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Abstract. In this article, a random and a stochastic version of a SIR nonau-

tonomous model previously introduced in [19] is considered. In particular, the

existence of a random attractor is proved for the random model and the per-
sistence of the disease is analyzed as well. In the stochastic case, we consider

some environmental effect on the model, in fact, we assume that one of the

coefficients of the system is affected by some stochastic perturbation, and an-
alyze the asymptotic behavior of the solutions. The paper is concluded with a

comparison between the two different modeling strategies.

1. Introduction. The study of biological models in nonautonomous and nonde-
terministic frameworks have attracted the attention of many researcher over the last
decades (see [8] [9], [10] and the references therein). In the nondeterministic case,
the most used strategies consist in considering stochastic or random perturbation.
These two different approaches lead to different modeling, for which different tools
are available. In order to describe that, in this article we consider random and
stochastic perturbation of the following deterministic model (see [3] for a detailed
discussion): 

Ṡ(t, ω) = q − aS(t) + bI(t)− γ S(t) I(t)
N(t) ,

İ(t, ω) = −(a+ b+ c)I(t) + γ S(t) I(t)
N(t) ,

Ṙ(t, ω) = cI(t)− aR(t).

(1)

The above model has been considered in [19] in a nonautonomous framework (see
also [20] for a bifurcation scenario of a similar model with two time-dependent
parameters). In particular it deals with the case in which the per capita/capita
infection rate varies in time (see Thieme [25] for a more detailed discussion). This
can be modeled by introducing a forcing term which can be either time dependent
(see [19]) or random.
Here we consider a case in which the forcing term is nondeterministic and can be
modeled in two different ways: in a first model (Section 3) we consider a random
coefficient and study the problem in the framework of Random Dynamical Systems
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(RDS for short). This allows not only to introduce a random counterpart of the
concept of deterministic global attractor, but also the useful definition of random
equilibria (also called random fixed points in [24]). In particular, we will use these
tools to study the asymptotic and qualitative behavior of the solutions of the system
under investigation. The main definitions and results concerning RDS are briefly
recalled in Section 2. In the second case (which is analyzed in Section 4), we consider
the system in a stochastic context. First, we consider the situation in which the
system is subjected to some environmental effect, in the sense that one of the
coefficients of the model is perturbed by an additive noise. This yields a stochastic
system with multiplicative noise of the same intensity in all the equations of the
system. In the last section of conclusions, we emphasize that the stochastic case
may exhibit more modeling problems than the random one because, depending on
which coefficient is perturbed by noise, the modeling technique can provide us with
a more or less appropriate model to describe the real system.

In this stochastic case, we use the technique based on the construction of con-
jugated random dynamical systems thanks to an appropriate change of variables
involving the Ornstein-Uhlenbeck process. A final comparison between these two
strategies is discussed in the last section.

2. Some preliminaries definitions. In this section we review on some basic
concepts from the theory of random dynamical systems (for more details see [1, 8, 13]
amongst others).

Let (X, ‖ · ‖X) be a separable Banach space and let (Ω,F ,P) be a probability
space where F is the σ−algebra of measurable subsets of Ω and P is the probability
measure.
We define a flow θ = {θt}t∈R on the probability space Ω with each θt being a
mapping θt : Ω→ Ω satisfying

(1) θ0 = IdΩ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) 7→ θtω is measurable,
(4) the probability measure P is preserved by θt, i.e., P(θ−1

t A) = P(A) for all
A ∈ F .

Finally, (Ω,F ,P, θ) is called a metric dynamical system [1].

Definition 2.1. A stochastic process {ϕ(t, ω)}t≥0,ω∈Ω is said to be a continuous
RDS over (Ω,F ,P, (θt)t∈R) with state space X if ϕ : [0,+∞) × Ω × X → X is
(B[0,+∞)× F × B(X), B(X))- measurable, and for each ω ∈ Ω,

(i) the mapping ϕ(t, ω) : X → X, x 7→ ϕ(t, ω)x is continuous for every t ≥ 0;
(ii) ϕ(0, ω) is the identity operator on X;

(iii) (cocycle property) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2.2. (i) A random set K is a measurable subset of X×Ω with respect
to the product σ−algebra B(X)×F .

(ii) The ω−section of a random set K is defined by

K(ω) = {x : (x, ω) ∈ K}, ω ∈ Ω.

In the case that a set K ⊂ X × Ω has closed or compact ω−sections it is a
random set as soon as the mapping ω 7→ d(x,K(ω)) is measurable (from Ω
to [0,∞)) for every x ∈ X, see [13]. Then K will be said to be a closed or
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a compact, respectively, random set. It will be assumed that closed random
sets satisfy K(ω) 6= ∅ for all or at least for P−almost all ω ∈ Ω.

(iii) A bounded random set K(ω) ⊂ X is said to be tempered with respect to
(θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to (θt)t∈R
if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0.

We regard D(X) as the set of all tempered random sets of X.

Definition 2.3. A random set Γ(ω) ⊂ X is called a random absorbing set in D(X)
if for any K ∈ D(X) and a.e. ω ∈ Ω, there exists TK(ω) > 0 such that

ϕ(t, θ−tω)K(θ−tω) ⊂ Γ(ω), ∀t ≥ TK(ω).

Definition 2.4. Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, (θt)t∈R) with state
space X and let A(ω)(⊂ X) be a random set. Then A(ω) is called a global random
D attractor (or pullback D attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if ω 7→ A(ω) satisfies

(i) (random compactness) A(ω) is a compact set of X for a.e. ω ∈ Ω;
(ii) (invariance) for a.e. ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω);

(iii) (attracting property) for any K ∈ D(X) and a.e. ω ∈ Ω,

lim
t→∞

distX(ϕ(t, θ−tω)K(θ−tω), A(ω)) = 0,

where

distX(G,H) = sup
g∈G

inf
h∈H
‖g − h‖X

is the Hausdorff semi-metric for G,H ⊆ X.

Proposition 1. [12, 15] Let Γ ∈ D(X) be an absorbing set for the continuous ran-
dom dynamical system {ϕ(t, ω)}t≥0,ω∈Ω which is closed and satisfies the asymptotic
compactness condition for a.e. ω ∈ Ω, i.e., each sequence xn ∈ ϕ(tn, θ−tnω)Γ(θ−tnω)
has a convergent subsequence in X when tn →∞. Then the cocycle ϕ has a unique
global random attractor with component subsets

A(ω) =
⋂

τ≥TΓ(ω)

⋃
t≥τ

ϕ(t, θ−tω)Γ(θ−tω).

If the pullback absorbing set is positively invariant, i.e., ϕ(t, ω)Γ(ω) ⊂ Γ(θtω) for
all t ≥ 0, then

A(ω) =
⋂
t≥0

ϕ(t, θ−tω)Γ(θ−tω).

Remark 1. When the state space X = Rd, the asymptotic compactness follows
trivially. Note that the random attractor is path-wise attracting in the pullback
sense, but does not need to be path-wise attracting in the forward sense, although
it is forward attracting in probability, due to some possible large deviations, see
e.g., Arnold [1].
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3. Random System. The random system we are concerned with is the following:
Ṡ(t, ω) = q(θtω)− aS(t) + bI(t)− γ S(t) I(t)

N(t) ,

İ(t, ω) = −(a+ b+ c)I(t) + γ S(t) I(t)
N(t) ,

Ṙ(t, ω) = cI(t)− aR(t),

(2)

where a, b, c, γ are positive constants, N(t) = S(t) + R(t) + I(t) is the total
population and where

q(θtω) ∈ q0[1− ε, 1 + ε], q0 > 0, ε ∈ (0, 1). (3)

Examples of this kind of noise can be found, for instance, in [2]. Given an Ornstein-
Uhlenbeck process Zt (see [8, 11]), the following processes

ξ1(t) = q0

(
1− 2ε

Zt
1 + Z2

t

)
,

and

ξ2(t) = q0

(
1− 2ε

π
arctanZt

)
,

take values in q0[1 − ε, 1 + ε], the first one peaking around q0[1 ± ε] and the other
centering at q0.

Although it is possible to consider a more general model in which some other
coefficients can be also random, for simplicity in our analysis, we have preferred to
consider just one of them random because this is enough to show how the technique
works.

First of all we prove that solutions corresponding to nonnegative initial conditions
remain nonnegative, that is:

Lemma 3.1. The set

R3
+ = {(S, I,R) ∈ R3 : S ≥ 0, I ≥ 0, R ≥ 0},

is positively invariant for the system (2), for each fixed ω ∈ Ω.

Proof. We quickly verify that the vector field, at the boundary of R3
+, points in-

wards.
On the plane S = 0 we have that Ṡ > 0, the plane I = 0 is invariant since on it we
have İ = 0 while on R = 0 we have Ṙ ≥ 0.
The positive S-semi axes is invariant, in fact we have:

Ṡ(t, ω) = q(θtω)− aS(t),

that is

S(t, ω) = S0e
−a(t−t0) + e−at

∫ t

t0

q(θsω)easds. (4)

The last term is bounded, in fact

q0(1− ε)e−at
∫ t

t0

easds ≤ e−at
∫ t

t0

q(θsω)easds ≤ q0(1 + ε)e−at
∫ t

t0

easds,

that is

q0(1− ε)(1− e−a(t−t0)) ≤ ae−at
∫ t

t0

q(θsω)easds ≤ q0(1 + ε)(1− e−a(t−t0)).

If we start on the positive R−semi axes we have that the solution enters the plane
I = 0, while on the positive I−semi axes we have Ṡ, Ṙ > 0.
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If we replace ω by θ−tω in (4) and set t0 = 0, we obtain

S(t;ω, S0) = S0e
−at +

∫ 0

−t
q(θpω)eapdp, (5)

which, for t→∞, pullback converges to

S∗(ω) :=

∫ 0

−∞
q(θpω)eapdp. (6)

We observe that S∗(ω) is positive and bounded. In fact, for any ω ∈ Ω, we have:

q0(1− ε) ≤ S∗(ω) ≤ q0(1 + ε). (7)

For simplicity we set u(t) = (S(t), I(t), R(t)) ∈ R3
+. Then we have:

Lemma 3.2. For any ω ∈ Ω, t0 ∈ R and any initial data u0 = (S(t0), I(t0), R(t0)) ∈
R3

+, system (2) admits a unique bounded solution u(·; t0, ω, u0) ∈ C([t0,+∞),R3
+)

with u(t0; t0, ω, u0) = u0 provided that (3) is fulfilled.
Moreover the solution generates a random dynamical system ϕ(t, ω)(·) defined as

ϕ(t, ω)u0 = u(t; 0, ω, u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω.

Proof. The system can be rewritten in the following form:

u̇(t) = F (u, θtω),

where F (u, θtω) is the right hand side of (2). Since q(θtω) is continuous with
respect to t, the function F (·, θtω) ∈ C(R3

+ × [t0,+∞),R3
+) and is continuously

differentiable with respect to (S, I,R). Then, by classical results about ordinary
differential equations we have that system (2) possesses a unique local solution.
If we sum the equations of the system we obtain

Ṅ(t, ω) = q(θtω)− aN(t),

whose solution satisfying N(t0) = N0 is given by

N(t; t0, ω,N0) = N0e
−a(t−t0) + e−at

∫ t

t0

q(θsω)easds. (8)

As in the proof of the previous lemma we have

q0(1−ε)+[N0−q0(1−ε)]e−a(t−t0) ≤ N(t; t0, ω,N0) ≤ q0(1+ε)+[N0−q0(1+ε)]e−a(t−t0),
(9)

from which we have that the solutions are bounded. Moreover, both forward and
backward limits of N(t; t0, ω,N0) satisfy:

lim
t→+∞

N(t; t0, ω,N0) ∈ [q0(1− ε), q0(1 + ε)], ∀t0 ∈ R,

lim
t0→−∞

N(t; t0, ω,N0) ∈ [q0(1− ε), q0(1 + ε)], ∀t ∈ R.

Then the local solution can be extended to a global one u(·; t0, ω, u0) ∈ C1([t0,∞),R3
+).

It is easy to see that

u(t+ t0; t0, ω, u0) = u(t; 0, θt0ω, u0),

for all t0 ∈ R, t ≥ 0, ω ∈ Ω, u0 ∈ R3
+. Then we can define a map ϕ(t, ω)(·) which is

a random dynamical system:

ϕ(t, ω)u0 = u(t; 0, ω, u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω.
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Proposition 2. For each ω ∈ Ω there exists a tempered bounded closed random
absorbing set Γ(ω) ∈ D(R3

+) of the random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω such
that for any K ∈ D(R3

+) and each ω ∈ Ω there exists a TK(ω) > 0 such that

ϕ(t, θ−tω)K(θ−tω) ⊂ Γ(ω), ∀t ≥ TK(ω).

In detail for any 0 < η < q0(1− ε), the set Γ(ω) can be chosen as the deterministic
set

Γη := {(S, I,R) ∈ R3
+ : q0(1− ε)− η ≤ S + I +R ≤ q0(1 + ε) + η},

for all ω ∈ Ω .

Proof. Using (8) and (9) we deduce that Ṅ(t, ω) ≤ 0 on N = q0(1 + ε) + η while

Ṅ(t, ω) ≥ 0 on N = q0(1 − ε) − η for all η ∈ [0, q0(1 − ε)). Then Γη is positively
invariant for η ∈ [0, q0(1− ε)).
Now suppose that N0 ≥ q0(1 + ε) + η (the other case is similar), then

N(t; t0, ω,N0) ≤ N0(ω)e−a(t−t0) + q0(1 + ε)[1− e−a(t−t0)], (10)

we replace ω by θ−tω and obtain

N(t; θ−tω,N0(θ−tω)) ≤ sup
N0∈K(θ−tω)

N0 e
−a(t−t0) + q0(1 + ε)[1− e−a(t−t0)]. (11)

Thanks to the previous inequality, there exists a time TK(ω) such that for t >
TK(ω), ϕ(t, θ−tω)u0 ∈ Γη for all u0 ∈ K(θ−tω). That is, the set Γη is compact and
absorbing for all η ∈ (0, q0(1−ε)), and absorbs all tempered random sets of R3

+ and
in particular its bounded sets.

Using the above results we deduce:

Theorem 3.3. The random dynamical system generated by system (2) possesses a
global random attractor.

If we set t0 = 0 and replace ω by θ−tω in (8) we have

N(t; θ−tω,N0) = N0e
−at +

∫ 0

−t
q(θpω)eapdp. (12)

It is easy to see that the solution (8) both forward and pullback converges to

N∗(ω) =

∫ 0

−∞
q(θpω)eapdp. (13)

In details: the pullback limit reads as

|N(t; θ−tω,N0)−N∗(ω)| → 0 for t→∞,

while the forward limit is defined as

|N(t;ω,N0)−N∗(θtω)| → 0 for t→∞.

We observe that the expression of (13) coincides with that of (7) on the S−axes.
Since the computation is done with respect to the total population N = S + I +R,
it is natural to wonder what happens to the three populations individually. In
order to qualitatively describe the asymptotic behavior of (S, I,R), we replace, in
system (2), N(t) by its forward limit N∗(θtω). To make the computations clearer to
the reader, we proceed in this informal way, however the rigorous proof by taking
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approximations of N∗(θtω) for large values of t can also be carried out. Then, we
obtain the following SI random model:{

Ṡ(t, ω) = q(θtω)− aS(t) + bI(t)− α(θtω)S(t) I(t),

İ(t, ω) = −(a+ b+ c)I(t) + α(θtω)S(t) I(t),
(14)

where

α(ω) =
γ

N∗(ω)
.

We observe that the random parameter α(θtω) is bounded:

γ

q0(1 + ε)
≤ α(θtω) ≤ γ

q0(1− ε)
, for any ω ∈ Ω, (15)

and that R2
+ is positively invariant. We set V = S + I, then

V̇ = q(θtω)− aV − cI(t),

from which

V̇ ≤ q(θtω)− aV,
and then the forward and pullback limit v∗(ω) of V (t) satisfies

0 < v∗(ω) ≤ V∗(ω) =

∫ 0

−∞
eapq(θpω)dp.

Moreover

V (t; t0, ω, V0) ≤ q0(1 + ε) + e−at(V0 − 1).

By a similar argument to that used for the SIR model we conclude that the sets

Bη =
{

(S, I) ∈ R2
+ : S + I ≤ q0(1 + ε) + η

}
are pullback absorbing for η > 0 and positively invariant for η ≥ 0. In order to
see what happens to the population I in the asymptotic behavior, we can obtain a
sufficient condition for the disappearance of the disease.
We consider solutions starting in B0. We first observe that the S-axes is invariant
and that solutions both forward and pullback converges to S∗ on it. Then, by the
second equation of the system we have

İ(t, ω) = −(a+ b+ c)I(t) + α(θtω)S(t) I(t)

≤ I(t)[α(θtω)q0(1 + ε)− (a+ b+ c)]

= I(t)

[
γ

1 + ε

1− ε
− (a+ b+ c)

]
,

then, if

γ
1 + ε

1− ε
− (a+ b+ c) < 0, (16)

we have that

lim
t→∞

I(t) = 0.

