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Abstract. In this work, we deal with several different notions of attractors that may appear

in the impulsive non-autonomous case and we explore their relationships to obtain properties

regarding the different scenarios of asymptotic dynamics, such as the cocycle attractor, the
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we illustrate our theory by exhibiting an example of a non-classical non-autonomous parabolic

equation with subcritical nonlinearity and impulses.
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1. Introduction

What are the differences that appear when we change from an autonomous equation to an

non-autonomous one? Does the asymptotic behavior of the solutions become different?

This change may be very underrated and our first answer may be negative. We might believe

that there are not many changes in the behavior of the solutions of autonomous and non-

autonomous equations. As one may see in [10, 11], this is not the case. In fact, there are

infinitely many differences between these two cases. To illustrate this difference, let us consider

a general differential equation of the form
#

9u “ fpt, uq, t ą s,

upsq “ u0 P X,
(1.1)

where X is a Banach space and f : R ˆD Ă R ˆX Ñ X is a map belonging to some metric

space C . Assume that there exists a unique solution rs,`8q Q t ÞÑ upt, s, f, u0q P X of (1.1)

defined for all times t ě s, for each f P C , u0 P X and s P R.

1 Partially supported by FAPESP grant 2014/25970-5 and CNPq grant 307317/2013-7, Brazil.
2 Supported by Partially supported by FEDER and Ministerio de Economı́a y Competitividad (Spain) under
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Thanks to the uniqueness of solution, one can see that when f is time-independent, that is,

fpt, xq “ fpxq for all t P R, we have upt, s, f, u0q “ upt´s, 0, f, u0q and the asymptotic behavior

of solutions can be studied when tÑ `8 (that is, considering the evolution of the solution as

the final time evolves) or making sÑ ´8 (which is equivalent to consider the behavior of the

solution as we take earlier and earlier initial times). In this case, these two scenarios coincide

and give us the same description.

However, if f is time dependent then these two scenarios give rise to completely different

behaviors. We may study the asymptotic behavior with respect to the elapsed time t ´ s or

with respect to s (when s Ñ ´8 and t is arbitrary but fixed). These are called, respectively,

forwards and pullback dynamics and are, in general, unrelated. It is natural that they are

unrelated, for instance, the set of vector fields driving the solution may be completely different.

We have one vector field fpt, ¨q for each time t P R.

There is no reason for this to be different in the impulsive case. We know now, after the

previous discussion in [4], that the behavior of impulsive solutions in the non-autonomous case is

much richer (and harder to analyze) than in the autonomous case. Hence, bearing this in mind,

we may wonder about the relationships amongst the several different scenarios that appear in

the non-autonomous impulsive case.

Note that the theory described in [10, 11, 14, 15] has, so far, no analogous when it comes to

the impulsive framework. So, this paper shall be devoted to relate the several different kinds of

attractors that come to play when dealing with non-autonomous impulsive dynamical systems.

Moreover, the results presented in this paper are totally different from the results which

deal with random dynamical systems, where the impulses occur in time. Indeed, the results of

this paper concern with impulses at variable times that depend on the phase space (impulses

“occur” in space). Impulses that vary in time are more attractive due to their complexity and

applicability in real world problems, see for instance [5, 6, 7]. As an example, we may cite the

billiard-type system which can be modeled by differential systems with impulses acting on the

first derivatives of the solutions. Indeed, the positions of the colliding balls do not change at

the moments of impact (impulse), but their velocities gain finite increments (the velocity will

change according to the position of the ball). The reader may consult [27] for the study of

pullback attractors of non-autonomous random dynamical systems.

In the next lines we describe the organization of the paper and the main results.

In Section 2, we present the continuous non-autonomous dynamical systems theory. We

remind the reader that the notion of attractors in the non-autonomous framework can have

several interpretations. For a more careful description, the reader may consult [11].

In Section 3 we present, also briefly, the theory of impulsive non-autonomous dynamical

systems which was first developed in [4]. The results of this section, of course, include the

theory of autonomous dynamical systems in [5], but with some differences. In Section 4, we are
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concerned with such differences and we present new results for the existence of global attractors

in the impulsive autonomous case. More precisely, in this section, we introduce the notion of

c-global attractors (see Definition 4.5) and we exhibit a characterization result to ensure the

existence of c-global attractors for impulsive autonomous dynamical systems. We point out

that our result for c-global attractors (see Theorem 4.7) possesses simpler hypotheses than the

results in [5]. Also, we present an alternate result to obtain global attractors as in [5] (see

Theorem 4.9).

In Section 5, we use the continuous theory presented in [11] to define different notions for

attractors in the impulsive non-autonomous case. The relationships among these attractors are

considered in this section.

Finally, we apply our theory to fully describe the dynamics of an impulsive non-autonomous

non-classical parabolic equation in Section 6.

2. Non-autonomous dynamical systems

We begin our study by brief recalling the theory of continuous non-autonomous dynamical

systems. For more details on this topic, the reader may consult [1, 2, 3, 11, 13, 16, 23].

Let R` “ r0,`8q and N “ t1, 2, 3, . . .u be the set of all natural numbers. Let Σ be a complete

metric space and tθt : t ě 0u be a semigroup in Σ, that is, it is a family of continuous maps

from Σ into itself, satisfying the following conditions: θ0σ “ σ for all σ P Σ, θt`s “ θtθs for all

t, s P R` and the map R` ˆ Σ Q pt, σq ÞÑ θtσ is continuous.

Also, let us consider another complete metric space pX, dq and for each pair pt, σq P R` ˆΣ,

let ϕpt, σq : X Ñ X be a map satisfying the following properties:

(i) ϕp0, σqx “ x for all x P X and σ P Σ;

(ii) ϕpt` s, σq “ ϕpt, θsσqϕps, σq for all t, s P R` and σ P Σ;

(iii) the map R` ˆ ΣˆX Q pt, σ, xq ÞÑ ϕpt, σqx P X is continuous.

Definition 2.1. With the previous definitions and relations, pϕ, θqpX,Σq is said to be a non-

autonomous dynamical system, or simply a NDS.

The semigroup tθt : t ě 0u in this context is called driving semigroup, the map ϕ is called

cocycle and the property (ii) above is commonly known as the cocycle property.

A non-autonomous set is a family D̂ “ tDpσquσPΣ of subsets of X indexed in Σ. We

say that D̂ is an open pclosed, compactq non-autonomous set if each fiber Dpσq is an open

pclosed, compactq subset of X. A non-autonomous set D̂ is called ϕ´invariant if

ϕpt, σqDpσq “ Dpθtσq for all t ě 0 and each σ P Σ.
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A non-autonomous set Â ϕ´pullback attracts D̂ if lim
tÑ`8

distpϕpt, θ´tσqDpθ´tσq, Apσqq “ 0 for

all σ P Σ. Here, we use the Hausdorff semidistance between two sets, that is, for A,B Ă X

nonempty we denote distpA,Bq “ sup
aPA

inf
bPB

dpa, bq.

A universe D is a collection of non-autonomous sets which is closed with respect to inclusion,

that is, if D̂1 P D and D2pσq Ă D1pσq for all σ P Σ, then D̂2 P D.

Definition 2.2. Given a NDS pϕ, θqpX,Σq and a universe D, a compact non-autonomous set Â

is called the pϕ,Dq´cocycle attractor if:

(i) Â is ϕ´invariant;

(ii) Â ϕ´pullback attracts all non-autonomous sets in D;

(iii) Â is the minimal among all closed non-autonomous sets with property (ii).

An important notion that relates the different aspects of the non-autonomous framework,

and is vastly used in [10, 11], is the skew-product semiflow, which we recall next.

Definition 2.3. Given a NDS pϕ, θqpX,Σq, the semigroup tΠptq : t ě 0u in X “ X ˆΣ given by

Πptqpx, σq “ pϕpt, σqx, θtσq for all px, σq P X and t ě 0, (2.1)

is said to be a skew-product semiflow. We say that tΠptq : t ě 0u is the skew-product

semiflow associated with the NDS pϕ, θqpX,Σq.

Remark 2.4.

1. It is easy to see that if Σ “ tσ0u, then the NDS is, in fact, autonomous. Defining

πptq “ ϕpt, σ0q for all t ě 0, we conclude that tπptq : t ě 0u defines a semigroup in X.

2. Although the general theory of non-autonomous dynamical systems can be developed

with a semigroup tθt : t ě 0u, in order to simplify the notation we will consider only the

case where tθt : t P Ru is a group.

Recall that an evolution process in X is a family of continuous maps

tT pt, sq : t ě su from X to itself, satisfying the following conditions:

(a) T pt, tqx “ x for all x P X and t P R;

(b) T pt, sq “ T pt, τqT pτ, sq for all t ě τ ě s;

(c) the map P ˆX Q pt, s, xq ÞÑ T pt, sqx P X is continuous, where P “ tpt, sq P R2 : t ě su.

It is not difficult to verify that given an evolution process tT pt, sq : t ě su in X, we can define

a NDS by the map pt, s, xq P R` ˆ RˆX ÞÑ ϕpt, sqx P X given by

ϕpt, sqx “ T pt` s, sqx, for each t ě 0, s P R and x P X,

where we take Σ “ R and θts “ t` s for all t, s P R.
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2.1. Attractors of non-autonomous dynamical systems and their relations. We have

two important approaches that were developed in order to study the asymptotic behavior of

non-autonomous differential equations as (1.1):

(1) the theory of uniform attractors, a minimal compact (not invariant) set that forwards

attracts bounded sets uniformly with respect to the initial time;

(2) the theory of pullback attractors, a family of compact sets which is invariant and pull-

back (but, in general, not forwards) attracts bounded sets.

These two approaches were treated, at first, as unrelated notions. However, in [10] the authors

explore both notions, and using the skew-product semiflow (2.1) associated with equation (1.1),

important relationships between (1) and (2) were proved in [10].

To give an idea of their results, we consider f P CbpR ˆ X,Xq, the set of all continuous

functions from RˆX into X such that given B Ă X bounded and J Ă R, fpJ ˆBq is bounded

in X with a suitable metric %. Denote by Σ0 the set of all translates of f in the first variable,

Σ0pfq “ tfps` ¨, ¨q : s P Ru,

and define the shift operator θt : CbpRˆX,Xq Ñ CbpRˆX,Xq by θtfp¨, ¨q “ fpt` ¨, ¨q.

Remark 2.5. Note that in this case, since f is defined for all times t P R, θt is in fact a group.

If f is autonomous, that is, f does not depend on the time variable, or if f is periodic on time,

then the set Σ0 is a closed space. However, if f is more general (for instance, quasiperiodic

in time) then Σ0 is not closed, so it is convenient to consider its closure in the metric % of

CbpRˆX,Xq:
Σ “ closure of Σ0pfq in CbpRˆX,Xq in the metric %.

The set Σ is commonly known as the hull of f in pCbpR ˆX,Xq, %q and it is also denoted by

Hpfq, see [16, 26]. It is clear that the continuity of θt in Σ0 extends to the continuity of θt in

Σ.

Remark 2.6. We could also consider f P CbpR` ˆX,Xq, that is, f defined only for positive

times pwhich happens in general, when dealing with real world phenomenaq. In this case Σ is

the closure of the set tfps ` ¨, ¨q : s ě 0u, known as the positive hull of f , and θt defines a

semigroup on Σ.

We may now study the differential equation as the combination of a base flow tθtutPR on

Σ and, for each σ P Σ, the map R` ˆ X Q pt, u0q ÞÑ ϕpt, σqu0 P X where, for each u0 P X,

R` Q t ÞÑ ϕpt, σqu0 P X is the solution of the initial value problem
#

9u “ σpt, uq, t ą 0,

up0q “ u0 P X.
(2.2)
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Thus, given a non-autonomous differential equation such as (2.2), we have three different

systems to consider:

‚ the evolution process Tσpt, squ0 “ ϕpt´ s, θsσqu0, for each σ P Σ;

‚ the non-autonomous dynamical system pϕ, θqpX,Σq;

‚ the skew-product semiflow tΠptq : t ě 0u associated with pϕ, θqpX,Σq defined on the pro-

duct space X “ X ˆ Σ.

Each of these dynamical systems yields different notions of attractors:

‚ a pullback attractor tAσptqutPR for the evolution process tTσpt, sq : t ě su, for each σ P Σ;

‚ a cocycle attractor tApσquσPΣ for pϕ, θqpX,Σq;

‚ a uniform attractor A for pϕ, θqpX,Σq;

‚ a global attractor A for the skew-product semiflow tΠptq : t ě 0u.

The reader may consult [10] which presents the relations between the skew-product semiflow

and the uniform attractor, between the skew-product semiflow and the cocycle attractor and

the relation between the skew-product semiflow and the pullback attractor. These results will

be provided in the context of impulsive systems in Section 5.

3. Impulsive non-autonomous dynamical systems

In this section, we present the theory of impulsive non-autonomous dynamical systems, which

was first presented in [4]. To this end, let pϕ, θqpX,Σq be a NDS and for each D Ă X, J Ă R`
and σ P Σ, we define

FϕpD, J, σq “ tx P X : ϕpt, σqx P D for some t P Ju,

and also, if D Ă X “ X ˆ Σ we define

FΠpD, Jq “ tpx, σq P X : Πptqpx, σq P D for some t P Ju.

A point x P X is said to be an initial point if Fϕpx, τ, σq “ ∅ for all τ ą 0 and for all σ P Σ.

Definition 3.1. An impulsive non-autonomous dynamical system, or simply an INDS,

rpϕ, θqpX,Σq,M, Is consists of a NDS pϕ, θqpX,Σq, a nonempty closed subset M Ă X such that for

each x PM and each σ P Σ there exists εx,σ ą 0 such that

ď

tPp0,εx,σq

Fϕpx, t, θ´tσq XM “ ∅ and tϕps, σqx : s P p0, εx,σqu XM “ ∅, (3.1)

and a continuous function I : M Ñ X whose action will be specified later.

The set M is called the impulsive set and the function I is called impulse function. We

also define M`
ϕ px, σq “ tϕpτ, σqx : τ ą 0u XM .
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One important property which may be observed is that if M`
ϕ px, σq ‰ ∅, then there exists

t ą 0 such that ϕpt, σqx P M and ϕpτ, σqx R M for 0 ă τ ă t, and as a consequence, for each

σ P Σ, we are able to define the function φp¨, σq : X Ñ p0,`8s by

φpx, σq “

$

&

%

s, if ϕps, σqx PM and ϕpt, σqx RM for 0 ă t ă s,

`8, if ϕpt, σqx RM for all t ą 0.
(3.2)

In the first case, the value φpx, σq represents the smallest positive time such that the positive

semitrajectory of x in the fiber σ meets M and we say that the point ϕpφpx, σq, σqx is the

impulsive point of x in the fiber σ.

Definition 3.2. Given σ P Σ, the impulsive positive semitrajectory of x P X starting

at σ by the INDS rpϕ, θqpX,Σq,M, Is is a map ϕ̃p¨, σqx defined in an interval Jpx,σq Ă R`,

0 P Jpx,σq, with values in X given inductively by the following rule: if M`
ϕ px, σq “ ∅, then

ϕ̃pt, σqx “ ϕpt, σqx for all t P r0,`8q and in this case φpx, σq “ `8. However, if M`
ϕ px, σq ‰ ∅

then we denote x “ x`0 and we define ϕ̃p¨, σqx on r0, φpx`0 , σqs by

ϕ̃pt, σqx “

$

&

%

ϕpt, σqx`0 , if 0 ď t ă φpx`0 , σq,

Ipϕpφpx`0 , σq, σqx
`
0 q, if t “ φpx`0 , σq.

Now let s0 “ φpx`0 , σq, x1 “ ϕps0, σqx
`
0 and x`1 “ Ipϕps0, σqx

`
0 q. In this case s0 ă `8

and the process can go on, but now starting at x`1 . If M`
ϕ px

`
1 , θs0σq “ ∅ then we define

ϕ̃pt, σqx “ ϕpt ´ s0, θs0σqx
`
1 for s0 ď t ă `8 and in this case φpx`1 , θs0σq “ `8. However, if

M`
ϕ px

`
1 , θs0σq ‰ ∅, then we define ϕ̃p¨, σqx on rs0, s0 ` φpx

`
1 , θs0σqs by

ϕ̃pt, σqx “

$

&

%

ϕpt´ s0, θs0σqx
`
1 , if s0 ď t ă s0 ` φpx

`
1 , θs0σq,

Ipϕpφpx`1 , θs0σq, θs0σqx
`
1 q, if t “ s0 ` φpx

`
1 , θs0σq.

Now let s1 “ φpx`1 , θs0σq, x2 “ ϕps1, θs0σqx
`
1 and x`2 “ Ipϕps1, θs0σqx

`
1 q, and so on. This

process ends after a finite number of steps if M`
ϕ px

`
n , θtnσq “ ∅ for some n P NYt0u, or it may

proceed indefinitely, if M`
ϕ px

`
n , θtnσq ‰ ∅ for all n P NYt0u and in this case ϕ̃p¨, σqx is defined

in the interval r0, T px, σqq, where T px, σq “
`8
ÿ

i“0

si.

As in [4], we assume hereon the following assumption:

T px, σq “ `8 for all x P X and σ P Σ. (H0)

Remark 3.3. In the particular case when Σ “ tσ0u, these previous definitions reduce to the case

of autonomous impulsive dynamical systems. The theory of autonomous impulsive dynamical

systems and their attractors, may be found, for instance, in [5, 6, 7, 8, 9, 17, 18, 19, 21, 22, 24].
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The construction of the function φ and the impulsive positive semitrajectory ϕ̃ allows us to

state the following important relationship, whose proof may be found in [4]. Let pϕ, θqpX,Σq be

a NDS and tΠptq : t ě 0u be its associated skew-product semiflow in X. Define Π̃˚ by

Π̃˚ptqpx, σq “ pϕ̃pt, σqx, θtσq for all px, σq P X and t ě 0,

and also let tΠ̃ptq : t ě 0u be the impulsive dynamical system pX,Π,M, Iq, where M “ M ˆ Σ

and I : MÑ X is given by Ipx, σq “ pIpxq, σq, for x PM and σ P Σ. Then

Π̃˚ptq “ Π̃ptq for all t ě 0.

Moreover, if φ is the function defined in (3.2), then it coincides with the function used to define

the impulsive positive semitrajectory tΠ̃ptq : t ě 0u. Also, for each σ P Σ and t, s P R`, we have

ϕ̃pt` s, σq “ ϕ̃pt, θsσqϕ̃ps, σq

that is, ϕ̃ satisfies the cocycle property.

A key property that the above relation provides, as seen in [4], is that the following diagram

is commutative:

pϕ, θqpX,Σq //

��

tΠptq : t ě 0u

��

ö

rpϕ, θqpX,Σq,M, Is // pX,Π,M, Iq

that is, given a NDS pϕ, θqpX,Σq, if we construct the INDS rpϕ, θqpX,Σq,M, Is and we consider

the impulsive skew-product semiflow associated with rpϕ, θqpX,Σq,M, