Noname manuscript No. (will be inserted by the editor)

Combining linear and fast diffusion in a nonlinear elliptic equation

Willian Cintra · Cristian Morales Rodrigo · Antonio Suárez

Received: date / Accepted: date

Abstract In this paper we analyse an elliptic equation that combines linear and nonlinear fast diffusion with a logistic type reaction function. We prove existence and non-existence results of positive solutions using bifurcation theory and sub-supersolution method. Moreover, we apply variational methods to obtain a pair of ordered positive solutions.

Keywords Non-linear diffusion · Bifurcation · Sub-supersolution method · Variational Methods

Mathematics Subject Classification (2000) MSC 35B32 · 35J20 · $35J25 \cdot 35J60$

1 Introduction

In this paper we study the set of positive solutions of the following elliptic problem with nonlinear diffusion

$$
\begin{cases}\n-\Delta(u + a(x)u^r) = \lambda u - bu^p \text{ in } \Omega, \\
u = 0 \qquad \text{on } \partial\Omega,\n\end{cases}
$$
\n(1)

W. Cintra

Universidade Federal do Pará, Faculdade de Matemática CEP: 66705-110 Belm - Pa, Brazil E-mail: willian matematica@hotmail.com

C. Morales-Rodrigo Dpto. de Ecuaciones Diferenciales y Análisis Numérico Fac. de Matemáticas, Univ. de Sevilla Calle Tarfia s/n - Sevilla Spain E-mail: cristianm@us.es

A. Suárez Dpto. de Ecuaciones Diferenciales y Análisis Numérico Fac. de Matemáticas, Univ. de Sevilla Calle Tarfia s/n - Sevilla Spain E-mail: suarez@us.es

where Ω is a bounded and smooth domain of $\mathbb{R}^N, N \geq 1, \lambda \in \mathbb{R}, b \geq 0, 0 <$ $r < 1 < p$ and $a: \Omega \to [0, \infty)$ is a non-trivial regular function that can vanish on regions of Ω . Thus, we will denote by

$$
\Omega_{a+} := \{ x \in \Omega; \ a(x) > 0 \}
$$

and

$$
\Omega_{a0} := \Omega \setminus \Omega_{a+}.
$$

Once that $r < 1$, equation [\(1\)](#page-0-0) provides us with the steady states of a porous medium equation where diffusion is linear in Ω_{a0} and fast in Ω_{a+} . Thus, in the context of population dynamics, Ω represents an habitat, $u(x)$ the density of the population of a species at $x \in \Omega$ and $-\Delta(u+a(x)u^r)$ describes the diffusion of the species, that is, the spacial movement, which is fast in some region of Ω (Ω_{a+}) and linear (or simple) in other (Ω_{a0}) . The function $\lambda u - bu^p$ is called logistic reaction term and, from biological point of view, λ the intrinsic rate of natural increase of the species and b denotes the maximum density supported locally by resources available, that is, the carrying capacity.

In particular, when $a \equiv 0$ in Ω (i.e., $\Omega_{a0} = \Omega$), [\(1\)](#page-0-0) reduces to the classical linear eigenvalue problem for the Laplacian operator under Dirichlet boundary conditions in Ω if $b = 0$ and the classical logistic equation with linear diffusion if $b > 0$. Subsequently, for any potential $V \in L^{\infty}(\Omega)$, we shall denote by $\lambda_1[-\Delta + V; \Omega]$ the principal eigenvalue of $-\Delta + V$ in Ω under homogeneous Dirichlet boundary conditions. By simplicity, when $V \equiv 0$, we will denote

$$
\lambda_1 = \lambda_1[-\Delta; \Omega].
$$

Thus, in the case $a = b = 0$, according to the classical eigenvalue theory, [\(1\)](#page-0-0) possesses a positive solution if, and only, if $\lambda = \lambda_1$. Actually, in such case, all positive solutions are the vector space generated by the principal eigenfunction. The study of case $b > 0$ began with works of [\[6\]](https://www.researchgate.net/publication/243094681_Diffusive_Logistic_Equations_with_Indefinite_Weights_Population_Models_in_Disrupted_Environments_II?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==). In this paper, the authors proved that there exists a unique positive solution if, and only if, $\lambda > \lambda_1$ and this positive solution attracts all the positive solution of the associated parabolic problem (see also [\[5\]](https://www.researchgate.net/publication/247386595_Remarks_on_sublinear_elliptic_equations?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==), [\[11\]](https://www.researchgate.net/publication/284972674_On_the_positive_solutions_of_semilinear_equations_Du_lu_-_hup_0_on_the_compact_manifolds?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)). Hence, since the case $a \equiv 0$ is well-know, in this paper we consider only the $\Omega_{a0} \neq \Omega$.

When $\Omega_{a0} \neq \emptyset$, another eigenvalue problem plays an important role on the existence of positive solutions of [\(1\)](#page-0-0). Specifically, the problem

$$
\begin{cases}\n-\Delta u = \lambda \mathcal{X}_{\Omega_{a0}} u \text{ in } \Omega, \\
u = 0 \qquad \text{on } \partial \Omega.\n\end{cases}
$$
\n(2)

The existence of the principal eigenvalue of this problem is guaranteed by, for instance, [\[7\]](https://www.researchgate.net/publication/226836463_Positive_solutions_of_semilinear_elliptic_problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) and [\[10\]](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==). Actually, denoting by λ_{a0} the principal eigenvalue of [\(2\)](#page-1-0), it is given by the following variational characterization

$$
\lambda_{a0} = \min_{\varphi \in H_0^1(\Omega) \setminus \{0\}} \frac{\|\varphi\|_{H_0^1}^2}{|\varphi|_{L^2(\Omega_{a0})}^2}.
$$
 (3)

Fig. 1 Bifurcation diagrams in the case $b = 0$ for $\Omega_{a0} = \emptyset$ and $\Omega_{a0} \neq \emptyset$, respectively.

This eigenvalue appears in problems that combine other types of nonlinear diffusion. For instance, [\[](https://www.researchgate.net/publication/228567982_Combining_Linear_and_Nonlinear_Diffusion?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)[8](#page-23-5)[\]](https://www.researchgate.net/publication/228567982_Combining_Linear_and_Nonlinear_Diffusion?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) the authors analyzed the following problem

$$
\begin{cases}\n-\Delta(u^{m(x)}) = \lambda u \text{ in } \Omega, \\
u = 0 \qquad \text{on } \partial\Omega,\n\end{cases}
$$
\n(4)

where m is a regular function with $m > 1$ in a smooth subdomain Ω_m of Ω with $\overline{\Omega}_m \subset \Omega$ and $m \equiv 1$ in $\Omega \setminus \Omega_m$, that is, there exists a zone of linear diffusion, $\Omega \setminus \overline{\Omega}_m$, and a zone of nonlinear diffusion, Ω_m . The authors show that [\(4\)](#page-2-0) possesses a positive solutions if, and only if, $\lambda \in (0, \lambda_m)$, where λ_m is the principal eigenvalue of [\(2\)](#page-1-0) with $\Omega \setminus \Omega_m$ instead of Ω_{a0} . In fact, $\lambda = 0$ is a bifurcation point from the trivial solution and λ_m is a bifurcation point from infinity.

To emphasize the dependence of the parameter λ , we will refer to [\(1\)](#page-0-0) as $(1)_{\lambda}$ $(1)_{\lambda}$. Thus, defining $\lambda_{a0} = \infty$ if $\Omega_{a0} = \emptyset$, our first main result is the following:

Theorem 1 If $b = 0$ in Ω , then $(1)_{\lambda}$ $(1)_{\lambda}$ possesses a positive solution if, and only if, $\lambda \in (\lambda_1, \lambda_{a0})$. Moreover, any family of positive solutions u_{λ} of $(1)_{\lambda}$ $(1)_{\lambda}$ satisfies

$$
\lim_{\lambda \to \lambda_1} \|u_{\lambda}\|_0 = \infty \tag{5}
$$

and

$$
\lim_{\lambda \to \lambda_{a0}} \|u_{\lambda}\|_{0} = 0 \quad \text{if } \lambda_{a0} < \infty. \tag{6}
$$

In Figure [1](#page-2-1) we have represented the corresponding bifurcation diagram of positive solutions of (1) _λ with $b = 0$. For the case $b > 0$ the bifurcation from infinity disappears, in fact, we have

Theorem 2 If $b > 0$, consider

 $\Lambda_b = {\lambda \in \mathbb{R}; (1)_{\lambda}}$ $\Lambda_b = {\lambda \in \mathbb{R}; (1)_{\lambda}}$ $\Lambda_b = {\lambda \in \mathbb{R}; (1)_{\lambda}}$ has a positive solution.

Then $\Lambda_b \neq \emptyset$ and denoting by $\lambda^*(b) = \inf \Lambda_b$, we have $\lambda_1 < \lambda^*(b) \leq \lambda_{a0}$. Moreover,

Fig. 2 Possible bifurcation diagrams. From the left to the right, the case $\Omega_{a0} = \emptyset$. the case $\Omega_{a0} \neq \emptyset$ with subcritical bifurcation and the case $\Omega_{a0} \neq \emptyset$ with supercritical bifurcation.

- (a) If $\Omega_{a0} = \emptyset$, then $(1)_{\lambda}$ $(1)_{\lambda}$ possesses a positive solution for all $\lambda \geq \lambda^*$.
- (b) If $\Omega_{a0} \neq \emptyset$, then λ_{a0} is a bifurcation point of [\(1\)](#page-0-0) from the trivial solution and it is the only one for positive solutions. Furthermore, if the direction of the bifurcation is subcritical (resp. supercritical), then (1) _λ possesses a positive solution for all $\lambda \geq \lambda^*$ (resp. $\lambda > \lambda^*$).
- (c) In the case that $\lambda^* < \lambda_{a0}$, then for each $\lambda \in (\lambda^*, \lambda_{a0})$, $(1)_{\lambda}$ $(1)_{\lambda}$ possesses two ordered positive solutions, that is, w_{λ} and v_{λ} positive solutions of $(1)_{\lambda}$ $(1)_{\lambda}$ satisfying

$$
w_{\lambda}
$$

Figure [2](#page-3-0) shows some admissible situations within the setting of Theorem [2.](#page-2-2) We point out that in the case $b > 0$ we do not have bifurcation from infinity and if $\Omega_{a0} = \emptyset$ we also have not bifurcation from trivial solutions, and to conclude existence of positive solution we use the sub-supersolution method. For the case $\Omega_{a0} \neq \emptyset$, in Proposition [4](#page-9-0) we give conditions on p, r, a and b that provide us the direction of the bifurcation. This result show us an effect of the interaction between the fast diffusion $u + a(x)u^r$ and the logistic non-linearity $\lambda u - bu^p$. Specifically, if $1/r < p$, then bifurcation from trivial solution is subcritical, while if $1/r > p$ it is supercritical. In the case $1/r = p$, a and b affect the direction of the bifurcation according to [\(20\)](#page-10-0) and [\(21\)](#page-10-1).

The next result gives us more information about the positive solutions with respect to the parameter b:

Theorem 3 Assume $b > 0$.

(a) For each $\lambda \geq \lambda^*(b)$, [\(1\)](#page-0-0) possesses a maximal solution. That is, denoting it by $W_{\lambda(b)}$, then any positive solution, w, of [\(1\)](#page-0-0) satisfies

$$
w \leq W_{\lambda(b)}.
$$

Moreover, if $\lambda^* \leq \mu < \lambda$, then $W_{\mu(b)} < W_{\lambda(b)}$. (b) It holds

$$
\lambda^*(b) \to \lambda_1 \quad \text{as } b \to 0. \tag{7}
$$

(c) We have

$$
\lim_{b \to 0} ||W_{\lambda(b)}||_0 = \infty \quad \forall \lambda(b) > \lambda^*(b). \tag{8}
$$

Fig. 3 An admissible bifurcation diagram when $b > 0$ is small, $\Omega_{a0} \neq \emptyset$ and the bifurcation is supercritical.

As a consequence, an interesting bifurcation diagram is admissible in case that b is small and the bifurcation is supercritical. The paragraph (b) of The-orem [3](#page-3-1) gives us that, for $b > 0$ sufficiently small, $\lambda^*(b) < \lambda_{a0}$. Then, if the bifurcation from the trivial solution is supercritical, the continuum of positive solutions which emanates from λ_{a0} goes to the right and, on the other hand, there exists positive solutions for $\lambda \in (\lambda^*(b), \lambda_{a0})$. Then, this leads us to a bifurcation diagram as in Figure [3.](#page-4-0)

The distribution of this paper is the following: in Section [2](#page-4-1) we collect some useful previous results. Section [3](#page-8-0) is dedicated to proof of Theorem [1.](#page-2-3) Theorems [2](#page-2-2) and [3](#page-3-1) are proved in Section [4,](#page-9-1) with the exception of the existence of a second positive solution, which will be considered in Section [5.](#page-17-0)

2 Previous results

We will present some basic results that will be used throughout this work. First, to deal with (1) , we introduce the following change of variable

$$
I(x, u) = w = u + a(x)u^r \Leftrightarrow u = q(x, w)
$$

getting the following equivalent problem

$$
\begin{cases}\n-\Delta w = \lambda q(x, w) - bq(x, w)^p \text{ in } \Omega, \\
w = 0 \qquad \text{on } \partial\Omega.\n\end{cases}
$$
\n(9)

Since we are interested in positive solutions of $(1)_{\lambda}$ $(1)_{\lambda}$, we can define

$$
q(x,s) = 0, \quad \forall x \in \Omega, s \le 0.
$$

Thus, by the Strong Maximal Principle, any non-trivial solution of (1) _λ is in fact strictly positive. Hence $u > 0$ is a positive solution of $(1)_{\lambda}$ $(1)_{\lambda}$ if, and only if, $w = u + a(x)u^r$ is a positive solution of [\(9\)](#page-4-2). Therefore, we analyze the equivalent problem [\(9\)](#page-4-2). Again, we will refer to (9) as $(9)_{\lambda}$.

Let us prove some useful properties of the function $q(x, s)$

Lemma 1 1. For each $x \in \Omega$, the map $s \mapsto q(x, s)$, $s \geq 0$ is of class \mathcal{C}^1 . 2. For all $x \in \Omega$, the map

$$
s \mapsto \frac{q(x,s)}{s} \quad s \ge 0,
$$

is non-decreasing and satisfies

$$
\mathcal{X}_{\Omega_{a0}}(x)s \le q(x,s) \le s \quad \forall x \in \Omega,\tag{10}
$$

$$
\lim_{s \to 0} \frac{q(x, s)}{s} = \mathcal{X}_{\Omega_{a0}}(x) = \begin{cases} 0 & \text{if } a(x) > 0, \\ 1 & \text{if } a(x) = 0. \end{cases}
$$
 (11)

and

$$
\lim_{s \to \infty} \frac{q(x, s)}{s} = 1.
$$
\n(12)

3. For all $x \in \Omega$, the map

$$
s\mapsto \frac{q(x,s)^p}{s}
$$

is increasing and satisfies

$$
\lim_{s \to 0} \frac{q(x,s)^p}{s} = 0,\tag{13}
$$

and

$$
\lim_{s \to \infty} \frac{q(x,s)^p}{s} = +\infty \tag{14}
$$

Proof 1. Since $q(x, \cdot)$ is the inverse function of $I(x, s) = s + a(x)s^{r}$, we get

$$
q'(x,s) = \frac{1}{1 + ra(x)q(x,s)^{r-1}}.
$$

Therefore $q'(x, s)$ is continuous in $(0, \infty)$. On the other hand,

$$
\lim_{s \to 0^+} q'(x, s) = \lim_{s \to 0^+} \frac{1}{1 + a(x)rq(x, s)^{r-1}} = \mathcal{X}_{\Omega_{a0}}(x) = q'(x, 0),
$$

showing the continuity at 0.

2. Observe that

$$
I(x, q(x, s)) = s = q(x, s) + a(x)q(x, s)^{r},
$$

and therefore

$$
\frac{q(x,s)}{s} = \frac{1}{1 + a(x)q(x,s)^{r-1}},\tag{15}
$$

where we deduce [\(10\)](#page-5-0). Moreover, since $s \mapsto q(x, s)$ is increasing and $r < 1$, [\(15\)](#page-5-1) provides that $q(x, s)/s$ is non-decreasing.

To calculate the limits [\(11\)](#page-5-2)–[\(12\)](#page-5-3), observe that if $a(x) = 0$ we have $q(x, s)/s$ $= 1$ and it is immediate. If $a(x) > 0$, using

 $\lim_{s \to 0} q(x, s) = 0$ and $\lim_{s \to \infty} q(x, s) = \infty$,

 (15) gives

$$
\lim_{s \to 0} \frac{q(x,s)}{s} = 0 \quad \text{and} \quad \lim_{s \to \infty} \frac{q(x,s)}{s} = 1.
$$

3. Analogously, observe that

$$
\frac{q(x,s)^p}{s} = \frac{1}{q(x,s)^{1-p} + a(x)q(x,s)^{r-p}}.\tag{16}
$$

By the monotonicity of $s \mapsto q(x, s)$ and since $r < 1 < p$, it follows that $q(x, s)/s$ is increasing in s, for all $x \in \Omega$. Moreover, letting $s \to 0$ and $s \to \infty$ in [\(16\)](#page-6-0), yields to [\(13\)](#page-5-4)–[\(14\)](#page-5-5).

The following function will play a crucial role in our exposition

$$
\mu(\lambda) := \lambda_1[-\Delta - \lambda \mathcal{X}_{\Omega_{a0}}; \Omega], \quad \lambda \in \mathbb{R}.
$$
 (17)

It is well defined because $-\lambda \mathcal{X}_{\Omega_{\alpha 0}} \in L^{\infty}(\Omega)$ for all $\lambda \in \mathbb{R}$ and the next result provides some properties of this function and that will be useful throughout the work.

Proposition 1 The function μ defined in [\(17\)](#page-6-1) is decreasing and possesses a unique zero, say λ_{a0} . Moreover, $\mu(\lambda) > 0$ if, and only if, $\lambda < \lambda_{a0}$. Furthermore, it satisfies

$$
\lambda_1 < \lambda_{a0},\tag{18}
$$

and λ_{a0} is the principal eigenvalue of [\(2\)](#page-1-0).

Proof Observe that, by the monotonicity of $\lambda_1[-\Delta - \lambda \mathcal{X}_{\Omega_{a0}}; \Omega]$ with respect of the potential, we get

$$
\lambda_1 - \lambda < \mu(\lambda) < \lambda_1[-\Delta; \Omega_{a0}] - \lambda,
$$

consequently, $\mu(\lambda) \to -\infty$ as $\lambda \to +\infty$ and

$$
\lambda_1 - \lambda_{a0} < \mu(\lambda_{a0}) = 0.
$$

Moreover, by $[9]$, $\mu'(\lambda) < 0$ (see [\[10\]](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) for further details). Therefore, since μ is a continuous function and $\mu(0) = \lambda_1[-\Delta; \Omega] > 0$, there exists a unique $\lambda_{a0} \in \mathbb{R}$, such that $\mu(\lambda_{a0}) = 0$. Furthermore, since μ is decreasing, it follows that $\mu(\lambda) > 0$ if, and only if, $\lambda < \lambda_{a0}$.

