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Abstract. Complex digital systems are typically built on top of sev-
eral abstraction levels: digital, RTL, computer, operating system and
software application. Each abstraction level greatly facilitates the design
task at the cost of paying in performance and hardware resources usage.
Network time synchronization is a good example of a complex system
using several abstraction levels since the traditional solutions are a soft-
ware application running on top of several software and hardware layers.
In this contribution we study the case where a standards-compliant net-
work time synchronization solution is fully implemented in hardware on
a FPGA chip doing without any software layer. This solution makes it
possible to implement very compact, inexpensive and accurate synchro-
nization systems to be used either stand-alone or as embedded cores.
Some general aspects of the design experience are commented together
with some figures of merit. As a conclusion, full hardware implemen-
tations of complex digital systems should be seen as a feasible design
option, from which great performance advantages can be expected, pro-
vided that we can find a suitable set of tools and control the design
development costs.

Keywords: digital systems, hardware, network time synchronization,
FPGA.

1 Introduction

Complex digital systems are typically built on top of several abstraction lev-
els: digital, RTL, computer, operating system and software application. Each 
abstraction level, together with design automation tools, greatly facilitates the 
design task at the cost of the overhead introduced by every abstraction layer. 
This is payed in the form of reduced performance (both timing and power) and 
a much higher hardware resources usage. However, some critical parts in com-
plex digital systems still require a low level implementation in order to improve 
performance or reduce power consumption. This is the case of the numerous 
hardware accelerators used today for audio and video processing that can be 
found in high performance or resource-limited devices like graphic adapters or
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smart phones. At the same time, there are an increasing number of devices im-
plementing in hardware high level functions typically done in software, like the
QuickTCP IP core from PLDA [1]. However, there is still plenty of room for
performance improvement in some high-level traditional software applications
that can get a big performance boost if fully implemented in hardware. These
applications can be improved by several orders of magnitude in speed, lower
power consumption and smaller hardware footprint (area, logic blocks, etc.).
These gains are a consequence of doing without some of the abstraction layers
like the software and computer abstractions.

A full hardware implementation has to face a number of challenges like han-
dling the complexity at the low level, design tool availability, development cost
and time-to-market. Design teams also need to believe that it can be done. Net-
work time synchronization is a very good example of this kind of traditional
software applications where we can find clients, servers, network protocols and
elaborated processing algorithms. This contribution summarizes the implemen-
tation of an prototype embedded network time synchronization system that is
being developed completely in hardware. Some preliminary results show that
the system can be fully implemented in hardware and perform with an accuracy
comparable to commercial industrial equipment at a fraction of the cost and
resources usage. The system can be implemented stand-alone or as a soft-core
in a low grade FPGA chip.

In the following section, a brief introduction to network time synchronization
is given. Section 3 is an overview of the synchronization system while Sect. 4
describes the design platform and tools. Section 5 summarizes some figures of
merit and some conclusions are derived in Sect. 6.

2 Network Synchronization

The two main network synchronization protocols in use today are the Network
Time Protocol (NTP) [2], and the Precision Time Protocol (PTP) [3]. NTP is
more used to synchronize Internet equipment and is used by almost any Internet
router and server. NTP servers typically serve thousands of clients over world
wide network connections so the poll intervals are in the range of several min-
utes to a few hours and the network latencies are difficult to predict. To cope
with that, NTP includes sophisticated mitigation and clock disciplining algo-
rithms achieving a clock accuracy in the range of the millisecond. On the other
hand, PTP was designed to synchronize equipment in industrial environments
connected to a local area network and aims to sub-microsecond clock accuracy,
making it suitable for measurement and control systems. PTP uses poll inter-
vals in the range of a second or lower and most implementations uses some kind
of dedicated hardware to implement the most critical parts and gain accuracy.
The NTP standard also defines the Simple Network Time Protocol (SNTP) a
simplified version of NTP, that do not impose the use of the mitigation and
clock disciplining algorithms found in NTP. SNTP servers are typically primary
servers connected to a single reference clock and SNTP clients typically connect



to a single servers and do not have dependent clients and have been used in
scenarios similar to PTP. Otherwise, NTP and SNTP clients and servers can
inter-operate seamlessly.

Both NTP and PTP synchronization is based in the interchange of packets
between clients and servers. This mechanism is called the on-wire protocol, which
objective is to determine the offset of the local clock at the client with respect to
the server and the latency of the network connection. Both NTP and PTP on-
wire protocols are very similar. Here we describe the operation of the NTP/SNTP
on-wire protocol (Fig. 1). The client sends a request to the server by issuing an
UDP data packet where the time of its local clock (T1) is included. When the
request is received at the server a new time stamp T2 is generated with the
reception time as given by the server’s local clock. After processing the request,
the server issues a reply including the time at which the reply leaves the server
(T3). When the client receives the reply the arrival time (T4) is also annotated.
With this set of timestamps the client can calculate the round trip time (trd)
and the time offset between the server’s and client’s clocks (toffset). Assuming
a symmetric connection these times can be calculated according to eq. (1).

trd = (T4 − T1)− (T3 − T2)

toffset =
(T2 − T1) + (T3 − T4)

2
. (1)

Fig. 1. On-wire (S)NTP protocol operation

Using the calculated offset the client can correct its local clock to match the
server time. Software implementations of NTP tipically achieve time synchro-
nization within a millisecond with respect to the server [2,4]. There are two main
sources of error. The first one is the asymmetry in the network communication
when the time spent by the client’s request to reach the server is different to
the time spent by the answer to reach the client. This is due to unpredictable
latency in network equipment, specially when collisions take place and the num-
ber of the devices involved increases. The second main source of error is due to
the variable time gap between the instant the time stamp is registered in the
datagram and the real instant the datagram leaves or reaches the host. In typical



software implementation, these time stamps are registered by client/server soft-
ware running as a user level application so the time stamp error will depend on
the time spent processing the datagram as it goes through the protocol stack and
software layers. This error will largely depend on system load, detailed software
implementation, etc.

As in PTP, the precision of the NTP synchronization can be largely improved
by doing the time-stamping operation in lower layers [5,6,7]. The highest preci-
sion in the time-stamping operation is only achievable if done by the Ethernet
device hardware as soon as the packets arrive or leave the interface. Thus, pre-
cision at the time client can be better than one microsecond [7].

3 Synchronization System Overview

The objective of the project leading to the design experience summarized in this
contribution was to design a very compact and low cost SNTP client and server
suitable for the scenario depicted in Fig. 2, where the SNTP server gathers the
time from the GPS receiver and SNTP clients provide time and synchronization
information to remote terminal units (RTU’s). The SNTP server will use a stan-
dard GPS receiver as a time reference. It will use the PPS (Pulse Per Second)
signal and NMEA [8] data from the GPS to synchronize its internal clock. The
SNTP clients will synchronize with the server through the local area network
using the NTP protocol, and will provide a PPS signal and NMEA informa-
tion through a serial interface, emulating a GPS receiver. With this solution,
there is no need to provide a GPS receiver with every RTU to avoid extra costs,
complexity and solve the cases where the installation of a GPS antenna is not
feasible. A summary of the system specifications follows:

Fig. 2. Synchronization system overview

– Clients and servers should operate in a standard 10/100/1000MHz Ethernet
LAN.

– Clients and servers should gather their configuration parameters automat-
ically using the BOOTP protocol [9] so that the configuration for all the
clients and servers can be centralized in a single BOOTP server.

– The precision of the local clock at the clients and the server should be within
10 µs of a GPS reference in optimal conditions: low network load and direct
LAN connection without switches. In typical conditions precision should be
always within 1 ms.



– The whole client and server designs should fit in a single, low density FPGA
chip and should need no additional hardware, so that the system can work
stand-alone or embedded in a bigger system.

– Low power: implemented in a low density, low frequency FPGA, the client
or server should consume under 1 W of average power.

– System clock frequency is 50 MHz.

After thoughtful consideration, it was decided to implement both the client and
server completely in hardware without a software abstraction level. The most
important reasons leading to this decision were that in order to achieve a high
accuracy, some of the key parts of the system, like timestamping, need be done
in hardware anyway; and that the lack of a processor and associated subsystems
(RAM, file system, etc.) should give a good footprint in terms of resources and
power consumption. In the rest of the section, the most important aspects of
the design and implementation are commented. Diagrams of the modules that
form the SNTP server and client are shown in Fig. 3. Server and client share the
Ethernet MAC controller and the UART with no modifications. The protocol and
configuration interface and the synchronization module are the most complex
blocks and most of its functionality is shared between the client and the server.
The transmission and receptions modules are specific to the server and client
respectively. Next, we will briefly describe the functionality of these block.

Fig. 3. SNTP client and server block diagram. a) server, b) client

The protocol and configuration interface is probably the most complex block
in the system. It is in charge of handling the configuration process and the
various communication protocols involved during the configuration and normal
operation phases: BOOTP, IP, ARP, UDP and NTP. It also acts as the con-
trol unit of the system since many system tasks are triggered by the protocol



interface. At startup time, the configuration phase starts by requesting a config-
uration packet through the BOOTP protocol. A BOOTP response provides the
client with an IP network address and mask client configuration parameters like
the NTP server address, the poll interval, UART baud rate and some internal
clock tunning parameters. After configuration, the interface enters normal oper-
ation and issues NTP requests at the configured poll intervals, and collect the
responses. It is also in charge of registering and reading the timestamps of the
NTP packets as they are processed. This information is then transferred to the
synchronization module to make the necessary clock adjustments.

The task of the synchronization module is to maintain the local clock time as
accurate as possible. In the client, when a NTP response arrives, the timestamps
are transferred to the synchronization module that calculates the local clock
offset according to eq. (1). In the server, the offset is calculated by using the
reference provided by the GPS trhough the reception module. Then, the local
time is corrected by introducing slight frequency variations to the local clock
counter, so that a good frequency stability is achieved. The frequency control is
done with the clock discipline algorithm published in [11] which provides both
a high accurate control and a low time to synchronization. By design, the local
clock resolution for the fractional part of the second is 22 bits (238 ns time
resolution) which is intended to provide local clock accuracy in the range of
1 µs.

The transmission (server) and reception (client) modules handles the con-
version between the local clock time format (that follows NTP standards) and
NMEA-0183 Recommended Minimum sentence C (RMC) [8] frame format used
to communicate with the GPS unit in the server, and with the external equip-
ment in the client. The Ethernet MAC controller provides the standard func-
tionality and is in charge of controlling a standard Fast Ethernet PHY device,
allowing the transmission and reception of Ethernet frames conforming to IEEE
802.3 specification.

4 Platform and Tools

The systems are implemented on FPGA chips from Xilinx using Xilinx tools.
Development has been done in a Digilent’s Spartan 3E Starter Board [12] that
includes a mid-range Xilinx Spartan-3E XC3S500E FPGA chip. Most of the de-
sign is coded in hardware description languages (mostly Verilog but also some
VHDL) that has been synthesized using Xilinx’s XST synthesizer. Xilinx’s Sys-
tem Generator for DSP (SGDSP) [13] has also been extensively used to imple-
ment complex arithmetic operations.

The Ethernet MAC controller is the Tri-mode Ethernet MAC IP-core avail-
able from the OpenCores web portal [14]. The block is available as Verilog code
and has been slightly customized to make a more efficient memory usage of the
FPGA resources. The top-level design in the protocol and configuration inter-
face and the synchronization module have been designed using SGDSP. This has
facilitated a fast design and interconnection of processing blocks, registers and



memories. Controlling units in these blocks have been designed as state machines
coded in Verilog as black boxes inside the SGDSP project. The reception and
transmission modules have been implemented using custom time format convert-
ers coded in VHDL and a simple processing unit implemented using Picoblaze
[15], a very simple soft microprocessor from Xilinx.

Verilog and VHDL code has been simulated using Xilinx’s ISIM logic simulator
included with the ISE design suit [16]. Inside SGDSP, ISIM is also used to
simulate the user’s black boxes. Otherwise, the high level simulation capabilities
of SGDSP, that uses Matlab/Simulink have been extensively exploited for the
associated modules, using various data sources and sinks (scopes) provided by
SGDSP and custom Matlab scripts, which has greatly facilitated the simulation
process. Xilinx’s ChipScope [17] integrated logic analyzer has also been used for
testing the FPGA chip during the first part of the development, specially to
test and validate the clock discipline algorithms. Later, a custom logic analyzer
named LEA (Logic Event Analyzer) [18] was developed for the long-term testing
of the system to overcome the storage capabilities of ChipScope.

5 Results

In this section some preliminary results are presented in order to evaluate the sys-
tem performance and fulfillment of specifications. First, Table 1 summarizes the
hardware resources consumed by the implementation on a Xilinx’s XC3S500E
chip. Both client and server designs occupies less than 50% of the chip’s resources
except for the number of slices. Considering this is a low grade family we can
say that hardware footprint is reasonably low and would be under the 10% of
slice occupation in any mid-range Virtex-6 family of FPGA’s of the same vendor.
The resources are slightly higher in the client because of the transmission mod-
ule, which needs a divider and other arithmetic blocks with an extra complexity
when compared to the server’s reception module.

Table 1. Hardware implementation results (FPGA Spartan-3E XC3S500E)

Resource SNTP Client - Use (%) SNTP Server - Use (%)

Slices 3615 (77 %) 2927 (62 %)
Slice Flip Flops 3753 (40 %) 2941 (31 %)
4-input LUT 4475 (48 %) 3424 (36 %)
RAMB16 5 (25 %) 5 (25 %)

Table 2 shows the accuracy of three servers as seen by the standard NTP
software client running in a personal computer. The Internet server is a public
NTP server available and located in another country, the commercial server
Lantime M600 Network Time Server from Meinberg [19] and the prototype is an
implementation of the full hardware SNTP server described in this contribution.



Both the commercial server and the prototype are connected to the same LAN
than the software client. Delay measures the round-trip-time from the client to
the server, offset is the displacement of the local clock and jitter measures the
stability of the synchronization. As expected, both local servers provide much
better synchronization than the Internet server. Also, both local servers give
similar quality figures as seen by the client with slightly better results for our
prototype.

Table 2. Software client synchronization results: estimated delay, offset and jitter, all
in milliseconds

Delay Offset Jitter

Internet server 33.89 −2.410 0.550
Commercial server 0.251 −0.044 0.054
Prototype 0.101 −0.013 0.045

Table 3 shows the mean offset and offset error as seen by the hardware client
when synchronized to the hardware server operating in the same LAN, for various
combinations of the poll interval exponent (p) and the attenuation factor (q). p
controls the poll interval which is 2p and q controls how aggressively the offset
is corrected with softer corrections for higher values of q [11]. Nominal values of
the implementation are p = 0 and q = 2. This mainly shows that the discipline
algorithms implemented in the client are able to maintain a local clock accuracy
below 1 µs which surpasses the initial specification of 10 µs.

Table 3. Hardware client-server synchronization. Mean offset ± error in microseconds.

q = 0 q = 1 q = 2 q = 3

p = 0 0.06± 1.21 0.06 ± 1.17 0.07 ± 0.95 0.05 ± 0.85
p = 2 0.07± 1.71 0.05 ± 1.51 0.07 ± 1.69 0.20 ± 1.81
p = 4 0.04± 3.88 0.23 ± 4.34 1.01 ± 6.53 0.55 ± 14.86
p = 6 0.24± 13.18 0.59 ± 17.97 1.16± 35.29 9.19 ± 64.45

In order to test the performance of the server prototype it is loaded with
a varying number of requests per second (rps) by injecting NTP traffic in the
LAN. At the same time, the mean offset and offset error is collected from a
client prototype. It has been checked that the synchronization accuracy is not
affected with a low number of rps and that the server can easily handle 10000
rps maintaining an accuracy of 3 µs with a maximum rps estimated above 40000
rps. Typically, Meinberg equipment specifies a maximum of 10000 rps without
mentioning the expected accuracy, while Symmetricom’s [20] announces a time
stamp accuracy of 14 µs under 3200 rps.



Finally, Table 4 estimates the power consumption and unit cost of various
NTP server alternatives: a commercial server like the ones from Meinberg or
Symmetricom, a software server implemented in an embedded computer like the
Beagleboard [21] and our hardware SNTP server prototype. The stand-alone
prototype power consumption is measured on a custom printed circuit board
(PCB) that includes the FPGA chip and all the necessary peripherals. The
reduced power consumption of the prototype is due to its much more simple
hardware architecture compared to the other alternatives. The unit cost is also
reduced since the prototype does not need additional devices like flash or RAM
memory. Actually, if the prototype design is embedded in a bigger system as a
soft IP-core, the power consumption and cost can be almost negligible.

Table 4. Power consumption and unit cost estimations for various NTP server imple-
mentation alternatives

Commercial Embedded Prototype Prototype
server comp. (stand-alone) (embedded)

P (W) 20.4 3, 11 0.624 ≈ 0
Unit cost ($) 6000− 8000 180 50 ≈ 0

6 Conclusions

This contribution summarizes the implementation of a an embedded network
time synchronization system completely implemented in FPGA hardware to il-
lustrate the feasibility a full hardware implementation of high level functions
typically found in the software layer. The accuracy of the system is in the same
range of commercial equipment while the needed resources, power and cost is two
orders of magnitude lower, at the cost of sacrificing some additional functional-
ity and flexibility. The design is carried out using the Xilinx’s tool set including
DSP libraries, but only standard blocks and functions are used so it could be
completely ported to a hardware description language to achieve vendor and
technology independence.

This is a good study-case to supports the idea that high-level system functions
tightly related to software like network protocols and network synchronization
can be completely ported to hardware to obtain a very cheap yet much higher
performance solution. This gain is mainly due to the simplification of the prob-
lem by removing some abstraction layers like the computer and the software
abstractions. Newer design tools and the conception of a hardware operating
system-like abstraction layer can make the full hardware approach widely avail-
able to a range of traditional software applications.
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