
Fast-Convergence Microsecond-Accurate Clock Discipline
Algorithm for Hardware Implementation

J. Viejo, J. Juan, M. J. Bellido, A. Millan, and P. Ruiz-de-Clavijo

Abstract—Discrete microprocessor-based equipment is a typical syn-
chronization system on the market which implements the most critical 
features of the synchronization protocols in hardware and the synchro-
nization algorithms in software. In this paper, a new clock discipline 
algorithm for hardware implementation is presented, allowing for full 
hardware implementation of synchronization systems. Measurements on 
field-programmable gate array prototypes show a fast convergence time 
(below 10 s) and a high accuracy (1 µs) for typical configuration 
parameters.

Index Terms—Field-programmable gate array, hardware timestamping, 
Network Time Protocol (NTP), Precision Time Protocol (PTP), synchro-
nization system.

I. INTRODUCTION

Time synchronization of electronic equipment is required in many
applications. Typical examples are distributed measurement and
control systems [1] and the synchronized phasors (synchrophasors)
applied to power distribution networks [2], [3]. In these systems,
measurement and control equipment is synchronized using specific
protocols through the communication network itself, which is usually
a switched Ethernet network [4]. Time synchronization over Ethernet
networks uses two primary synchronization protocols. On the one
hand, the industry norm IEC 61850 [5] defines the Simple Network

Time Protocol (NTP) (SNTP) [6] as a standard way to synchronize a
set of substations with a time server. SNTP is a simplified version of
the more general NTP [7] that is commonly used in Internet servers
and routers. On the other hand, the IEEE 1588 standard [8] specifies
the Precision Time Protocol (PTP) that was designed specifically for
industrial applications. These protocols are based on the exchange of
packets with a time server; these packets contain a set of timestamps
used for calculating the round-trip time and the time offset of the
server’s clock relative to the client’s clock. Both NTP and PTP imple-
ment sophisticated algorithms to adjust the local clock and maintain
the offset at a minimum. PTP is more focused on local area networks
(LANs) and is typically hardware supported, so it can achieve much
better accuracy than NTP, although a similar accuracy is achievable
with NTP/SNTP if the same restrictions and hardware support are
applied [6].

Recent research works have demonstrated that dedicated hardware
support is necessary to achieve high synchronization precision [1], [9].
These authors define a set of synchronization functions completely
implemented in hardware which can be applied for timestamping
and controlling the local clock. However, higher level tasks like
clock disciplining and communication protocols are implemented in
software [9]. Moreover, a full or near-full hardware implementation
of a synchronization process can enable more accurate, robust, power-
efficient, and cost-effective synchronization systems. As a result, it is
necessary to design a hardware-friendly algorithm for synchronization.

In this paper, a clock discipline algorithm for hardware implemen-
tation aiming at microsecond accuracy is presented. The algorithm is
easy to implement in hardware, has very fast convergence, and is able
to maintain a very accurate local time compared to a time server, by
using standard digital design methodologies.

This paper is organized as follows. In Section II, the clock model
and the drift control mechanism are presented. In Section III, the
synchronization algorithm is described. Section IV presents some
experimental results, and conclusions are summarized in Section V.

II. HARDWARE CLOCK MODEL AND DRIFT

CONTROL MECHANISM

The implemented clock model is based on the computer clock model
presented in [10] which is formed by a voltage-controlled oscillator
(VCO), a local clock implemented in hardware, and a prescaler that
reduces the oscillator frequency to a convenient frequency [Fig. 1(a)].
In this model, the frequency is controlled by a digital/analog converter
(DAC), and the time is adjusted by adding the offset to the local
clock. However, this model is not suitable for digital implementation,
as additional external hardware components are needed. Thus, the
proposed alternative is to replace the VCO and DAC with an oscillator
operating at a fixed frequency and to include a digital module (drift
control) which is in charge of controlling the oscillator frequency. The
designed hardware clock model is shown in Fig. 1(b).

In the proposed scheme, time adjustment can be performed by
directly adding the offset to the local clock. However, this adjustment
should only be done when the local time is substantially different
from the reference time since this action violates the monotonic
requirement. Smaller adjustments are done by varying the local clock
frequency using the drift control module. In this module, first, the
prescaler is in charge of reducing the oscillator frequency fosc to a
frequency fpres slightly higher than the nominal operating frequency
fnom of the local clock. Since the resolution of the local clock in its
fractional part is n bits, fnom = 2n. The prescaler reduction factor is
controlled through a configuration parameter called prescaler factor;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132458049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Hardware clock models. (a) Computer model based on a VCO.
(b) Proposed hardware clock model based on a fixed-frequency oscillator.

Fig. 2. Fundamentals of the calculation of corrections.

this parameter allows it to adapt this module to different local clock
resolutions and system clock frequencies. Once this reduction is car-
ried out, the drift control module performs a fine adjustment using the
parameter D calculated by the clock controller module. The parameter
D represents the number of cycles of the clock signal generated by the
prescaler to be eliminated in a second. Thus, the frequency obtained
by the drift control module (fout) represents an averaged frequency
which can be calculated according to

fout ≈ fpres − D. (1)

III. CORRECTION CALCULATION AND

SYNCHRONIZATION ALGORITHM

A. Correction Calculation

To keep the local clock tuned to a reference clock, the adjustment
parameter D is corrected at every adjustment interval so that the
estimated offset (θ) of the local clock with respect to the reference
clock is minimized. The fundamentals applied for the calculation of
this correction are shown in Fig. 2. This figure shows the estimated
offset at different adjustment instants done every 2p s, where p is a
configuration parameter that controls the adjustment interval. Assum-
ing that, at time ti−1, the offset is θi−1 and D is Di−1 and that, at
time ti, the offset is θi (point B), a new value of D (Di) should be
calculated in order to cancel the drifting (ΔθB). The correction ΔDi

applied to D (2) is divided into two components according to (3)

Di =Di−1 + ΔDi (2)
ΔDi =ΔD0

i + ΔDC
i . (3)

Fig. 3. States of the synchronization algorithm.

First, the correction needed to stop the drifting (ΔD0
i ) can be

calculated according to (4). With this correction, the offset is expected
to stay constant after a new interval (point P in Fig. 2). The second
component of ΔDi (ΔDC

i ) is intended to make the offset to converge
to zero in the next adjustment intervals. The convergence component
is calculated in (5), where −(θi/2p) is the adjustment that would
make the system converge into one interval (P0) and q is a smoothing
parameter that controls the convergence speed, so that q = 1 makes
the system converge into two intervals (P1), q = 2 into four (P2), and
so on

ΔD0
i = −ΔθB

2p
= −ΔθC

2p
= −θi − θi−1

2p
(4)

ΔDC
i = −θi

2p
× 1

2q
= − θi

2p+q
. (5)

B. Synchronization Algorithm

The objectives of the synchronization algorithm described in the
following are to control the hardware clock model presented in Sec-
tion II so that it reaches synchronization with a clock reference and to
maintain this synchronization as accurate as possible by applying the
correction calculated previously.

At the beginning of the operation, the system starts in SYNCHRO-
NIZING state (Fig. 3). In this state, if the offset is greater than 125
ms, a hard correction of the local clock is done in order to match
the server’s clock time (tlocal = tlocal + θ). When the offset is less
than 125 ms, the system transitions to SYNCHRONIZED state, and
the local clock is kept synchronized to the reference clock by using
the drift control mechanism and calculating the appropriate correction
(ΔD) as described previously.

If communication with the reference clock is lost or the offset
is greater than 250 ms, the system changes to SYNCHRONIZING
state, and the convergence component ΔDC is removed from the
correction to keep the local clock drifting as small as possible until
synchronization is reestablished.

IV. RESULTS

In order to check that the algorithm works correctly, this has
been implemented on a Spartan-3E field-programmable gate array
(XC3S500E) as part of an experimental SNTP client. This SNTP
client has been tested against a hardware-assisted SNTP server which
synchronizes its local clock using a GPS receiver. Thus, different
tests have been carried out which consist of varying the values of
the adjustment interval and the convergence factor. For each test,
approximately 1000 successive offsets have been acquired. In Table I,
the numerical values of the mean offset as seen by the client, together
with the error, calculated as three times the standard deviation of the
measurements are shown.



TABLE I
MEAN OFFSET ± ERROR IN MICROSECONDS

TABLE II
TIME TO SYNCHRONIZATION IN SECONDS

It can be seen that the mean offset and error increase for larger
values of p because the accumulated offset in an adjustment interval
is proportional to the interval duration. For intervals between 1 and
8 s (p = 0, 1, 2, 3), the convergence factor q is not relevant because
the mean offset and the error are going to be small in any case and
the obtained error is always less than 5 μs. For the other intervals, the
accumulated offset between adjustments can be higher, and therefore,
carrying out faster corrections (using small values of q) can be more
appropriate.

The time to full synchronization, considered as the time spent by
the algorithm from the start of the operation to reach an offset below
25 μs, is shown in Table II. These times depend on the adjustment
interval, obtaining better results for smaller values of p. As it has been
commented earlier, this is because, using a small adjustment interval,
the corrections are performed more often, accelerating the convergence
process. Moreover, the time until synchronization also depends on the
convergence factor since larger values of q cause slighter corrections,
so that the algorithm takes longer to reach the desired synchronization.
In the worst cases (p = 6 and q > 1), a synchronization better than
25 μs is never reached.

In a typical LAN configuration, p = 0 and q = 2 are adequate
values of the algorithm’s parameters, providing a local clock accuracy
of 1 μs, which is among the better results reported for hardware-
assisted SNTP implementation (1–25 μs) [4], and largely improving
the better results of the software NTP implementation (tens to a few
hundreds of microseconds) [11], [12].

Under these same conditions, the time to synchronization is only
15 s for an adjustment interval of 1 s. This time compares very well
to the drift adjustment time of about 10 s reported in [9] for a PTP
implementation with a 125-μs synchronization interval.

V. CONCLUSION

In this paper, a new clock discipline algorithm that is suitable for
hardware implementation has been presented. The algorithm includes
a drift control mechanism and a hardware clock model that have been
implemented in programmable hardware as part of an experimental
SNTP client. Measurements show that the algorithm is able to con-
verge to an accuracy below 25 μs in less than 10 s and to maintain an
accuracy of 1 μs for typical configuration parameters.

REFERENCES

[1] J. Han and D. Jeong, “A practical implementation of IEEE 1588–2008
transparent clock for distributed measurement and control systems,” IEEE
Trans. Instrum. Meas., vol. 59, no. 2, pp. 433–439, Feb. 2010.

[2] A. Carta, N. Locci, C. Muscas, and S. Sulis, “A flexible GPS-based system
for synchronized phasor measurement in electric distribution networks,”
IEEE Trans. Instrum. Meas., vol. 57, no. 11, pp. 2450–2456, Nov. 2008.

[3] A. Carta, N. Locci, C. Muscas, F. Pinna, and S. Sulis, “GPS and IEEE
1588 synchronization for the measurement of synchrophasors in electric
power systems,” Comput. Stand. Interfaces, vol. 33, no. 2, pp. 176–181,
Feb. 2011.

[4] T. Skeie, S. Johannessen, and Ø. Holmeide, “Highly accurate time syn-
chronization over switched Ethernet,” in Proc. 8th IEEE Int. Conf. ETFA,
Antibes-Juan les Pins, France, Oct. 2001, pp. 195–204.

[5] IEC 61850 Communication Networks and Systems in Substations, I.E.C.
Technical Committee 57, IEC 61850 Edition 2 and other extensions,
Jun. 2008.

[6] D. L. Mills, Simple Network Time Protocol (SNTP) version 4 for IPv4,
IPv6 and OSI, RFC 4330 (Informational), Jan. 2006.

[7] D. L. Mills, J. Martin, J. Burbank, and W. Kasch, Network Time Protocol
Version 4: Protocol and Algorithms Specification, RFC 5905 (Standards
Track), Jun. 2010.

[8] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE, PTP Version 2 (1588-
2008), 2008.

[9] S. Meier, H. Weibel, and K. Weber, “IEEE 1588 syntonization and syn-
chronization functions completely realized in hardware,” in Proc. IEEE
ISPCS, Ann Arbor, MI, Sep. 2008, pp. 1–4.

[10] D. L. Mills, “Modelling and Analysis of Computer Network Clocks,”
Elect. Eng. Dept., Univ. Delaware, Newark, DE, Rep. 92-3-1, 1992.

[11] D. L. Mills, “Adaptive hybrid clock discipline algorithm for the Network
Time Protocol,” IEEE/ACM Trans. Netw., vol. 6, no. 5, pp. 505–514,
Oct. 1998.

[12] D. L. Mills and P. H. Kamp, “The nanokernel,” in Proc. PTTI Appl. Plan.
Meeting, Reston, VA, Nov. 2000, pp. 423–430.