Then the systems tend to a disease free configuration if (16) is satisfied.
By the first equation of the SI system we have

Ṡ(t, ω) ≥ q0(1− ε)− aS + I(t)

[
b− γ

q0(1− ε)
S

]
.

Then the set

B̃ = {(S, I) ∈ B0 : S ≥ q0(1− ε) max{1/a, b/γ}} ,
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is positively invariant. Then if we restrict on B̃ we have

İ(t, ω) = −(a+ b+ c)I(t) + α(θtω)S(t) I(t) (17)

≥ −(a+ b+ c)I(t) +
γ

q0(1 + ε)
S(t)I(t) (18)

≥ I(t)

[
1− ε
1 + ε

max{b, γ} − (a+ b+ c)

]
. (19)

We conclude that, if

γ > ab, and
1− ε
1 + ε

γ > a+ b+ c, (20)

the disease persists.

Remark 2. We observe that the conditions for persistence/extinction of the desease
are not complementary like in [19] since in the SI model under consideration we have
two (randomly) perturbed coefficients (q and α) instead of one (q) as in [19]. In this
case the persistence/extinction conditions are based on the upper and lower bound
of α(·) (see (15)).

4. Stochastic System. The stochastic model we will consider now is in complete
agreement with a largely used approach in the published literature on this topic
(see, for instance, [18], [4], [6] and references cited therein) which consists in con-
sidering white noise that is directly proportional to the quantities S(t), I(t), R(t)
in each equation respectively. Moreover, it can be considered as the result of the
environmental noise effect on some of the parameters in the model. For example,
if we assume that one of the parameters, say a, is affected by a noisy perturbation
of the type σẆ (t), in other words, if we replace in the deterministic model the

parameter a by a− σẆ (t), then the model becomes:
dS =

[
q − aS(t) + bI(t)− γ S(t) I(t)

N(t)

]
dt+ σS ◦ dW (t),

dI =
[
−(a+ b+ c)I(t) + γ S(t) I(t)

N(t)

]
dt+ σI ◦ dW (t),

dR = [cI(t)− aR(t)] dt+ σR ◦ dW (t).

(21)

We remark that this kind of perturbations describing environmental noise has been
used is several applied situations as can be seen, for example, in [16], [17], [26]. In
fact, if we sum the three equations of the system and set N = S + I + R, then we
obtain the following perturbed equation for the total population of the system:

dN = (q − aN(t)) + σN ◦ dW (t),

that has been obtained, as we mentioned above, by perturbing coefficient a in each
equation by the same noise (see for example [22] or [27]).

Notice that the noise considered for three populations is correlated (following
the approach of [22]). Moreover, for simplicity, we have considered that the noise
intensity is the same in all the equations but it does not make a substantial dif-
ference if we consider different ones in each equation, as well as different mutually
independent Wiener processes in each equation. Only the computations will be
more complicated, but the technique is the same.
It is easy to see that solutions, corresponding to nonnegative initial data, remain
nonnegative and, as a consequence, the model is well defined.
The strategy consists in transforming the stochastic system into a random one with
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random coefficients and without white noise. To this end, we introduce the following
Ornstein-Uhlenbeck process on (Ω,F ,P, (θt)t∈R)

z∗(θtω) = −
0∫

−∞

esθtω(s)ds, t ∈ R, ω ∈ Ω0, (22)

which solves the following Langevin equation [1, 11]

dz = −zdt+ dW (t), t ∈ R, (23)

where W (t)(ω) = W (t, ω) = ω(t) for ω ∈ Ω, t ∈ R, is a two sided Wiener process
(see [11] for a more detailed description). Let us now recall some basic properties
of z∗ which will be used in our analysis ([1, 11]) :

Proposition 3. There exists a θt-invariant set Ω̃ ∈ F of Ω of full P measure such

that for ω ∈ Ω̃, we have

(i) the random variable |z∗(ω)| is tempered, i.e., for ω ∈ Ω̃,

lim
t→+∞

e−βt sup
t∈R
|z∗(θ−tω)| = 0, ∀β > 0;

(ii) the mapping

(t, ω)→ z∗(θtω) = −
0∫

−∞

esω(t+ s)ds+ ω(t)

is a stationary solution of Ornstein-Uhlenbeck equation (23) with continuous
trajectories;

(iii) In addition, for any ω ∈ Ω̃:

lim
t→±∞

|z∗(θtω)|
t

= 0; (24)

lim
t→±∞

1

t

∫ t

0

z∗(θsω)ds = 0; (25)

lim
t→±∞

1

t

∫ t

0

|z∗(θsω)|ds = E[z∗] <∞. (26)

Then, in order to obtain the associate random system, we consider the following
change of variable:

S̃(t) = S(t)e−σz
∗(θtω), Ĩ(t) = I(t)e−σz

∗(θtω), R̃(t) = R(t)e−σz
∗(θtω).

Then the system can be written as
˙̃S(t, ω) = qe−σz

∗ − aS̃(t) + bĨ(t)− γ S̃(t) Ĩ(t)

Ñ(t)
+ σS̃z∗,

˙̃I(t, ω) = −(a+ b+ c)Ĩ(t) + γ S̃(t) Ĩ(t)

Ñ(t)
+ σĨz∗,

˙̃R(t, ω) = cĨ(t)− aR̃(t) + σR̃z∗.

(27)

Adding the three equation we obtain

˙̃N(t, ω) = qe−σz
∗
− aÑ(t) + σÑz∗ = qe−σz

∗
− (a− σz∗)Ñ . (28)

The previous equation has a nontrivial random solution that is both forward and
pullback attracting. In fact, for any initial datum N0 we have:

N(t;ω,N0) = N0e
−

∫ t
0

[a−σz∗(θsω)]ds +

∫ t

0

qe−σz
∗(θsω)e

∫ t
s

[a−σz∗(θτω)]dτds,
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and replacing ω by θ−tω we obtain

N(t; θ−tω,N0) = N0e
−

∫ 0
−t[a−σz

∗(θpω)]dp +

∫ 0

−t
qe−σz

∗(θpω)e−
∫ 0
p

[a−σz∗(θqω)]dqdp,

which pullback converges for t→ +∞ to

N∗(ω) = q

∫ 0

−∞
e−σz

∗(θpω)e−
∫ 0
p

[a−σz∗(θqω)]dqdp. (29)

We observe that N∗(ω) is well defined since, using ergodicity of z∗, the integrand
behaves like eap for p→ −∞ due to the following properties:

z∗(θpω)

p
,

1

p

∫ 0

p

z∗(θqω)dq → 0, for p→ −∞.

5. Conclusions and discussions. In this paper we have considered two non-
deterministic versions of a non-autonomous system proposed in [19]. In the first
case we have considered a random system by replacing the non-autonomous and
bounded parameter q(t) by its random and bounded counterpart q(θtω). Another
possibility analyzed is the stochastic version of the model. We have considered an
environmental effect produced on one of the parameters of the systems following
the direction of recent published literature on this topic. We have only considered
the noisy perturbation on one of the parameters although it may be interesting
to consider the same perturbation in other coefficients what can provide different
stochastic systems which may yield to a different qualitative behavior. We plan to
analyse this aspect in our future investigation.

It is worth noticing that, in both cases under examination we have obtained a
random stationary solution which both forward and pullback attracts the solutions.
From this point of view we can regard the random system proposed as a good
nondeterministic version of the nonautonomous system studied in [19].
From a more general point of view it is also worth emphasizing the following:

� The stochastic case gives rise to an equivalent random differential system with
unbounded random coefficients while the first case of random coefficients is
concerned with bounded ones.

� The differential equation describing the behavior of the total population is
similar in both cases and provides us with a stationary process pullback and
forward attracting any other solution. However, an important difference is
that in the random case of bounded noise, this equilibrium can be bounded
(see (13)), what allows for a posteriori control of this special solution in order
to validate the model under study. In the stochastic case of unbounded noise
(see (29)) we are not able to obtain such estimates and the corresponding
additional information.

� Another important difference is related to the fact that, in the case of bounded
noise, the random system preserves its form and structure, in fact, we only
replace the time dependent parameter q(t) by a random parameter with a
special structure, and consequently, the modeling procedure is not a priori
affected, while in the stochastic case, one has to choose carefully which coeffi-
cient can be perturbed stochastically in order to preserve the positiveness of
solutions. Notice that if the perturbation is imposed on the coefficient q, then
the preservation of the positiveness cannot be guaranteed.
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