported
locally by resources available, that is, the carrying capacity.

In particular, when a ≡ 0 in Ω (i.e., Ωa0 = Ω), (1) reduces to the classical
linear eigenvalue problem for the Laplacian operator under Dirichlet boundary
conditions in Ω if b = 0 and the classical logistic equation with linear diffusion
if b > 0. Subsequently, for any potential V ∈ L∞(Ω), we shall denote by
λ1[−∆ + V ;Ω] the principal eigenvalue of −∆ + V in Ω under homogeneous
Dirichlet boundary conditions. By simplicity, when V ≡ 0, we will denote

λ1 = λ1[−∆;Ω].

Thus, in the case a = b = 0, according to the classical eigenvalue theory, (1)
possesses a positive solution if, and only, if λ = λ1. Actually, in such case, all
positive solutions are the vector space generated by the principal eigenfunction.
The study of case b > 0 began with works of [6]. In this paper, the authors
proved that there exists a unique positive solution if, and only if, λ > λ1
and this positive solution attracts all the positive solution of the associated
parabolic problem (see also [5], [11]). Hence, since the case a ≡ 0 is well-know,
in this paper we consider only the Ωa0 6= Ω.

When Ωa0 6= ∅, another eigenvalue problem plays an important role on the
existence of positive solutions of (1). Specifically, the problem{

−∆u = λXΩa0u in Ω,
u = 0 on ∂Ω.

(2)

The existence of the principal eigenvalue of this problem is guaranteed by, for
instance, [7] and [10]. Actually, denoting by λa0 the principal eigenvalue of (2),
it is given by the following variational characterization

λa0 = min
ϕ∈H1

0 (Ω)\{0}

‖ϕ‖2
H1

0

|ϕ|2L2(Ωa0)

. (3)
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Fig. 1 Bifurcation diagrams in the case b = 0 for Ωa0 = ∅ and Ωa0 6= ∅, respectively.

This eigenvalue appears in problems that combine other types of nonlinear
diffusion. For instance, [8] the authors analyzed the following problem{

−∆(um(x)) = λu in Ω,
u = 0 on ∂Ω,

(4)

where m is a regular function with m > 1 in a smooth subdomain Ωm of Ω
with Ωm ⊂ Ω and m ≡ 1 in Ω \ Ωm, that is, there exists a zone of linear
diffusion, Ω \ Ωm, and a zone of nonlinear diffusion, Ωm. The authors show
that (4) possesses a positive solutions if, and only if, λ ∈ (0, λm), where λm is
the principal eigenvalue of (2) with Ω \Ωm instead of Ωa0. In fact, λ = 0 is a
bifurcation point from the trivial solution and λm is a bifurcation point from
infinity.

To emphasize the dependence of the parameter λ, we will refer to (1) as
(1)λ. Thus, defining λa0 =∞ if Ωa0 = ∅, our first main result is the following:

Theorem 1 If b = 0 in Ω, then (1)λ possesses a positive solution if, and only
if, λ ∈ (λ1, λa0). Moreover, any family of positive solutions uλ of (1)λ satisfies

lim
λ→λ1

‖uλ‖0 =∞ (5)

and

lim
λ→λa0

‖uλ‖0 = 0 if λa0 <∞. (6)

In Figure 1 we have represented the corresponding bifurcation diagram of
positive solutions of (1)λ with b = 0. For the case b > 0 the bifurcation from
infinity disappears, in fact, we have

Theorem 2 If b > 0, consider

Λb = {λ ∈ IR; (1)λ has a positive solution}.

Then Λb 6= ∅ and denoting by λ∗(b) = inf Λb, we have λ1 < λ∗(b) ≤ λa0.
Moreover,

https://www.researchgate.net/publication/228567982_Combining_Linear_and_Nonlinear_Diffusion?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
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Fig. 2 Possible bifurcation diagrams. From the left to the right, the case Ωa0 = ∅. the case
Ωa0 6= ∅ with subcritical bifurcation and the case Ωa0 6= ∅ with supercritical bifurcation.

(a) If Ωa0 = ∅, then (1)λ possesses a positive solution for all λ ≥ λ∗.
(b) If Ωa0 6= ∅, then λa0 is a bifurcation point of (1) from the trivial solution

and it is the only one for positive solutions. Furthermore, if the direction
of the bifurcation is subcritical (resp. supercritical), then (1)λ possesses a
positive solution for all λ ≥ λ∗ (resp. λ > λ∗).

(c) In the case that λ∗ < λa0, then for each λ ∈ (λ∗, λa0), (1)λ possesses
two ordered positive solutions, that is, wλ and vλ positive solutions of (1)λ
satisfying

wλ < vλ.

Figure 2 shows some admissible situations within the setting of Theorem 2.
We point out that in the case b > 0 we do not have bifurcation from infinity
and if Ωa0 = ∅ we also have not bifurcation from trivial solutions, and to
conclude existence of positive solution we use the sub-supersolution method.
For the case Ωa0 6= ∅, in Proposition 4 we give conditions on p, r, a and b that
provide us the direction of the bifurcation. This result show us an effect of the
interaction between the fast diffusion u+ a(x)ur and the logistic non-linearity
λu − bup. Specifically, if 1/r < p, then bifurcation from trivial solution is
subcritical, while if 1/r > p it is supercritical. In the case 1/r = p, a and b
affect the direction of the bifurcation according to (20) and (21).

The next result gives us more information about the positive solutions with
respect to the parameter b:

Theorem 3 Assume b > 0.

(a) For each λ ≥ λ∗(b), (1) possesses a maximal solution. That is, denoting it
by Wλ(b), then any positive solution, w, of (1) satisfies

w ≤Wλ(b).

Moreover, if λ∗ ≤ µ < λ, then Wµ(b) < Wλ(b).
(b) It holds

λ∗(b)→ λ1 as b→ 0. (7)

(c) We have
lim
b→0
‖Wλ(b)‖0 =∞ ∀λ(b) > λ∗(b). (8)
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Fig. 3 An admissible bifurcation diagram when b > 0 is small, Ωa0 6= ∅ and the bifurcation
is supercritical.

As a consequence, an interesting bifurcation diagram is admissible in case
that b is small and the bifurcation is supercritical. The paragraph (b) of The-
orem 3 gives us that, for b > 0 sufficiently small, λ∗(b) < λa0. Then, if the
bifurcation from the trivial solution is supercritical, the continuum of positive
solutions which emanates from λa0 goes to the right and, on the other hand,
there exists positive solutions for λ ∈ (λ∗(b), λa0). Then, this leads us to a
bifurcation diagram as in Figure 3.

The distribution of this paper is the following: in Section 2 we collect some
useful previous results. Section 3 is dedicated to proof of Theorem 1. Theorems
2 and 3 are proved in Section 4, with the exception of the existence of a second
positive solution, which will be considered in Section 5.

2 Previous results

We will present some basic results that will be used throughout this work.
First, to deal with (1), we introduce the following change of variable

I(x, u) = w = u+ a(x)ur ⇔ u = q(x,w)

getting the following equivalent problem{
−∆w = λq(x,w)− bq(x,w)p in Ω,
w = 0 on ∂Ω.

(9)

Since we are interested in positive solutions of (1)λ, we can define

q(x, s) = 0, ∀x ∈ Ω, s ≤ 0.

Thus, by the Strong Maximal Principle, any non-trivial solution of (1)λ is in
fact strictly positive. Hence u > 0 is a positive solution of (1)λ if, and only
if, w = u + a(x)ur is a positive solution of (9). Therefore, we analyze the
equivalent problem (9). Again, we will refer to (9) as (9)λ.

Let us prove some useful properties of the function q(x, s)
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Lemma 1 1. For each x ∈ Ω, the map s 7→ q(x, s), s ≥ 0 is of class C1.
2. For all x ∈ Ω, the map

s 7→ q(x, s)

s
s ≥ 0,

is non-decreasing and satisfies

XΩa0(x)s ≤ q(x, s) ≤ s ∀x ∈ Ω, (10)

lim
s→0

q(x, s)

s
= XΩa0(x) =

{
0 if a(x) > 0,
1 if a(x) = 0.

(11)

and

lim
s→∞

q(x, s)

s
= 1. (12)

3. For all x ∈ Ω, the map

s 7→ q(x, s)p

s

is increasing and satisfies

lim
s→0

q(x, s)p

s
= 0, (13)

and

lim
s→∞

q(x, s)p

s
= +∞ (14)

Proof 1. Since q(x, ·) is the inverse function of I(x, s) = s+ a(x)sr, we get

q′(x, s) =
1

1 + ra(x)q(x, s)r−1
.

Therefore q′(x, s) is continuous in (0,∞). On the other hand,

lim
s→0+

q′(x, s) = lim
s→0+

1

1 + a(x)rq(x, s)r−1
= XΩa0(x) = q′(x, 0),

showing the continuity at 0.
2. Observe that

I(x, q(x, s)) = s = q(x, s) + a(x)q(x, s)r,

and therefore
q(x, s)

s
=

1

1 + a(x)q(x, s)r−1
, (15)

where we deduce (10). Moreover, since s 7→ q(x, s) is increasing and r < 1,
(15) provides that q(x, s)/s is non-decreasing.
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To calculate the limits (11)–(12), observe that if a(x) = 0 we have q(x, s)/s
= 1 and it is immediate. If a(x) > 0, using

lim
s→0

q(x, s) = 0 and lim
s→∞

q(x, s) =∞,

(15) gives

lim
s→0

q(x, s)

s
= 0 and lim

s→∞

q(x, s)

s
= 1.

3. Analogously, observe that

q(x, s)p

s
=

1

q(x, s)1−p + a(x)q(x, s)r−p
. (16)

By the monotonicity of s 7→ q(x, s) and since r < 1 < p, it follows that
q(x, s)/s is increasing in s, for all x ∈ Ω. Moreover, letting s → 0 and
s→∞ in (16), yields to (13)–(14).

The following function will play a crucial role in our exposition

µ(λ) := λ1[−∆− λXΩa0 ;Ω], λ ∈ IR. (17)

It is well defined because −λXΩa0 ∈ L∞(Ω) for all λ ∈ IR and the next result
provides some properties of this function and that will be useful throughout
the work.

Proposition 1 The function µ defined in (17) is decreasing and possesses a
unique zero, say λa0. Moreover, µ(λ) > 0 if, and only if, λ < λa0. Furthermore,
it satisfies

λ1 < λa0, (18)

and λa0 is the principal eigenvalue of (2).

Proof Observe that, by the monotonicity of λ1[−∆ − λXΩa0 ;Ω] with respect
of the potential, we get

λ1 − λ < µ(λ) < λ1[−∆;Ωa0]− λ,

consequently, µ(λ)→ −∞ as λ→ +∞ and

λ1 − λa0 < µ(λa0) = 0.

Moreover, by [9], µ′(λ) < 0 (see [10] for further details). Therefore, since µ
is a continuous function and µ(0) = λ1[−∆;Ω] > 0, there exists a unique
λa0 ∈ IR, such that µ(λa0) = 0. Furthermore, since µ is decreasing, it follows
that µ(λ) > 0 if, and only if, λ < λa0.

Finally, note that

µ(λa0) = λ1[−∆− λa0XΩa0 ;Ω] = 0

is equivalent to say that λa0 is the principal eigenvalue of (2).

https://www.researchgate.net/publication/247022375_On_Some_Linear_and_Nonlinear_Eigenvalue_Problems_with_Indefinite_Weight_Function?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
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Proof Observe that, by the monotonicity of λ1[−∆ − λXΩa0 ;Ω] with respect
of the potential, we get

λ1 − λ < µ(λ) < λ1[−∆;Ωa0]− λ,
consequently, µ(λ)→ −∞ as λ→ +∞ and

λ1 < µ(0).

Moreover, by [9], µ′(λ) < 0 (see [10] for further details). Therefore, since µ is
a continuous function and µ(0) = λ1 > 0, there exists a unique λa0 ∈ IR, such
that µ(λa0) = 0. Furthermore,

λ1 − λa0 < µ(λa0) = 0

and, since µ is decreasing, it follows that µ(λ) > 0 if, and only if, λ < λa0 and
Finally, note that

µ(λa0) = λ1[−∆− λa0XΩa0 ;Ω] = 0

is equivalent to say that λa0 is the principal eigenvalue of (2).

To end this section, we will study an auxiliary problem that will provide
us the existence of a maximal solution to (9)λ and a priori bound for positive
solutions of (9)λ. Specifically, consider the problem{

−∆w = λw − bq(x,w)p in Ω,
w = 0 on ∂Ω.

(19)

Proposition 2 (19) possesses a positive solution if, and only if λ > λ1. More-
over, it is unique if it exists and we will denote it by θλ and

θµ ≤ θλ if λ1 < µ ≤ λ.
Proof If w > 0 is a solution of (19), then

λ = λ1[−∆+ bq(x,w)p/w;Ω] > λ1[−∆;Ω] = λ1.

Consequently, λ > λ1 is a necessary condition for the existence of positive
solutions. Now, suppose λ > λ1. To prove the existence of positive solution,
observe that (εϕ1,K) is a pair of sub-supersolution of (19) for constants ε > 0
small and K > 0 large.

The uniqueness follows by Theorem 1 of [5], once that

s 7→ λ− bq(x, s)
p

s

is decreasing for all x ∈ Ω. Finally, the monotonicity with respect to λ follows
from the comparison principle.

Corollary 1 For any λ ≥ µ > λ1, any positive solution wµ of (9)µ satisfies

wµ ≤ θµ ≤ θλ.
Proof Just observe that wµ is a subsolution of (19) and K sufficiently large is
a supersolution. Hence, by the uniqueness of solution of (19), necessarily

wµ ≤ θµ ≤ θλ.

https://www.researchgate.net/publication/247022375_On_Some_Linear_and_Nonlinear_Eigenvalue_Problems_with_Indefinite_Weight_Function?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
https://www.researchgate.net/publication/247386595_Remarks_on_sublinear_elliptic_equations?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
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3 Case b = 0.

This section is dedicated to study the case b = 0. To this, we use bifurcation
techniques. Thus, we consider the map Φλ : C0(Ω) −→ C0(Ω) defined by

Φλ(w) = I − (−∆)−1(λq(x,w)),

here (−∆)−1 is the inverse of Laplace operator under homogeneous Dirichlet
boundary condition. Observe that w ∈ C0(Ω) is a positive solution of (9) if,
and only if, Φλ(w) = 0. Denoting by Σ the closure of the set

{(λ,w) ∈ IR× C0(Ω) such that Φλ(w) = 0, w 6= 0},

we get

Proposition 3 Suppose b = 0 in Ω,

1. If there exists a positive solution of (9)λ, then λ ∈ (λ1, λa0).
2. λ1 is the unique bifurcation point from the infinity of positive solutions of

(9)λ. Moreover, there exists a unbounded component Σ∞ ⊂ Σ such that

Σ∞ =

{
(λ,w) with w 6= 0;

(
λ,

w

‖w‖20

)
∈ Σ∞

}
∪ {(λ1, 0)}

is connected and unbounded.

Proof 1. If w > 0 is a solution of (9)λ, we have
[
−∆− λq(x,w)

w

]
w = 0, in Ω,

w = 0, on ∂Ω.

Using (10), we obtain

0 = λ1

[
−∆− λq(x,w)

w
;Ω

]
> λ1[−∆− λ;Ω] = λ1 − λ.

In the case Ωa0 6= ∅, using again (10), we derive that

0 = λ1

[
−∆− λq(x,w)

w
;Ω

]
< λ1[−∆− λXΩa0 ;Ω] = µ(λ).

By the properties of function µ, it follows that λ < λa0.
2. In view of (12) and since f(λ, x, s) := λq(x, s) satisfies f(0, x, s) ≡ 0 for all
x ∈ Ω and s ≥ 0, we can apply the Theorem 3.4 of [3] and get the results.

Proof of Theorem 1:
By Proposition 3 2., λ1 is a bifurcation point of (9)λ from infinity and it is

the only one for positive solutions. In order to prove the existence of solution
for λ ∈ (λ1, λa0), we will consider two cases: Ωa0 = ∅ and Ωa0 6= ∅.

Case Ωa0 = ∅: To conclude the results, it is sufficient to check the following:

https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==
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Claim: for all compact set Λ ⊂ [λ1,∞) there exists ε > 0 such that (9)λ
has no positive solution with (λ,w) ∈ Λ×Bε(0).

Indeed, because the global nature of Σ∞ implies that it is unbounded with
respect to λ and, since (9)λ has no positive solution for λ < λ1 (Proposition
3), the result follows.

Let us prove the claim. Arguing by contradiction, there exists (λn, wn) a
sequence of solutions of (9)λn such that λn ∈ Λ for all n ∈ IN and ‖wn‖0 → 0.
Since Λ is compact, up to subsequence if necessary, we have

(λn, wn)→ (λ∗, 0) in IR× C0(Ω)

From (11) and previous limit we get that for all δ > 0, there exists nδ ∈ IN
such that

q(x,wn)

wn
≤ δ ∀n > nδ.

Thus, since (λn, wn) is a solution of (9)λn , we obtain

0 = λ1

[
−∆− λn

q(x,wn)

wn
;Ω

]
> λ1[−∆− λnδ;Ω] = λ1 − λnδ ∀n > nδ,

that is,
λnδ > λ1.

Letting n → ∞ and thanks to λn → λ∗ < ∞, the above inequality provides
λ1 ≤ λ∗δ, for all δ > 0, which is a contradiction.

Case Ωa0 6= ∅
In view of (11), we can apply Theorem 4.4 of [3] and obtain that λa0 is a

bifurcation point from the trivial solution of positive solutions, and it is the
only one in IR+

0 . Furthermore, there exists an unbounded component Σ0 ⊂ Σ
meeting λa0. Once that these bifurcation points are unique, we get

Σ∞ = Σ0.

As a consequence, by global nature of these continuum, we obtain that there
exist positive solutions for all λ ∈ (λ1, λa0).

4 Case b > 0

In this section we will prove Theorems 2 and 3, except the existence of a second
solution that will be treated in the next section.

First, denoting by ϕa0 the principal positive eigenfunction associated to λa0
with ‖ϕa0‖0 = 1, we have the following result of existence and non-existence
of positive solutions.

Proposition 4 1. If (9)λ possesses a positive solution, then λ > λ1.
2. If Ωa0 6= ∅, then λa0 is a bifurcation point of (9) from the trivial solution

and it is the only one for positive solutions. Furthermore, the bifurcation
is
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(a) Subcritical if 1/r < p.
(b) Subcritical if 1/r = p and∫

Ωa+

ϕp+1
a0

a(x)p
> b

∫
Ωa0

ϕp+1
a0 . (20)

(c) Supercritical if 1/r = p, a(x)−p ∈ L1(Ωa+) and∫
Ωa+

ϕp+1
a0

a(x)p
< b

∫
Ωa0

ϕp+1
a0 . (21)

(d) Supercritical if 1/r > p.
3. There exists λ > λ1 such that (9)λ has a positive solution

Proof The proof of first paragraph is similar to first one of Proposition 3.
Thus, we will prove only 2 and 3.

We prove first the second paragraph. If Ωa0 6= ∅, by (11), we can apply
the Theorem 4.4 of [3] to obtain that λa0 is the only bifurcation point from
the trivial solution. To conclude the direction of bifurcation we will apply the
paragraphs (i) and (ii) of Theorem 4.4 of [3] and argue as follows. Denote

g(λ, x, s) :=
λq(x, s)− bq(x, s)p − λXΩa0(x)s

s1−σ
,

where σ < 0 to be chosen later.

(a) If 1/r < p, we choose σ = 1− 1/r. Thus, in Ωa+ we have

g(λ, x, s) = λ
(q(x, s)r)1/r

(q(x, s) + a(x)q(x, s)r)1/r
− b (q(x, s)pr)1/r

(q(x, s) + a(x)q(x, s)r)1/r

= λ
1

(q(x, s)1−r + a(x))1/r
− b 1

(q(x, s)1−pr + a(x)q(x, s)(1−p)r)1/r

and, therefore,

lim inf
(λ,s)→(λa0,0+)

g(λ, x, s) =
λa0

a(x)1/r
in Ωa+.

On the other hand, in Ωa0 we have

g(λ, x, s) =
λs− bsp − λs

s1/r
= −bsp−1/r,

and, since 1/r < p, we obtain that

lim inf
(λ,s)→(λa0,0+)

g(λ, x, s) = 0 in Ωa0.

Consequently,
µ(x) ≡ lim inf

(λ,s)→(λa0,0+)
g(λ, x, s) ≥ 0

and ∫
Ω

µ(x)ϕ
1/r+1
a0 > 0.

Then, by Theorem 4.4 (i) of [3], the bifurcation of positive solutions at
λ = λa0 is subcritical.
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(b) If 1/r = p, we choose σ = 1− p. Thus, in Ωa+, we have

g(λ, x, s) = λ
1

(q(x, s)1−1/p + a(x))p
− b

(
q(x, s)

s

)p
.

Implying that

µ(x) ≡ lim inf
(λ,s)→(λa0,0+)

g(λ, x, s) =
λa0
a(x)p

in Ωa+.

On the other hand, in Ωa0 we have

g(λ, x, s) =
λs− bsp − λs

sp
= −b.

Consequently,

µ(x) ≡ lim inf
(λ,s)→(λa0,0+)

g(λ, x, s) =


λa0
a(x)p

if x ∈ Ωa+,

−b if x ∈ Ωa0.

Therefore, µ(x) ≥ −b and (20) is equivalent to∫
Ω

µ(x)ϕp+1
a0 > 0.

Thus, by Theorem 4.4 (i) of [3], the bifurcation of positive solutions at
λ = λa0 is subcritical.

(c) Analogously to the previous case, for σ = 1− p we have

µ(x) ≡ lim sup
(λ,s)→(λa0,0+)

g(λ, x, s) =


λa0
a(x)p

if x ∈ Ωa+,

−b if x ∈ Ωa0.

Once that a(x)−p ∈ L1(Ωa+), we get µ ∈ L1(Ω) and since (21) is equivalent
to ∫

Ω

µ(x)ϕp+1
a0 < 0.

Theorem 4.4 (ii) of [3] implies that the bifurcation of positive solutions at
λ = λa0 is supercritical.

(d) If 1/r > p, we choose σ = 1− p. Thus, in Ωa+, we have

g(λ, x, s) = λ
1

(q(x, s)1−1/p + a(x)q(x, s)r−1/p)p
− b

(
q(x, s)

s

)p
and, since 1/r > p,

lim sup
(λ,s)→(λa0,0+)

g(λ, x, s) = 0 in Ωa+.
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On the other hand, in Ωa0 we have

g(λ, x, s) =
λs− bsp − λs

sp
= −b.

Consequently,

µ(x) ≡ lim sup
(λ,s)→(λa0,0+)

g(λ, x, s) = −XΩa0b ∈ L1(Ω)

and ∫
Ω

µ(x)ϕp+1
a0 < 0.

Then, by Theorem 4.4 (ii) of [3], the bifurcation of positive solutions at
λ = λa0 is supercritical.

To prove the third paragraph, note that the case Ωa0 6= ∅ is a immediate
consequence of the second paragraph.

If Ωa0 = ∅, then we can not apply the bifurcation theorem, thus we will
use the method of sub-supersolution to prove the existence of positive solution
for λ > λ1 large.

To build the subsolution, denoting by ϕ1 > 0, the eigenvalue associated to
λ1 with ‖ϕ1‖0 = 1, it satisfies

∆(ϕm1 ) = m(m− 1)ϕm−21 |∇ϕ1|2 +mϕm−11 ∆ϕ1.

= m(m− 1)ϕm−21 |∇ϕ1|2 −mλ1ϕm1 .

Therefore, w = ϕm1 is a subsolution of (9)λ provided that

−∆(ϕm1 ) ≤ λq(x, ϕm1 )− bq(x, ϕm1 )p ∀x ∈ Ω,

once that q(x, ϕm1 ) > 0 for all x ∈ Ω, this inequality is equivalent to

mϕm1
q(x, ϕm1 )

(
(1−m)

|∇ϕ1|2

ϕ2
1

+ λ1

)
+ bq(x, ϕm1 )p−1 ≤ λ ∀x ∈ Ω. (22)

Note that the term bq(x, ϕm1 ) is bounded. Let us show that the remaining
terms are also bounded. Indeed, observe that

(1−m)
|∇ϕ1|2

ϕ2
1

+ λ1 ≤ 0 (23)

provided that (
λ1

m− 1

)1/2

≤ |∇ϕ1|
ϕ1

.

Since ϕ1 = 0 and ∂ϕ1/∂η < 0 in ∂Ω, where η = η(x) denote the outward
normal derivative of ϕ1 in the point x ∈ ∂Ω, we can obtain δ > 0 such that

Ωδ := {x ∈ Ω; d(x, ∂Ω) ≤ δ} ⊂
{x ∈ Ω; (λ1/(m− 1))1/2 ≤ |∇ϕ1(x)|/ϕ1(x)}. (24)
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As a consequence, (23) occurs for all x ∈ Ωδ.
On the other hand, since

M = min
x∈Ω\Ωδ

ϕm1 (x) > 0

and the map s 7→ s/q(x, s) is non-increasing, it follows

ϕm1
q(x, ϕm1 )

≤ M

q(x,M)
∀x ∈ Ω \Ωδ. (25)

Thus, thanks to (23) and (25), we get (22) for λ large enough therefore w = ϕm1
is a subsolution of (9)λ.

Now, let K > 0 a positive constant. Then w = K is a supersolution of
(9)λ, provided that

0 = −∆K ≥ λq(x,K)− bq(x,K)p,

which is equivalent to

q(x,K)p−1 ≥ λ

b
. (26)

Hence, choosing K satisfying (26) and K > ϕm1 , w = K is a supersolution
of (9)λ. Consequently, there exists a positive soution w of (9)λ for λ large,
satisfying

ϕm1 ≤ w ≤ K.

Proof of Theorem 2 (b) and (c): Once that b > 0 is fixed in this theorem, here
we will denote λ∗(b) simply by λ∗.

Thanks to Proposition 4 we already have that Λb 6= ∅ and λ1 ≤ λ∗ < ∞.
With the notation λa0 =∞ if Ωa0 = ∅, we can deal with paragraphs (b) and
(c) simultaneously to show existence of positive solution for λ > λ∗.

Thus, if λ > λ∗, by definition of λ∗, we can get that there exists λ with

λ∗ < λ < λ

such that (9)λ possesses a positive solution, wλ. Since λ < λ, wλ is a subsolu-
tion of (9)λ.

On the other hand, a constant K > 0 large enough satisfying (26) and
K > wλ is a supersolution. Consequently, (9)λ possesses a positive solutions,
for all λ > λ∗.

If Ωa0 6= ∅ and the bifurcation direction at λa0 is subcritical or Ωa0 = ∅, we
need to show existence of positive solution for λ = λ∗. Indeed, in both cases
we have

λ∗ < λa0. (27)

Thus, let σn be a minimizer sequence such that σn ↓ λ∗ and wn a respective
positive solution. Then wn is bounded in C(Ω). Since σ1 > λ1 and σn ≤ σ1,
Corollary 1 gives

wn ≤ θσ1
∀n ∈ IN,
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where θσ1 denote the unique solution of (19) with λ = σ1. Thus, ‖wn‖0 ≤
‖θσ1‖0.

In addition, once that (σn, wn) is a solution of (9)σn , we have∫
Ω

∇wn · ∇φ =

∫
Ω

(σnq(x,wn)− bq(x,wn)p)φ ∀φ ∈ H1
0 (Ω) (28)

Taking φ = wn as a test function and using (10) we derive that

‖wn‖2H1
0

=

∫
Ω

(σnq(x,wn)− bq(x,wn)p)wn

≤ σ1

∫
Ω

q(x,wn)wn ≤ σ1
∫
Ω

w2
n ≤ σ1‖θσ1

‖20|Ω|.

As a consequence, wn is bounded in H1
0 (Ω). Thus, up to a subsequence if

necessary,

wn ⇀ w∗ in H1
0 (Ω) and wn → w∗ in Lm(Ω) m < 2∗.

Passing to the limit n→∞ in (28), it yields∫
Ω

∇w∗ · ∇φ =

∫
Ω

(λ∗q(x,w∗)− bq(x,w∗)p)φ ∀φ ∈ H1
0 (Ω).

Hence w∗ is a weak solution of (9)λ∗ and by the elliptic regularity, we obtain
that w∗ is a classical non-negative solution. We claim that w∗ 6= 0. Indeed,
otherwise by elliptic regularity and the Morrey theorem, we have

‖wn‖C1(Ω) ≤ C,

for some positive constant C. Thus, by the compact embeddeding of C1(Ω)
into C(Ω), up to a subsequence if necessary, we deduce that

‖wn‖0 → 0 .

In view of (11), for all δ > 0, there exists nδ ∈ IN such that

q(x,wn)

wn
−XΩa0(x) ≤ δ ∀n > nδ, x ∈ Ω.

Consequently,

0 = λ1

[
−∆− σn

q(x,wn)

wn
+ b

q(x,wn)p

wn
;Ω

]
> λ1[−∆− σn(δ + XΩa0 ;Ω)]

Taking δ → 0 imply n→∞ and we deduce that

0 ≥ λ1[−∆− λ∗XΩa0 ;Ω] = µ(λ∗).

By the properties of µ (see Proposition 1), the above inequality provides us
that λ∗ ≥ λa0, which is a contradiction with (27).
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To complete the proof, it remains to show that λ1 < λ∗ ≤ λa0. Indeed, If
Ωa0 = ∅ then λa0 = ∞ and λ∗ ≤ λa0 is immediate. If Ωa0 6= ∅ then λa0 is a
bifurcation point from the trivial solution and, by definition of λ∗, it follows
that λ∗ ≤ λa0. In order to prove λ1 < λ, if λ∗ < λa0, then we have already
know, that (9)λ possesses a positive solution for λ = λ∗ and since λ > λ1 is a
necessary condition for the existence, it follows that λ∗ > λ1. If λ∗ = λa0, since
we are considering only the case a 6= 0 in Ω, this implies that λ1 < λa0 = λ∗.

Proof of Theorem 3 (a): Recall that, by Corollary 1, every solution w > 0 of
(9)λ satisfies

w ≤ ‖θλ‖0.

Thus, let us consider the function

f(x, s) := λq(x, s)− bq(x, s)p +Ks.

Since

fs(x, s) = λqs(x, s)− bpq(x, s)p−1qs(x, s) +K ∀s > 0,

and qs(x, s) is bounded for 0 < s < ‖θλ‖0, we can choose K > 0 large enough
such that this function is increasing on [0, ‖θλ‖0]. Thus, the monotonic inter-
action

−∆wn+1 +Kwn+1 = λq(x,wn)− bq(x,wn)p +Kwn, w0 = θλ

provides a maximal solution in [0, θλ]. Once that every positive solution w > 0
satisfies w < θλ, we get the result.

Now, given λ∗(b) ≤ µ < λ, then Wµ is a subsolution of (9)λ. Since K > 0
large enough is a super solution of (9)λ, we derive that (9)λ possesses a positive
solution w with

Wµ < w ≤ K.

The strict inequality occurs because Wµ is not a solution of (9)λ. Once that
Wλ is a maximal solution of (9)λ, we deduce

Wµ < w ≤Wλ.

This completes the proof.

In order to prove (7), we need the following result

Lemma 2 If b1 < b2, then inf Λb1 ≤ inf Λb2 .

Proof Just note that Λb2 ⊂ Λb1 . Indeed, if λ ∈ Λb2 , then wλ(b2) is a subsolution
of (9)λ with b = b1. Choosing K large enough satisfying (26) and K ≥ wλ(b2),
it follows that there exists a positive solution of (9)λ with b = b1. Moreover,

wλ(b2) ≤ wλ(b1).
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Proof of Theorem 3 (b): Fix λ > λ1, we can choose λ = λ1 + ε0, with ε0 > 0.
Let be C > 0 a constant, then w = Cϕm1 is a subsolution of (9)λ if

Cm(1−m)|∇ϕ1|2
ϕm−21

q(x,Cϕm1 )
+ λ1

(
m

Cϕm1
q(x,Cϕm1 )

− 1

)
+bq(x,Cϕm1 )p−1 ≤ ε0, (29)

for all x ∈ Ω. Let us obtain conditions for that (29) is fulfilled in Ωδ as well
as in Ω \Ωδ, where Ωδ is given as in (24).

Firstly, fix m = m(λ) > 1 such that

λ1(m− 1) <
ε0
2

(30)

For this m, we pick δ = δ(m) as in Proposition 4. Observe that δ does not
depend on C.

Now, recall that the map s 7→ q(x, s)/s is increasing and lim
s→∞

q(x, s)/s = 1

(see Lemma 1), therefore

s

q(x, s)
↓ 1 as s→∞

Since
min
Ω\Ωδ

ϕm1 > 0

from (30) and the above limit, we can get C > 0 large such that

λ1

(
m

Cϕm1
q(x,Cϕm1 )

− 1

)
≤ ε0

2
∀x ∈ Ω \Ωδ.

As a consequence, for b > 0 satisfying

bq(x,Cϕm1 )p−1 ≤ ε0
2
∀x ∈ Ω, (31)

we derive that (29) occurs for all x ∈ Ω \Ωδ.
On the other hand, if x ∈ Ωδ we have

m(1−m)|∇ϕ1|2ϕm−21 +mλ1ϕ
m
1 ≤ 0

implying

Cm(1−m)|∇ϕ1|2
ϕm−21

q(x,Cϕm1 )
+mλ1

Cϕm1
q(x,Cϕm1 )

≤ 0.

In view of (31), it follows that (29) also meets in Ωδ and therefore w = Cϕm1
is a subsolution of (9)λ. Taking K satisfying (26) and K ≥ Cϕm1 it is a
supersolution of (9)λ. Hence,

Cϕm1 ≤ w[λ,b] ≤ K. (32)

As a consequence, given ε > 0, there exists bε > 0 such that

λ1 < λ∗(bε) ≤ λ1 + ε.

by Proposition 2, the above inequality is verified for all 0 < b ≤ bε, showing
(7).
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Proposition 5 Let (wλ∗(b))b>0 be a family of positive solutions, then

lim
b→0
‖wλ∗(b)‖0 =∞. (33)

Proof Arguing by contradiction, suppose that ‖wλ∗(b)‖0 ≤M , for each b < b0.
Hence

0 = λ1

[
−∆− λ∗(b)

q(x,wλ∗(b))

wλ∗(b)
+ b

q(x,wλ∗(b))
p

wλ∗(b)
;Ω

]
≥ λ1

[
−λ∗(b)q(x,M)

M
;Ω

]
.

Letting to b→ 0, yields

0 ≥ λ1
[
−∆− λ1

q(x,M)

M
;Ω

]
.

Since Ωa0 6= Ω, then q(x,M)/M < 1 and it imply

0 > λ1[−∆− λ1;Ω] = 0,

which is a contradiction.

As a consequence of this result, we get
Proof of Theorem 3 (c): By Theorem 3 (a), for all b > 0 we have

wλ∗(b) ≤Wλ∗(b) ≤Wλ(b).

Thus, by the Proposition 5, we obtain the result.

5 Multiplicity of positive solutions

This section is dedicated to obtain a second positive solution of (9)λ and for
this propose, we use variational methods. The arguments presented here are
inspired by [1] and [2].

For each λ > λ1, let M > 0 be such that ‖θλ‖0 < M where θλ is stands
for the unique solutions of (19), see Proposition 2. Fix ε > 0, we define

q(x, s) =

 q(x, s) if s ≤M
φ(x, s) if M ≤ s ≤M + ε
q(x,M + ε) if M + ε < s

where φ(x, s) is a regular function such that the map s ∈ (0,∞) 7→ q(x, s) is
of class C1. Defining the functional Iλ : H1

0 (Ω)→ IR given by

Iλ(w) =
1

2
‖w‖2H1

0
− λ

∫
Ω

Q(x,w)dx+ b

∫
Ω

Qp(x,w)dx,
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where

Q(x,w) :=

∫ w

0

q(x, s)ds and Qp(x,w) :=

∫ w

0

q(x, s)pds.

Thus, Iλ is well-defined and of class C2, for all λ > λ1. Moreover, since every
positive solution of (9)λ is bounded from above by M (according to Corollary
1), then critical points of Iλ are weak positive solutions of (9)λ and by elliptic
regularity, are classical solution of (9)λ

Let us collect some properties of this functional.

Proposition 6 The functional Iλ is coercive and bounded from below.

Proof For each w ∈ H1
0 (Ω) we have

Iλ(w) =
1

2
‖w‖2H1

0
− λ

∫
Ω

Q(x,w)dx+ b

∫
Ω

Qp(x,w)dx

=
1

2
‖w‖2H1

0
−
∫
Ω

∫ w

0

(λq(x,w)− bq(x,w)p) dsdx

since the map

s 7→ λs− bsp, s ≥ 0

is bounded above, we can obtain a constant C > 0 such that

λq(x, s)− bq(x, s)p ≤ C, s ≥ 0.

In this way, we get

Iλ(w) ≥ 1

2
‖w‖2H1

0
− C

∫
Ω

wdx ≥ 1

2
‖w‖2H1

0
− C|w|1.

By the continuous embedding H1
0 (Ω) ↪→ L1(Ω) it follows

Iλ(w) ≥ 1

2
‖w‖2H1

0
− C1‖w‖H1

0
.

Showing that Iλ is coercive and bounded below.

Proposition 7 If wn is a sequence in H1
0 (Ω) with Iλ(wn) bounded, then, up

a subsequence if necessary,

wn ⇀ w in H1
0 (Ω)

and

Iλ(w) ≤ lim inf
n→∞

Iλ(wn).

In particular, Iλ attains its infimum on H1
0 (Ω).

coercive



20 Willian Cintra et al.

Proof Thanks to the coercivity of Iλ, the sequence wn is bounded in H1
0 (Ω).

Thus, up to a subsequence if necessary,

wn ⇀ w in H1
0 (Ω)

and

wn → w in Ls(Ω), s ∈ [1, 2∗).

Consequently,

Iλ(w)− Iλ(wn) =
1

2
(‖w‖2H1

0
− ‖wn‖2H1

0
)+∫

Ω

[(λQ(x,wn)− bQp(x,wn))− (λQ(x,w)− bQp(x,w))]dx.

Writing F (x, s) = λQ(x, s)− bQp(x, s), s ≥ 0, we have

Iλ(w)− Iλ(wn) =
1

2
(‖w‖2H1

0
− ‖wn‖2H1

0
) +

∫
Ω

[F (x,wn)− F (x,w)]dx. (34)

By the properties of q,

Fs(x, s) = λq(x, s)− bq(x, s)p

is bounded in Ω × [0,∞). Thus, (34) implies

Iλ(w)− Iλ(wn) =
1

2
(‖w‖2H1

0
− ‖wn‖2H1

0
)+∫

Ω

[∫ 1

0

(λq(x, twn + (1− t)w)− bq(x, twn + (1− t)w)pdt(wn − w)

]
dx

≤ 1

2
(‖w‖2H1

0
− ‖wn‖2H1

0
) + C

∫
Ω

|wn − w|dx

Since wn → w in L1(Ω) and wn ⇀ w in H1
0 (Ω), it follows

Iλ(w)− lim inf
n→∞

Iλ(wn) ≤ 0.

Finally, since Iλ is coercive and bounded below (Proposition 6), we obtain Iλ
attains its infimum on H1

0 (Ω).

In order to apply Theorem II.11.8 of [12], let us prove that Iλ has two
solutions that are local minimum of Iλ in H1

0 (Ω).

Proposition 8 For all λ > λ∗, (9)λ possesses a solution w that is a local
minimum for Iλ in H1

0 (Ω).

Proof By Theorem 3 (a), the maximal solution of (9)λ∗ , Wλ∗ , is a strict sub-
solution of (9)λ for all λ > λ∗. Thus, we obtain a solution vλ for (9)λ via
minimization

Iλ(vλ) = inf{Iλ(w); w ∈ H1
0 (Ω), w(x) ≥Wλ∗}.
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Hence, vλ exists thanks to Propositions 6 and 7 and it defines a solution to
(9)λ.

To verify that it is a minimizer of Iλ in H1
0 (Ω), by [4] it suffices to show

that is a local minimizer in the C1 topology.
Taking K > 0 sufficiently large such that s 7→ λq(x, s)− bq(x, s)p +Ks be

increasing in [0,maxΩ vλ] and since vλ > Wλ∗ , we derive that

−∆(vλ −Wλ∗) +K(vλ −Wλ∗) = (λq(x, vλ)− bq(x, vλ)p +Kvλ)
−(λ∗q(x,Wλ∗)− bq(x,Wλ∗)p +KWλ∗) > 0.

By the Strong Maximum Principle, it follows that vλ−Wλ∗ lies in the interior
of the positive cone of C10(Ω). Hence, there exists ε > 0 such that

Bε(vλ) ⊂ {u ∈ C10(Ω);u ≥Wλ∗},

where Bε(vλ) denote the open ball of radius ε and center vλ in C1 topology.
Since Iλ(vλ) is the minimizer in {u ∈ H1

0 (Ω);u ≥ Wλ∗}, then it is also a
local minimizer in C10(Ω).

The next result gives us a second local minimum of Iλ in H1
0 (Ω).

Proposition 9 If λ < λa0, then the trivial solution w ≡ 0 is a local minimum
of Iλ on H1

0 (Ω) and is an isolated solution of (9)λ.

Proof We will consider two cases:
Case Ωa0 6= ∅
Fix ε = ε(λ) > 0 sufficiently small such that

1− ε λ
λ1
− λ

λa0
> 0.

Then, thanks to the properties of q, we can get C > 0 and 1 < r < 2∗ such
that

q(x, s) ≤ q(x, s) ≤ (ε+ XΩa0(x))s+ Csr ∀(x, s) ∈ Ω × [0,∞).

Consequently,

Iλ(w) ≥ 1

2
‖w‖2H1

0
− λ

2

∫
Ω

(ε+ XΩa0(x))w2 − C

r + 1

∫
Ω

wr+1

≥ 1

2

(
1− ε λ

λ1
− λ

λa0

)
‖w‖2H1

0
− C

λ1(r + 1)
‖w‖r+1

H1
0
.

Therefore, there exists δ > 0 small such that

Iλ(w) ≥ 0 ∀w ∈ H1
0 (Ω), ‖w‖H1

0
≤ δ,

showing that w ≡ 0 is a local minimum of Iλ in H1
0 (Ω).

To prove that 0 is isolated solution of (9) we argue by contradiction. Other-
wise, there would be a sequence of positive solution wn such that ‖wn‖H1

0
→ 0.
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Therefore, we also have ‖wn‖0 → 0. By (11), for all δ > 0, exists nδ ∈ IN such
that

q(x,wn)

wn
−XΩa0 ≤ δ ∀n > nδ, x ∈ Ω.

Consequently,

0 = λ1

[
−∆− λq(x,wn)

wn
+ b

q(x,wn)p

wn
;Ω

]
> λ1[−∆− λ(δ + XΩa0);Ω]

Taking δ → 0 we deduce that

0 ≥ λ1[−∆− λXΩa0 ;Ω] = µ(λ)

By the properties of µ (see Proposition 1), the above inequality provides us
λ ≥ λa0, which is a contradiction.

Case Ωa0 = ∅
Similarly, using q(x, s) ≤ s, we have

Iλ(w) ≥ 1

2
‖w‖2H1

0
− λ

2

∫
Ω

w2

≥ 1

2

(
1− λ

λ1

)
‖w‖2H1

0
.

implying that 0 is a local minimum of Iλ in H1
0 (Ω). Moreover, observing that

XΩa0 ≡ 0, the same arguments of previous case can be applied to conclude
that 0 is an isolated solution of (9).

Recall that, according to Definition II.12.2 in [12], for a convex and closed
set M ⊂ H1

0 (Ω), a function w ∈ H1
0 (Ω) is a critical point of Iλ on M if

g(w) = sup{I ′λ(w)(w − v); v ∈M, ‖v − w‖H1
0
≤ 1} = 0.

Taking

M = {w ∈ H1
0 (Ω); 0 ≤ w(x) ≤ vλ(x)}.

Since w ≡ 0 and vλ are solutions of (9), then a critical point of Iλ in M is
also a critical of Iλ in H1

0 (Ω). Let us show a Palais-Smale condition for the
functional I in M.

Proposition 10 If wn is a sequence in M such that

Iλ(wn)→ c and g(wn)→ 0,

then wn possesses a strongly convergent subsequence in H1
0 (Ω).
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Proof

wn ⇀ w in H1
0 (Ω) and wn(x)→ w(x) a.e. in Ω.

Once that 0 ≤ wn ≤ vλ, we obtain 0 ≤ w ≤ vλ and from Lebesgue’s Dominated
Convergence Theorem we get

∫
Ω

(λq(x,wn)− bq(x,wn)p)(wn − w)dx→ 0.

Therefore,

g(wn)‖wn − w‖H1
0
≥ I ′λ(wn)(wn − w)

=

∫
Ω

∇wn∇(wn − w) + o(1)

=

∫
Ω

|∇(wn − w)|2 + o(1).

Thus,

g(wn) ≥ ‖wn − w‖H1
0

+ o(1).

Passing to the limit n→∞ we deduce that wn → w in H1
0 (Ω).

Finally, we are able to give the

Proof of Theorem 2 (c): Consider again the set

M = {w ∈ H1
0 (Ω); 0 ≤ w(x) ≤ vλ(x)}.

where vλ is a solution that is a local minimum of Iλ on M (according Propo-
sition 8). Once that Iλ satisfies the Palais-Smale condition inM (Proposition
10), we can apply the Theorem II.11.8 of [12] and deduce the following di-
chotomy: either

1. Iλ has a critical point wλ in M which is not a local minimum;
or

2. Iλ(vλ) = Iλ(0) and vλ and 0 may be connected in any neighborhood of the
set of local minimal of Iλ relative toM, each of which satisfying Iλ(w) = 0

But, by Proposition 9, 0 is an isolated among the solution of (9)λ, for all
λ ∈ (λ1, λa0). This excludes the possibility of the paragraph 2. occurs.
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