Finally, note that

$$
\mu(\lambda_{a0}) = \lambda_1[-\Delta - \lambda_{a0} \mathcal{X}_{\Omega_{a0}}; \Omega] = 0
$$

is equivalent to say that λ_{a0} is the principal eigenvalue of [\(2\)](#page-1-0).

Proof Observe that, by the monotonicity of $\lambda_1[-\Delta - \lambda \mathcal{X}_{\Omega_{a0}}; \Omega]$ with respect of the potential, we get

$$
\lambda_1 - \lambda < \mu(\lambda) < \lambda_1[-\Delta; \Omega_{a0}] - \lambda,
$$

consequently, $\mu(\lambda) \rightarrow -\infty$ as $\lambda \rightarrow +\infty$ and

$$
\lambda_1<\mu(0).
$$

Moreover, by $[9]$, $\mu'(\lambda) < 0$ (see [\[10\]](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) for further details). Therefore, since μ is a continuous function and $\mu(0) = \lambda_1 > 0$, there exists a unique $\lambda_{a0} \in \mathbb{R}$, such that $\mu(\lambda_{a0}) = 0$. Furthermore,

$$
\lambda_1 - \lambda_{a0} < \mu(\lambda_{a0}) = 0
$$

and, since μ is decreasing, it follows that $\mu(\lambda) > 0$ if, and only if, $\lambda < \lambda_{a0}$ and Finally, note that

$$
\mu(\lambda_{a0}) = \lambda_1[-\Delta - \lambda_{a0} \mathcal{X}_{\Omega_{a0}}; \Omega] = 0
$$

is equivalent to say that λ_{a0} is the principal eigenvalue of [\(2\)](#page-1-0).

To end this section, we will study an auxiliary problem that will provide us the existence of a maximal solution to (9) _λ and a priori bound for positive solutions of (9) _λ. Specifically, consider the problem

$$
\begin{cases}\n-\Delta w = \lambda w - bq(x, w)^p \text{ in } \Omega, \\
w = 0 \qquad \text{on } \partial\Omega.\n\end{cases}
$$
\n(19)

Proposition 2 [\(19\)](#page-7-0) possesses a positive solution if, and only if $\lambda > \lambda_1$. Moreover, it is unique if it exists and we will denote it by θ_{λ} and

$$
\theta_{\mu} \le \theta_{\lambda} \quad \text{if } \lambda_1 < \mu \le \lambda.
$$

Proof If $w > 0$ is a solution of (19) , then

$$
\lambda = \lambda_1[-\Delta + bq(x, w)^p/w; \Omega] > \lambda_1[-\Delta; \Omega] = \lambda_1.
$$

Consequently, $\lambda > \lambda_1$ is a necessary condition for the existence of positive solutions. Now, suppose $\lambda > \lambda_1$. To prove the existence of positive solution, observe that $(\varepsilon\varphi_1, K)$ is a pair of sub-supersolution of [\(19\)](#page-7-0) for constants $\varepsilon > 0$ small and $K > 0$ large.

The uniqueness follows by Theorem 1 of [\[5\]](https://www.researchgate.net/publication/247386595_Remarks_on_sublinear_elliptic_equations?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==), once that

$$
s\mapsto \lambda - b \frac{q(x,s)^p}{s}
$$

is decreasing for all $x \in \Omega$. Finally, the monotonicity with respect to λ follows from the comparison principle.

Corollary 1 For any $\lambda \geq \mu > \lambda_1$, any positive solution w_{μ} of $(9)_{\mu}$ $(9)_{\mu}$ satisfies

$$
w_{\mu} \le \theta_{\mu} \le \theta_{\lambda}.
$$

Proof Just observe that w_{μ} is a subsolution of [\(19\)](#page-7-0) and K sufficiently large is a supersolution. Hence, by the uniqueness of solution of [\(19\)](#page-7-0), necessarily

$$
w_{\mu} \le \theta_{\mu} \le \theta_{\lambda}.
$$

3 Case $b = 0$.

This section is dedicated to study the case $b = 0$. To this, we use bifurcation techniques. Thus, we consider the map $\Phi_{\lambda}: \mathcal{C}_0(\overline{\Omega}) \longrightarrow \mathcal{C}_0(\overline{\Omega})$ defined by

$$
\Phi_{\lambda}(w) = I - (-\Delta)^{-1} (\lambda q(x, w)),
$$

here $(-\Delta)^{-1}$ is the inverse of Laplace operator under homogeneous Dirichlet boundary condition. Observe that $w \in C_0(\overline{\Omega})$ is a positive solution of [\(9\)](#page-4-2) if, and only if, $\Phi_{\lambda}(w) = 0$. Denoting by Σ the closure of the set

$$
\{(\lambda, w) \in \mathbb{R} \times C_0(\overline{\Omega}) \text{ such that } \Phi_{\lambda}(w) = 0, w \neq 0\},\
$$

we get

Proposition 3 Suppose $b = 0$ in Ω ,

- 1. If there exists a positive solution of $(9)_{\lambda}$ $(9)_{\lambda}$, then $\lambda \in (\lambda_1, \lambda_{a0})$.
- 2. λ_1 is the unique bifurcation point from the infinity of positive solutions of (9) λ. Moreover, there exists a unbounded component $\Sigma_{\infty} \subset \Sigma$ such that

$$
\overline{\Sigma}_{\infty} = \left\{ (\lambda, w) \text{ with } w \neq 0; \ \left(\lambda, \frac{w}{\|w\|_0^2} \right) \in \Sigma_{\infty} \right\} \cup \{ (\lambda_1, 0) \}
$$

is connected and unbounded.

Proof 1. If $w > 0$ is a solution of $(9)_{\lambda}$ $(9)_{\lambda}$, we have

$$
\left\{ \left[-\Delta - \lambda \frac{q(x, w)}{w} \right] w = 0, \text{ in } \Omega, \right.
$$

 $w = 0, \qquad \text{on } \partial \Omega.$

Using (10) , we obtain

$$
0 = \lambda_1 \left[-\Delta - \lambda \frac{q(x, w)}{w}; \Omega \right] > \lambda_1 [-\Delta - \lambda; \Omega] = \lambda_1 - \lambda.
$$

In the case $\Omega_{a0} \neq \emptyset$, using again [\(10\)](#page-5-0), we derive that

$$
0 = \lambda_1 \left[-\Delta - \lambda \frac{q(x, w)}{w}; \Omega \right] < \lambda_1 [-\Delta - \lambda \mathcal{X}_{\Omega_{a0}}; \Omega] = \mu(\lambda).
$$

By the properties of function μ , it follows that $\lambda < \lambda_{a0}$.

2. In view of [\(12\)](#page-5-3) and since $f(\lambda, x, s) := \lambda g(x, s)$ satisfies $f(0, x, s) \equiv 0$ for all $x \in \Omega$ and $s \geq 0$, we can apply the Theorem 3.4 of [\[](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)[3](#page-23-7)[\]](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) and get the results.

Proof of Theorem [1:](#page-2-3)

By Proposition [3](#page-8-1) 2., λ_1 is a bifurcation point of (9) _λ from infinity and it is the only one for positive solutions. In order to prove the existence of solution for $\lambda \in (\lambda_1, \lambda_{a0})$, we will consider two cases: $\Omega_{a0} = \emptyset$ and $\Omega_{a0} \neq \emptyset$.

Case $\Omega_{a0} = \emptyset$: To conclude the results, it is sufficient to check the following:

Claim: for all compact set $\Lambda \subset [\lambda_1, \infty)$ there exists $\varepsilon > 0$ such that $(9)_{\lambda}$ $(9)_{\lambda}$ has no positive solution with $(\lambda, w) \in A \times B_{\varepsilon}(0)$.

Indeed, because the global nature of Σ_{∞} implies that it is unbounded with respect to λ and, since $(9)_{\lambda}$ $(9)_{\lambda}$ has no positive solution for $\lambda < \lambda_1$ (Proposition [3\)](#page-8-1), the result follows.

Let us prove the claim. Arguing by contradiction, there exists (λ_n, w_n) a sequence of solutions of $(9)_{\lambda_n}$ $(9)_{\lambda_n}$ such that $\lambda_n \in \Lambda$ for all $n \in \mathbb{N}$ and $||w_n||_0 \to 0$. Since Λ is compact, up to subsequence if necessary, we have

$$
(\lambda_n, w_n) \to (\lambda^*, 0) \quad \text{in } \mathbb{R} \times C_0(\overline{\Omega})
$$

From [\(11\)](#page-5-2) and previous limit we get that for all $\delta > 0$, there exists $n_{\delta} \in \mathbb{N}$ such that

$$
\frac{q(x, w_n)}{w_n} \le \delta \quad \forall n > n_\delta.
$$

Thus, since (λ_n, w_n) is a solution of $(9)_{\lambda_n}$ $(9)_{\lambda_n}$, we obtain

$$
0 = \lambda_1 \left[-\Delta - \lambda_n \frac{q(x, w_n)}{w_n}; \Omega \right] > \lambda_1 [-\Delta - \lambda_n \delta; \Omega] = \lambda_1 - \lambda_n \delta \quad \forall n > n_\delta,
$$

that is,

$$
\lambda_n\delta > \lambda_1.
$$

Letting $n \to \infty$ and thanks to $\lambda_n \to \lambda^* < \infty$, the above inequality provides $\lambda_1 \leq \lambda^* \delta$, for all $\delta > 0$, which is a contradiction.

Case $\Omega_{a0} \neq \emptyset$

In view of [\(11\)](#page-5-2), we can apply Theorem 4.4 of $[3]$ and obtain that λ_{a0} is a bifurcation point from the trivial solution of positive solutions, and it is the only one in \mathbb{R}^+_0 . Furthermore, there exists an unbounded component $\Sigma_0 \subset \Sigma$ meeting λ_{a0} . Once that these bifurcation points are unique, we get

$$
\Sigma_{\infty} = \Sigma_0.
$$

As a consequence, by global nature of these continuum, we obtain that there exist positive solutions for all $\lambda \in (\lambda_1, \lambda_{a0})$.

4 Case $b > 0$

In this section we will prove Theorems [2](#page-2-2) and [3,](#page-3-1) except the existence of a second solution that will be treated in the next section.

First, denoting by φ_{a0} the principal positive eigenfunction associated to λ_{a0} with $\|\varphi_{a0}\|_0 = 1$, we have the following result of existence and non-existence of positive solutions.

Proposition 4 1. If (9) _λ possesses a positive solution, then $\lambda > \lambda_1$.

2. If $\Omega_{a0} \neq \emptyset$, then λ_{a0} is a bifurcation point of [\(9\)](#page-4-2) from the trivial solution and it is the only one for positive solutions. Furthermore, the bifurcation is

- (a) Subcritical if $1/r < p$.
- (b) Subcritical if $1/r = p$ and

$$
\int_{\Omega_{a+}} \frac{\varphi_{a0}^{p+1}}{a(x)^p} > b \int_{\Omega_{a0}} \varphi_{a0}^{p+1}.
$$
\n(20)

(c) Supercritical if $1/r = p$, $a(x)^{-p} \in L^1(\Omega_{a+})$ and

$$
\int_{\Omega_{a+}} \frac{\varphi_{a0}^{p+1}}{a(x)^p} < b \int_{\Omega_{a0}} \varphi_{a0}^{p+1}.\tag{21}
$$

(d) Supercritical if $1/r > p$.

3. There exists $\lambda > \lambda_1$ such that $(9)_{\overline{\lambda}}$ $(9)_{\overline{\lambda}}$ has a positive solution

Proof The proof of first paragraph is similar to first one of Proposition [3.](#page-8-1) Thus, we will prove only 2 and 3.

We prove first the second paragraph. If $\Omega_{a0} \neq \emptyset$, by [\(11\)](#page-5-2), we can apply the Theorem 4.4 of $\boxed{3}$ to obtain that λ_{a0} is the only bifurcation point from the trivial solution. To conclude the direction of bifurcation we will apply the paragraphs (i) and (ii) of Theorem 4.4 of [\[3\]](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) and argue as follows. Denote

$$
g(\lambda, x, s) := \frac{\lambda q(x, s) - bq(x, s)^p - \lambda \mathcal{X}_{\Omega_{a0}}(x)s}{s^{1-\sigma}},
$$

where $\sigma < 0$ to be chosen later.

(a) If $1/r < p$, we choose $\sigma = 1 - 1/r$. Thus, in Ω_{a+} we have

$$
g(\lambda, x, s) = \lambda \frac{(q(x, s)^r)^{1/r}}{(q(x, s) + a(x)q(x, s)^r)^{1/r}} - b \frac{(q(x, s)^{pr})^{1/r}}{(q(x, s) + a(x)q(x, s)^r)^{1/r}}
$$

=
$$
\lambda \frac{1}{(q(x, s)^{1-r} + a(x))^{1/r}} - b \frac{1}{(q(x, s)^{1-pr} + a(x)q(x, s)^{(1-pr)})^{1/r}}
$$

and, therefore,

$$
\liminf_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = \frac{\lambda_{a0}}{a(x)^{1/r}} \quad \text{in } \Omega_{a+}.
$$

On the other hand, in Ω_{a0} we have

$$
g(\lambda, x, s) = \frac{\lambda s - b s^p - \lambda s}{s^{1/r}} = -b s^{p-1/r},
$$

and, since $1/r < p$, we obtain that

$$
\liminf_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = 0 \quad \text{in } \Omega_{a0}.
$$

Consequently,

$$
\underline{\mu}(x) \equiv \liminf_{(\lambda, s) \to (\lambda_{a0}, 0^+)} g(\lambda, x, s) \ge 0
$$

and

$$
\int_{\varOmega}\underline{\mu}(x)\varphi_{a0}^{1/r+1}>0.
$$

Then, by Theorem 4.4 (i) of [\[](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)[3](#page-23-7)[\]](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==), the bifurcation of positive solutions at $\lambda = \lambda_{a0}$ is subcritical.

(b) If $1/r = p$, we choose $\sigma = 1 - p$. Thus, in Ω_{a+} , we have

$$
g(\lambda, x, s) = \lambda \frac{1}{(q(x, s)^{1-1/p} + a(x))^p} - b\left(\frac{q(x, s)}{s}\right)^p.
$$

Implying that

$$
\underline{\mu}(x) \equiv \liminf_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = \frac{\lambda_{a0}}{a(x)^p} \quad \text{in } \Omega_{a+}.
$$

On the other hand, in Ω_{a0} we have

$$
g(\lambda, x, s) = \frac{\lambda s - bs^p - \lambda s}{s^p} = -b.
$$

Consequently,

$$
\underline{\mu}(x) \equiv \liminf_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = \begin{cases} \frac{\lambda_{a0}}{a(x)^p} & \text{if } x \in \Omega_{a+}, \\ -b & \text{if } x \in \Omega_{a0}. \end{cases}
$$

Therefore, $\mu(x) \geq -b$ and [\(20\)](#page-10-0) is equivalent to

$$
\int_{\Omega} \underline{\mu}(x) \varphi_{a0}^{p+1} > 0.
$$

Thus, by Theorem 4.4 (i) of [\[3\]](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==), the bifurcation of positive solutions at $\lambda = \lambda_{a0}$ is subcritical.

(c) Analogously to the previous case, for $\sigma = 1 - p$ we have

$$
\overline{\mu}(x) \equiv \limsup_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = \begin{cases} \frac{\lambda_{a0}}{a(x)^p} & \text{if } x \in \Omega_{a+}, \\ -b & \text{if } x \in \Omega_{a0}. \end{cases}
$$

Once that $a(x)^{-p} \in L^1(\Omega_{a+})$, we get $\overline{\mu} \in L^1(\Omega)$ and since (21) is equivalent to

$$
\int_{\Omega} \overline{\mu}(x) \varphi_{a0}^{p+1} < 0.
$$

Theorem 4.4 (ii) of [\[3\]](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) implies that the bifurcation of positive solutions at $\lambda = \lambda_{a0}$ is supercritical.

(d) If $1/r > p$, we choose $\sigma = 1 - p$. Thus, in Ω_{a+} , we have

$$
g(\lambda, x, s) = \lambda \frac{1}{(q(x, s)^{1 - 1/p} + a(x)q(x, s)^{r - 1/p})^p} - b\left(\frac{q(x, s)}{s}\right)^p
$$

and, since $1/r > p$,

$$
\limsup_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = 0 \quad \text{in } \Omega_{a+}.
$$

On the other hand, in Ω_{a0} we have

$$
g(\lambda, x, s) = \frac{\lambda s - bs^p - \lambda s}{s^p} = -b.
$$

Consequently,

$$
\overline{\mu}(x) \equiv \limsup_{(\lambda,s)\to(\lambda_{a0},0^+)} g(\lambda,x,s) = -\mathcal{X}_{\Omega_{a0}}b \in L^1(\Omega)
$$

and

$$
\int_{\Omega} \overline{\mu}(x) \varphi_{a0}^{p+1} < 0.
$$

Then, by Theorem 4.4 (ii) of $[3]$ $[3]$ $[3]$, the bifurcation of positive solutions at $\lambda = \lambda_{a0}$ is supercritical.

To prove the third paragraph, note that the case $\Omega_{a0} \neq \emptyset$ is a immediate consequence of the second paragraph.

If $\Omega_{a0} = \emptyset$, then we can not apply the bifurcation theorem, thus we will use the method of sub-supersolution to prove the existence of positive solution for $\lambda > \lambda_1$ large.

To build the subsolution, denoting by $\varphi_1 > 0$, the eigenvalue associated to λ_1 with $\|\varphi_1\|_0 = 1$, it satisfies

$$
\Delta(\varphi_1^m) = m(m-1)\varphi_1^{m-2}|\nabla\varphi_1|^2 + m\varphi_1^{m-1}\Delta\varphi_1.
$$

= $m(m-1)\varphi_1^{m-2}|\nabla\varphi_1|^2 - m\lambda_1\varphi_1^m.$

Therefore, $\underline{w} = \varphi_1^m$ is a subsolution of $(9)_{\lambda}$ $(9)_{\lambda}$ provided that

$$
-\Delta(\varphi_1^m) \leq \lambda q(x, \varphi_1^m) - b q(x, \varphi_1^m)^p \quad \forall x \in \Omega,
$$

once that $q(x, \varphi_1^m) > 0$ for all $x \in \Omega$, this inequality is equivalent to

$$
\frac{m\varphi_1^m}{q(x,\varphi_1^m)}\left((1-m)\frac{|\nabla\varphi_1|^2}{\varphi_1^2}+\lambda_1\right)+bq(x,\varphi_1^m)^{p-1}\le\lambda \quad \forall x\in\Omega.\tag{22}
$$

Note that the term $bq(x, \varphi_1^m)$ is bounded. Let us show that the remaining terms are also bounded. Indeed, observe that

$$
(1-m)\frac{|\nabla\varphi_1|^2}{\varphi_1^2} + \lambda_1 \le 0
$$
\n(23)

provided that

$$
\left(\frac{\lambda_1}{m-1}\right)^{1/2} \le \frac{|\nabla \varphi_1|}{\varphi_1}.
$$

Since $\varphi_1 = 0$ and $\partial \varphi_1 / \partial \eta < 0$ in $\partial \Omega$, where $\eta = \eta(x)$ denote the outward normal derivative of φ_1 in the point $x \in \partial\Omega$, we can obtain $\delta > 0$ such that

$$
\Omega_{\delta} := \{ x \in \Omega; d(x, \partial \Omega) \le \delta \} \subset
$$

$$
\{ x \in \Omega; (\lambda_1/(m-1))^{1/2} \le |\nabla \varphi_1(x)|/\varphi_1(x) \}. \tag{24}
$$

As a consequence, [\(23\)](#page-12-0) occurs for all $x \in \Omega_{\delta}$.

On the other hand, since

$$
M = \min_{x \in \Omega \setminus \Omega_{\delta}} \varphi_1^m(x) > 0
$$

and the map $s \mapsto s/q(x, s)$ is non-increasing, it follows

$$
\frac{\varphi_1^m}{q(x,\varphi_1^m)} \le \frac{M}{q(x,M)} \quad \forall x \in \Omega \setminus \Omega_\delta. \tag{25}
$$

Thus, thanks to [\(23\)](#page-12-0) and [\(25\)](#page-13-0), we get [\(22\)](#page-12-1) for λ large enough therefore $\underline{w} = \varphi_1^m$ is a subsolution of $(9)_{\lambda}$ $(9)_{\lambda}$.

Now, let $K > 0$ a positive constant. Then $\overline{w} = K$ is a supersolution of (9) _λ, provided that

$$
0 = -\Delta K \ge \lambda q(x, K) - bq(x, K)^p,
$$

which is equivalent to

$$
q(x,K)^{p-1} \ge \frac{\lambda}{b}.\tag{26}
$$

Hence, choosing K satisfying [\(26\)](#page-13-1) and $K > \varphi_1^m$, $\overline{w} = K$ is a supersolution of (9) _λ. Consequently, there exists a positive soution w of (9) _λ for λ large, satisfying

$$
\varphi_1^m \le w \le K.
$$

Proof of Theorem [2](#page-2-2) (b) and (c): Once that $b > 0$ is fixed in this theorem, here we will denote $\lambda^*(b)$ simply by $\overline{\lambda}^*$.

Thanks to Proposition [4](#page-9-0) we already have that $\Lambda_b \neq \emptyset$ and $\lambda_1 \leq \lambda^* < \infty$. With the notation $\lambda_{a0} = \infty$ if $\Omega_{a0} = \emptyset$, we can deal with paragraphs (b) and (c) simultaneously to show existence of positive solution for $\lambda > \lambda^*$.

Thus, if $\lambda > \lambda^*$, by definition of λ^* , we can get that there exists $\overline{\lambda}$ with

 $\lambda^* < \overline{\lambda} < \lambda$

such that $(9)_{\overline{\lambda}}$ $(9)_{\overline{\lambda}}$ possesses a positive solution, $w_{\overline{\lambda}}$. Since $\lambda < \lambda$, $w_{\overline{\lambda}}$ is a subsolution of (9) λ.

On the other hand, a constant $K > 0$ large enough satisfying [\(26\)](#page-13-1) and $K > w_{\overline{\lambda}}$ is a supersolution. Consequently, $(9)_{\lambda}$ $(9)_{\lambda}$ possesses a positive solutions, for all $\hat{\lambda} > \lambda^*$.

If $\Omega_{a0} \neq \emptyset$ and the bifurcation direction at λ_{a0} is subcritical or $\Omega_{a0} = \emptyset$, we need to show existence of positive solution for $\lambda = \lambda^*$. Indeed, in both cases we have

$$
\lambda^* < \lambda_{a0}.\tag{27}
$$

Thus, let σ_n be a minimizer sequence such that $\sigma_n \downarrow \lambda^*$ and w_n a respective positive solution. Then w_n is bounded in $\mathcal{C}(\overline{\Omega})$. Since $\sigma_1 > \lambda_1$ and $\sigma_n \leq \sigma_1$, Corollary [1](#page-7-1) gives

$$
w_n \le \theta_{\sigma_1} \quad \forall n \in \mathbb{N},
$$

where θ_{σ_1} denote the unique solution of [\(19\)](#page-7-0) with $\lambda = \sigma_1$. Thus, $||w_n||_0 \le$ $\|\theta_{\sigma_1}\|_0.$

In addition, once that (σ_n, w_n) is a solution of $(9)_{\sigma_n}$ $(9)_{\sigma_n}$, we have

$$
\int_{\Omega} \nabla w_n \cdot \nabla \phi = \int_{\Omega} (\sigma_n q(x, w_n) - b q(x, w_n)^p) \phi \quad \forall \phi \in H_0^1(\Omega)
$$
 (28)

Taking $\phi = w_n$ as a test function and using [\(10\)](#page-5-0) we derive that

$$
||w_n||_{H_0^1}^2 = \int_{\Omega} (\sigma_n q(x, w_n) - b q(x, w_n)^p) w_n
$$

$$
\leq \sigma_1 \int_{\Omega} q(x, w_n) w_n \leq \sigma_1 \int_{\Omega} w_n^2 \leq \sigma_1 ||\theta_{\sigma_1}||_0^2 |\Omega|.
$$

As a consequence, w_n is bounded in $H_0^1(\Omega)$. Thus, up to a subsequence if necessary,

$$
w_n \rightharpoonup w^*
$$
 in $H_0^1(\Omega)$ and $w_n \to w^*$ in $L^m(\Omega)$ $m < 2^*$.

Passing to the limit $n \to \infty$ in [\(28\)](#page-14-0), it yields

$$
\int_{\Omega} \nabla w^* \cdot \nabla \phi = \int_{\Omega} (\lambda^* q(x, w^*) - bq(x, w^*)^p) \phi \quad \forall \phi \in H_0^1(\Omega).
$$

Hence w^* is a weak solution of $(9)_{\lambda^*}$ $(9)_{\lambda^*}$ and by the elliptic regularity, we obtain that w^* is a classical non-negative solution. We claim that $w^* \neq 0$. Indeed, otherwise by elliptic regularity and the Morrey theorem, we have

$$
||w_n||_{\mathcal{C}^1(\overline{\Omega})} \leq C,
$$

for some positive constant C. Thus, by the compact embeddeding of $\mathcal{C}^1(\overline{\Omega})$ into $\mathcal{C}(\overline{\Omega})$, up to a subsequence if necessary, we deduce that

$$
||w_n||_0 \to 0 .
$$

In view of [\(11\)](#page-5-2), for all $\delta > 0$, there exists $n_{\delta} \in \mathbb{N}$ such that

$$
\frac{q(x, w_n)}{w_n} - \mathcal{X}_{\Omega_{a0}}(x) \le \delta \quad \forall n > n_\delta, \ x \in \Omega.
$$

Consequently,

$$
0 = \lambda_1 \left[-\Delta - \sigma_n \frac{q(x, w_n)}{w_n} + b \frac{q(x, w_n)^p}{w_n}; \Omega \right] > \lambda_1 [-\Delta - \sigma_n(\delta + \mathcal{X}_{\Omega_{a_0}}; \Omega)]
$$

Taking $\delta \to 0$ imply $n \to \infty$ and we deduce that

$$
0 \geq \lambda_1[-\Delta - \lambda^* \mathcal{X}_{\Omega_{a0}}; \Omega] = \mu(\lambda^*).
$$

By the properties of μ (see Proposition [1\)](#page-6-2), the above inequality provides us that $\lambda^* \geq \lambda_{a0}$, which is a contradiction with [\(27\)](#page-13-2).

To complete the proof, it remains to show that $\lambda_1 < \lambda^* \leq \lambda_{a0}$. Indeed, If $\Omega_{a0} = \emptyset$ then $\lambda_{a0} = \infty$ and $\lambda^* \leq \lambda_{a0}$ is immediate. If $\Omega_{a0} \neq \emptyset$ then λ_{a0} is a bifurcation point from the trivial solution and, by definition of λ^* , it follows that $\lambda^* \leq \lambda_{a0}$. In order to prove $\lambda_1 < \lambda$, if $\lambda^* < \lambda_{a0}$, then we have already know, that $(9)_{\lambda}$ $(9)_{\lambda}$ possesses a positive solution for $\lambda = \lambda^*$ and since $\lambda > \lambda_1$ is a necessary condition for the existence, it follows that $\lambda^* > \lambda_1$. If $\lambda^* = \lambda_{a0}$, since we are considering only the case $a \neq 0$ in Ω , this implies that $\lambda_1 < \lambda_{a0} = \lambda^*$. Proof of Theorem [3](#page-3-1) (a): Recall that, by Corollary [1,](#page-7-1) every solution $w > 0$ of $\overline{(9)}$ $\overline{(9)}$ $\overline{(9)}$ _λ satisfies

$$
w \leq \|\theta_{\lambda}\|_0.
$$

Thus, let us consider the function

$$
f(x,s) := \lambda q(x,s) - bq(x,s)^p + Ks.
$$

Since

$$
f_s(x,s) = \lambda q_s(x,s) - bpq(x,s)^{p-1}q_s(x,s) + K \quad \forall s > 0,
$$

and $q_s(x, s)$ is bounded for $0 < s < ||\theta_{\lambda}||_0$, we can choose $K > 0$ large enough such that this function is increasing on $[0, \|\theta_\lambda\|_0]$. Thus, the monotonic interaction

$$
-\Delta w_{n+1} + Kw_{n+1} = \lambda q(x, w_n) - bq(x, w_n)^p + Kw_n, \quad w_0 = \theta_\lambda
$$

provides a maximal solution in $[0, \theta_\lambda]$. Once that every positive solution $w > 0$ satisfies $w < \theta_{\lambda}$, we get the result.

Now, given $\lambda^*(b) \leq \mu < \lambda$, then W_μ is a subsolution of $(9)_\lambda$ $(9)_\lambda$. Since $K > 0$ large enough is a super solution of $(9)_{\lambda}$ $(9)_{\lambda}$, we derive that $(9)_{\lambda}$ possesses a positive solution w with

$$
W_{\mu} < w \leq K.
$$

The strict inequality occurs because W_{μ} is not a solution of $(9)_{\lambda}$ $(9)_{\lambda}$. Once that W_{λ} is a maximal solution of $(9)_{\lambda}$ $(9)_{\lambda}$, we deduce

$$
W_{\mu} < w \le W_{\lambda}.
$$

This completes the proof.

In order to prove [\(7\)](#page-3-2), we need the following result

Lemma 2 If $b_1 < b_2$, then $\inf A_{b_1} \leq \inf A_{b_2}$.

Proof Just note that $\Lambda_{b_2} \subset \Lambda_{b_1}$. Indeed, if $\lambda \in \Lambda_{b_2}$, then $w_{\lambda(b_2)}$ is a subsolution of (9) _λ with $b = b_1$. Choosing K large enough satisfying (26) and $K \geq w_{\lambda(b_2)}$, it follows that there exists a positive solution of (9) _λ with $b = b_1$. Moreover,

$$
w_{\lambda(b_2)} \leq w_{\lambda(b_1)}.
$$

Proof of Theorem [3](#page-3-1) (b): Fix $\lambda > \lambda_1$, we can choose $\lambda = \lambda_1 + \varepsilon_0$, with $\varepsilon_0 > 0$. Let be $C > 0$ a constant, then $\underline{w} = C\varphi_1^m$ is a subsolution of $(9)_{\lambda}$ $(9)_{\lambda}$ if

$$
Cm(1-m)|\nabla\varphi_1|^2 \frac{\varphi_1^{m-2}}{q(x,C\varphi_1^m)} + \lambda_1 \left(m \frac{C\varphi_1^m}{q(x,C\varphi_1^m)} - 1 \right) + bq(x,C\varphi_1^m)^{p-1} \le \varepsilon_0, \qquad (29)
$$

for all $x \in \Omega$. Let us obtain conditions for that [\(29\)](#page-16-0) is fulfilled in Ω_{δ} as well as in $\Omega \setminus \Omega_{\delta}$, where Ω_{δ} is given as in [\(24\)](#page-12-2).

Firstly, fix $m = m(\lambda) > 1$ such that

$$
\lambda_1(m-1) < \frac{\epsilon_0}{2} \tag{30}
$$

For this m, we pick $\delta = \delta(m)$ as in Proposition [4.](#page-9-0) Observe that δ does not depend on C.

Now, recall that the map $s \mapsto q(x, s)/s$ is increasing and $\lim_{s \to \infty} q(x, s)/s = 1$ (see Lemma [1\)](#page-4-3), therefore

$$
\frac{s}{q(x,s)} \downarrow 1 \quad \text{as } s \to \infty
$$

Since

$$
\min_{\varOmega\backslash\varOmega_\delta}\varphi_1^m>0
$$

from [\(30\)](#page-16-1) and the above limit, we can get $C > 0$ large such that

$$
\lambda_1 \left(m \frac{C\varphi_1^m}{q(x, C\varphi_1^m)} - 1 \right) \le \frac{\varepsilon_0}{2} \quad \forall x \in \Omega \setminus \Omega_\delta.
$$

As a consequence, for $b > 0$ satisfying

$$
bq(x, C\varphi_1^m)^{p-1} \le \frac{\varepsilon_0}{2} \quad \forall x \in \Omega,
$$
\n(31)

we derive that [\(29\)](#page-16-0) occurs for all $x \in \Omega \setminus \Omega_{\delta}$.

On the other hand, if $x \in \Omega_{\delta}$ we have

$$
m(1-m)|\nabla\varphi_1|^2\varphi_1^{m-2} + m\lambda_1\varphi_1^m \le 0
$$

implying

$$
Cm(1-m)|\nabla \varphi_1|^2\frac{\varphi_1^{m-2}}{q(x,C\varphi_1^m)}+m\lambda_1\frac{C\varphi_1^m}{q(x,C\varphi_1^m)}\leq 0.
$$

In view of [\(31\)](#page-16-2), it follows that [\(29\)](#page-16-0) also meets in Ω_{δ} and therefore $\underline{w} = C\varphi_1^m$ is a subsolution of $(9)_{\lambda}$ $(9)_{\lambda}$. Taking K satisfying (26) and $K \geq C\varphi_1^m$ it is a supersolution of (9) _λ. Hence,

$$
C\varphi_1^m \le w_{[\lambda,b]} \le K. \tag{32}
$$

As a consequence, given $\varepsilon > 0$, there exists $b_{\varepsilon} > 0$ such that

$$
\lambda_1 < \lambda^*(b_\varepsilon) \le \lambda_1 + \varepsilon.
$$

by Proposition [2,](#page-15-0) the above inequality is verified for all $0 < b \leq b_{\varepsilon}$, showing $(7).$ $(7).$

Proposition 5 Let $(w_{\lambda^*(b)})_{b>0}$ be a family of positive solutions, then

$$
\lim_{b \to 0} \|w_{\lambda^*(b)}\|_0 = \infty.
$$
\n(33)

Proof Arguing by contradiction, suppose that $||w_{\lambda^*(b)}||_0 \leq M$, for each $b < b_0$. Hence

$$
0 = \lambda_1 \left[-\Delta - \lambda^*(b) \frac{q(x, w_{\lambda^*(b)})}{w_{\lambda^*(b)}} + b \frac{q(x, w_{\lambda^*(b)})^p}{w_{\lambda^*(b)}}; \Omega \right]
$$

$$
\geq \lambda_1 \left[-\lambda^*(b) \frac{q(x, M)}{M}; \Omega \right].
$$

Letting to $b \to 0$, yields

$$
0 \geq \lambda_1 \left[-\Delta - \lambda_1 \frac{q(x,M)}{M}; \Omega \right].
$$

Since $\Omega_{a0} \neq \Omega$, then $q(x, M)/M < 1$ and it imply

$$
0 > \lambda_1[-\Delta - \lambda_1; \Omega] = 0,
$$

which is a contradiction.

As a consequence of this result, we get Proof of Theorem [3](#page-3-1) (c): By Theorem 3 (a), for all $b > 0$ we have

$$
w_{\lambda^*(b)} \leq W_{\lambda^*(b)} \leq W_{\lambda(b)}.
$$

Thus, by the Proposition [5,](#page-16-3) we obtain the result.

5 Multiplicity of positive solutions

This section is dedicated to obtain a second positive solution of (9) _λ and for this propose, we use variational methods. The arguments presented here are inspired by $[1]$ and $[2]$.

For each $\lambda > \lambda_1$, let $M > 0$ be such that $\|\theta_\lambda\|_0 < M$ where θ_λ is stands for the unique solutions of [\(19\)](#page-7-0), see Proposition [2.](#page-7-2) Fix $\varepsilon > 0$, we define

$$
\overline{q}(x,s) = \begin{cases} q(x,s) & \text{if } s \leq M \\ \phi(x,s) & \text{if } M \leq s \leq M + \varepsilon \\ q(x,M+\varepsilon) & \text{if } M + \varepsilon < s \end{cases}
$$

where $\phi(x, s)$ is a regular function such that the map $s \in (0, \infty) \mapsto \overline{q}(x, s)$ is of class C^1 . Defining the functional $I_\lambda: H_0^1(\Omega) \to \mathbb{R}$ given by

$$
I_{\lambda}(w) = \frac{1}{2} ||w||_{H_0^1}^2 - \lambda \int_{\Omega} Q(x, w) dx + b \int_{\Omega} Q_p(x, w) dx,
$$

where

$$
Q(x, w) := \int_0^w \overline{q}(x, s) ds \text{ and } Q_p(x, w) := \int_0^w \overline{q}(x, s)^p ds.
$$

Thus, I_{λ} is well-defined and of class \mathcal{C}^2 , for all $\lambda > \lambda_1$. Moreover, since every positive solution of (9) _λ is bounded from above by M (according to Corollary [1\)](#page-7-1), then critical points of I_λ are weak positive solutions of $(9)_\lambda$ $(9)_\lambda$ and by elliptic regularity, are classical solution of (9) _λ

Let us collect some properties of this functional.

Proposition 6 The functional I_{λ} is coercive and bounded from below.

Proof For each $w \in H_0^1(\Omega)$ we have

$$
I_{\lambda}(w) = \frac{1}{2} ||w||_{H_0^1}^2 - \lambda \int_{\Omega} Q(x, w) dx + b \int_{\Omega} Q_p(x, w) dx
$$

=
$$
\frac{1}{2} ||w||_{H_0^1}^2 - \int_{\Omega} \int_0^w (\lambda \overline{q}(x, w) - b \overline{q}(x, w)^p) ds dx
$$

since the map

$$
s \mapsto \lambda s - b s^p, \ s \ge 0
$$

is bounded above, we can obtain a constant $C > 0$ such that

$$
\lambda \overline{q}(x,s) - b\overline{q}(x,s)^p \le C, \quad s \ge 0.
$$

In this way, we get

$$
I_{\lambda}(w) \ge \frac{1}{2}||w||_{H_0^1}^2 - C \int_{\Omega} w dx \ge \frac{1}{2}||w||_{H_0^1}^2 - C|w|_1.
$$

By the continuous embedding $H_0^1(\Omega) \hookrightarrow L^1(\Omega)$ it follows

$$
I_{\lambda}(w) \ge \frac{1}{2} ||w||_{H_0^1}^2 - C_1 ||w||_{H_0^1}.
$$

Showing that I_{λ} is coercive and bounded below.

Proposition 7 If w_n is a sequence in $H_0^1(\Omega)$ with $I_\lambda(w_n)$ bounded, then, up a subsequence if necessary,

$$
w_n \rightharpoonup w \text{ in } H_0^1(\Omega)
$$

and

$$
I_{\lambda}(w) \le \liminf_{n \to \infty} I_{\lambda}(w_n).
$$

In particular, I_{λ} attains its infimum on $H_0^1(\Omega)$.

coercive

Proof Thanks to the coercivity of I_{λ} , the sequence w_n is bounded in $H_0^1(\Omega)$. Thus, up to a subsequence if necessary,

$$
w_n \rightharpoonup w \text{ in } H_0^1(\Omega)
$$

and

$$
w_n \to w \text{ in } L^s(\Omega), \ s \in [1, 2^*).
$$

Consequently,

$$
I_{\lambda}(w) - I_{\lambda}(w_{n}) = \frac{1}{2}(\|w\|_{H_{0}^{1}}^{2} - \|w_{n}\|_{H_{0}^{1}}^{2}) +
$$

$$
\int_{\Omega} [(\lambda Q(x, w_{n}) - bQ_{p}(x, w_{n})) - (\lambda Q(x, w) - bQ_{p}(x, w))]dx.
$$

Writing $F(x, s) = \lambda Q(x, s) - bQ_p(x, s), s \ge 0$, we have

$$
I_{\lambda}(w) - I_{\lambda}(w_{n}) = \frac{1}{2}(\|w\|_{H_{0}^{1}}^{2} - \|w_{n}\|_{H_{0}^{1}}^{2}) + \int_{\Omega} [F(x, w_{n}) - F(x, w)]dx.
$$
 (34)

By the properties of \overline{q} ,

$$
F_s(x, s) = \lambda \overline{q}(x, s) - b\overline{q}(x, s)^p
$$

is bounded in $\Omega \times [0, \infty)$. Thus, [\(34\)](#page-19-0) implies

$$
I_{\lambda}(w) - I_{\lambda}(w_{n}) = \frac{1}{2}(\|w\|_{H_{0}^{1}}^{2} - \|w_{n}\|_{H_{0}^{1}}^{2}) +
$$

$$
\int_{\Omega} \left[\int_{0}^{1} (\lambda \overline{q}(x, tw_{n} + (1-t)w) - b\overline{q}(x, tw_{n} + (1-t)w)^{p} dt(w_{n} - w) \right] dx
$$

$$
\leq \frac{1}{2}(\|w\|_{H_{0}^{1}}^{2} - \|w_{n}\|_{H_{0}^{1}}^{2}) + C \int_{\Omega} |w_{n} - w| dx
$$

Since $w_n \to w$ in $L^1(\Omega)$ and $w_n \to w$ in $H_0^1(\Omega)$, it follows

$$
I_{\lambda}(w) - \liminf_{n \to \infty} I_{\lambda}(w_n) \leq 0.
$$

Finally, since I_{λ} is coercive and bounded below (Proposition [6\)](#page-18-0), we obtain I_{λ} attains its infimum on $H_0^1(\Omega)$.

In order to apply Theorem II.11.8 of [\[12\]](#page-23-10), let us prove that I_{λ} has two solutions that are local minimum of I_λ in $H_0^1(\Omega)$.

Proposition 8 For all $\lambda > \lambda^*$, $(9)_{\lambda}$ $(9)_{\lambda}$ possesses a solution w that is a local minimum for I_{λ} in $H_0^1(\Omega)$.

Proof By Theorem [3](#page-3-1) (a), the maximal solution of $(9)_{\lambda^*}$ $(9)_{\lambda^*}$, W_{λ^*} , is a strict subsolution of $(9)_{\lambda}$ $(9)_{\lambda}$ for all $\lambda > \lambda^*$. Thus, we obtain a solution v_{λ} for $(9)_{\lambda}$ via minimization

$$
I_{\lambda}(v_{\lambda}) = \inf \{ I_{\lambda}(w); \ w \in H_0^1(\Omega), \ w(x) \ge W_{\lambda^*} \}.
$$

Hence, v_{λ} exists thanks to Propositions [6](#page-18-0) and [7](#page-18-1) and it defines a solution to $(9)_{\lambda}$ $(9)_{\lambda}$.

To verify that it is a minimizer of I_λ in $H_0^1(\Omega)$, by $[4]$ $[4]$ $[4]$ it suffices to show that is a local minimizer in the \mathcal{C}^1 topology.

Taking $K > 0$ sufficiently large such that $s \mapsto \lambda \overline{q}(x, s) - b\overline{q}(x, s)^p + Ks$ be increasing in $[0, \max_{\overline{\Omega}} v_{\lambda}]$ and since $v_{\lambda} > W_{\lambda^*}$, we derive that

$$
-\Delta(v_{\lambda}-W_{\lambda^*})+K(v_{\lambda}-W_{\lambda^*})=(\lambda\overline{q}(x,v_{\lambda})-b\overline{q}(x,v_{\lambda})^p+Kv_{\lambda})-(\lambda^*\overline{q}(x,W_{\lambda^*})-b\overline{q}(x,W_{\lambda^*})^p+KW_{\lambda^*})>0.
$$

By the Strong Maximum Principle, it follows that $v_{\lambda} - W_{\lambda^*}$ lies in the interior of the positive cone of $C_0^1(\overline{\Omega})$. Hence, there exists $\varepsilon > 0$ such that

$$
B_{\varepsilon}(v_{\lambda}) \subset \{ u \in C_0^1(\overline{\Omega}); u \geq W_{\lambda^*} \},
$$

where $B_{\varepsilon}(v_{\lambda})$ denote the open ball of radius ε and center v_{λ} in \mathcal{C}^1 topology.

Since $I_{\lambda}(v_{\lambda})$ is the minimizer in $\{u \in H_0^1(\Omega); u \geq W_{\lambda^*}\}\)$, then it is also a local minimizer in $C_0^1(\Omega)$.

The next result gives us a second local minimum of I_{λ} in $H_0^1(\Omega)$.

Proposition 9 If $\lambda < \lambda_{a0}$, then the trivial solution $w \equiv 0$ is a local minimum of I_λ on $H_0^1(\Omega)$ and is an isolated solution of $(9)_\lambda$ $(9)_\lambda$.

Proof We will consider two cases:

Case $\Omega_{a0} \neq \emptyset$ Fix $\varepsilon = \varepsilon(\lambda) > 0$ sufficiently small such that

$$
1 - \varepsilon \frac{\lambda}{\lambda_1} - \frac{\lambda}{\lambda_{a0}} > 0.
$$

Then, thanks to the properties of \overline{q} , we can get $C > 0$ and $1 < r < 2^*$ such that

$$
\overline{q}(x,s) \le q(x,s) \le (\varepsilon + \mathcal{X}_{\Omega_{a0}}(x))s + Cs^r \quad \forall (x,s) \in \Omega \times [0,\infty).
$$

Consequently,

$$
I_{\lambda}(w) \geq \frac{1}{2} ||w||_{H_0^1}^2 - \frac{\lambda}{2} \int_{\Omega} (\varepsilon + \mathcal{X}_{\Omega_{a0}}(x)) w^2 - \frac{C}{r+1} \int_{\Omega} w^{r+1} \leq \frac{1}{2} \left(1 - \varepsilon \frac{\lambda}{\lambda_1} - \frac{\lambda}{\lambda_{a0}} \right) ||w||_{H_0^1}^2 - \frac{C}{\lambda_1 (r+1)} ||w||_{H_0^1}^{r+1}.
$$

Therefore, there exists $\delta > 0$ small such that

$$
I_{\lambda}(w) \ge 0 \quad \forall w \in H_0^1(\Omega), \|w\|_{H_0^1} \le \delta,
$$

showing that $w \equiv 0$ is a local minimum of I_λ in $H_0^1(\Omega)$.

To prove that 0 is isolated solution of [\(9\)](#page-4-2) we argue by contradiction. Otherwise, there would be a sequence of positive solution w_n such that $||w_n||_{H_0^1} \to 0$.

Therefore, we also have $||w_n||_0 \to 0$. By [\(11\)](#page-5-2), for all $\delta > 0$, exists $n_\delta \in \mathbb{N}$ such that

$$
\frac{q(x, w_n)}{w_n} - \mathcal{X}_{\Omega_{a0}} \le \delta \quad \forall n > n_\delta, \ x \in \Omega.
$$

Consequently,

$$
0 = \lambda_1 \left[-\Delta - \lambda \frac{q(x, w_n)}{w_n} + b \frac{q(x, w_n)^p}{w_n}; \Omega \right] > \lambda_1 [-\Delta - \lambda(\delta + \mathcal{X}_{\Omega_{a0}}); \Omega]
$$

Taking $\delta \to 0$ we deduce that

$$
0 \geq \lambda_1[-\varDelta - \lambda \mathcal{X}_{\Omega_{a0}};\varOmega] = \mu(\lambda)
$$

By the properties of μ (see Proposition [1\)](#page-6-2), the above inequality provides us $\lambda \geq \lambda_{a0}$, which is a contradiction.

Case $\Omega_{a0} = \emptyset$ Similarly, using $q(x, s) \leq s$, we have

$$
I_{\lambda}(w) \ge \frac{1}{2} ||w||_{H_0^1}^2 - \frac{\lambda}{2} \int_{\Omega} w^2
$$

$$
\ge \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_1} \right) ||w||_{H_0^1}^2.
$$

implying that 0 is a local minimum of I_λ in $H_0^1(\Omega)$. Moreover, observing that $\mathcal{X}_{\Omega_{a0}} \equiv 0$, the same arguments of previous case can be applied to conclude that 0 is an isolated solution of (9) .

Recall that, according to Definition II.12.2 in [\[12\]](#page-23-10), for a convex and closed set $M \subset H_0^1(\Omega)$, a function $w \in H_0^1(\Omega)$ is a critical point of I_λ on M if

$$
g(w) = \sup \{ I'_{\lambda}(w)(w - v); \ v \in M, \ \|v - w\|_{H_0^1} \le 1 \} = 0.
$$

Taking

$$
\mathcal{M} = \{ w \in H_0^1(\Omega); 0 \le w(x) \le v_\lambda(x) \}.
$$

Since $w \equiv 0$ and v_λ are solutions of [\(9\)](#page-4-2), then a critical point of I_λ in M is also a critical of I_λ in $H_0^1(\Omega)$. Let us show a Palais-Smale condition for the functional I in M .

Proposition 10 If w_n is a sequence in M such that

$$
I_{\lambda}(w_n) \to c
$$
 and $g(w_n) \to 0$,

then w_n possesses a strongly convergent subsequence in $H_0^1(\Omega)$.

Proof

$$
w_n \rightharpoonup w
$$
 in $H_0^1(\Omega)$ and $w_n(x) \to w(x)$ a.e. in Ω .

Once that $0 \leq w_n \leq v_\lambda$, we obtain $0 \leq w \leq v_\lambda$ and from Lebesgue's Dominated Convergence Theorem we get

$$
\int_{\Omega} (\lambda \overline{q}(x, w_n) - b \overline{q}(x, w_n)^p)(w_n - w) dx \to 0.
$$

Therefore,

$$
g(w_n) \|w_n - w\|_{H_0^1} \ge I'_\lambda(w_n)(w_n - w)
$$

= $\int_{\Omega} \nabla w_n \nabla (w_n - w) + o(1)$
= $\int_{\Omega} |\nabla (w_n - w)|^2 + o(1).$

Thus,

$$
g(w_n) \ge ||w_n - w||_{H_0^1} + o(1).
$$

Passing to the limit $n \to \infty$ we deduce that $w_n \to w$ in $H_0^1(\Omega)$.

Finally, we are able to give the Proof of Theorem [2](#page-2-2) (c): Consider again the set

$$
\mathcal{M} = \{ w \in H_0^1(\Omega); 0 \le w(x) \le v_\lambda(x) \}.
$$

where v_{λ} is a solution that is a local minimum of I_{λ} on \mathcal{M} (according Propo-sition [8\)](#page-19-1). Once that I_{λ} satisfies the Palais-Smale condition in M (Proposition [10\)](#page-21-0), we can apply the Theorem II.11.8 of [\[12\]](#page-23-10) and deduce the following dichotomy: either

- 1. I_{λ} has a critical point w_{λ} in M which is not a local minimum; or
- 2. $I_{\lambda}(v_{\lambda}) = I_{\lambda}(0)$ and v_{λ} and 0 may be connected in any neighborhood of the set of local minimal of I_λ relative to M, each of which satisfying $I_\lambda(w) = 0$

But, by Proposition [9,](#page-20-0) 0 is an isolated among the solution of $(9)_{\lambda}$ $(9)_{\lambda}$, for all $\lambda \in (\lambda_1, \lambda_{a0})$. This excludes the possibility of the paragraph 2. occurs.

Acknowledgements WC is Bolsista da CAPES Proc. no BEX 6377/15-7. CMR and AS have been partially supported for the project MTM2015-69875-P (MINECO/FEDER, UE) and AS by the project CNPQ-Proc. 400426/2013-7 .

References

- 1. [Alama, S. and Tarantello, G., Elliptic problems with nonlinearities indefinite in sign, J.](https://www.researchgate.net/publication/246049965_Elliptic_Problems_with_Nonlinearities_Indefinite_in_Sign?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [Funct. Anal., 141, 159–215 \(1996\).](https://www.researchgate.net/publication/246049965_Elliptic_Problems_with_Nonlinearities_Indefinite_in_Sign?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 2. [Ambrosetti, A. and Brezis, H. and Cerami, G., Combined effects of concave and convex](https://www.researchgate.net/publication/222739511_Combined_Effects_of_Concave_and_Convex_Nonlinearities_in_Some_Elliptic_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [nonlinearities in some elliptic problems, J. Funct. Anal., 122, 519–543 \(1994\).](https://www.researchgate.net/publication/222739511_Combined_Effects_of_Concave_and_Convex_Nonlinearities_in_Some_Elliptic_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 3. [Arcoya, D. and Carmona, J. and Pellacci, B., Bifurcation for some quasilinear operators,](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [Proc. Roy. Soc. Edinburgh Sect. A, 131, 733–765 \(2001\).](https://www.researchgate.net/publication/231874755_Bifurcation_for_some_quasilinear_operators?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 4. Brezis, H. and Nirenberg, L., H^1 versus C^1 local minimizers, C. R. Acad. Sci. Paris Sér. [I Math., 317, 465–472 \(1993\).](https://www.researchgate.net/publication/265434803_H_1_versus_C_1_local_minimizers?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 5. [Brezis, H. and Oswald, L., Remarks on sublinear elliptic equations, Nonlinear Anal., 10,](https://www.researchgate.net/publication/247386595_Remarks_on_sublinear_elliptic_equations?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [55–64 \(1986\).](https://www.researchgate.net/publication/247386595_Remarks_on_sublinear_elliptic_equations?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 6. [Cantrell, R. S. and Cosner, C., Diffusive logistic equations with indefinite weights: pop](https://www.researchgate.net/publication/243094681_Diffusive_Logistic_Equations_with_Indefinite_Weights_Population_Models_in_Disrupted_Environments_II?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)[ulation models in disrupted environments, Proc. of the Royal Soc. of Edinburgh, 112 A,](https://www.researchgate.net/publication/243094681_Diffusive_Logistic_Equations_with_Indefinite_Weights_Population_Models_in_Disrupted_Environments_II?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [293–318 \(1989\).](https://www.researchgate.net/publication/243094681_Diffusive_Logistic_Equations_with_Indefinite_Weights_Population_Models_in_Disrupted_Environments_II?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 7. [de Figueiredo, D. G., Positive solutions of semilinear elliptic problems, Lecture Notes in](https://www.researchgate.net/publication/226836463_Positive_solutions_of_semilinear_elliptic_problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [Math., 957, 34–87 \(1982\).](https://www.researchgate.net/publication/226836463_Positive_solutions_of_semilinear_elliptic_problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 8. Delgado, M. and López-Gómez, J. and Suárez, A., Combining linear and nonlinear dif[fusion, Adv. Nonlinear Stud., 4, 273–287 \(2004\).](https://www.researchgate.net/publication/228567982_Combining_Linear_and_Nonlinear_Diffusion?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 9. [Hess, P. and Kato, T., On some linear and nonlinear eigenvalue problems with an indef](https://www.researchgate.net/publication/247022375_On_Some_Linear_and_Nonlinear_Eigenvalue_Problems_with_Indefinite_Weight_Function?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)[inite weight function, Comm. Partial Differential Equations, 5, 999–1030 \(1980\).](https://www.researchgate.net/publication/247022375_On_Some_Linear_and_Nonlinear_Eigenvalue_Problems_with_Indefinite_Weight_Function?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 10. [L´opez-G´omez, J., The maximum principle and the existence of principal eigenvalues for](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [some linear weighted boundary value problems, J. Differential Equations, 127, 263–294](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) [\(1996\).](https://www.researchgate.net/publication/243005018_The_Maximum_Principle_and_the_Existence_of_Principal_Eigenvalues_for_Some_Linear_Weighted_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 11. [Ouyang, T., On the positive solutions of semilinear equations](https://www.researchgate.net/publication/284972674_On_the_positive_solutions_of_semilinear_equations_Du_lu_-_hup_0_on_the_compact_manifolds?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==) $\Delta u + \lambda u - h u^p = 0$ on [the compact manifolds, Trans. Amer. Math. Soc., 331, 503–527 \(1992\).](https://www.researchgate.net/publication/284972674_On_the_positive_solutions_of_semilinear_equations_Du_lu_-_hup_0_on_the_compact_manifolds?el=1_x_8&enrichId=rgreq-6d18910b6439e087fbd5d3920a3a0a67-XXX&enrichSource=Y292ZXJQYWdlOzMxMjAzNDc3MDtBUzo0NTMzMTMzOTgzNDk4MjZAMTQ4NTA4OTc0NDg0MA==)
- 12. Struwe M., Variational Method, Springer, (1990).

[View publication stats](https://www.researchgate.net/publication/312034770)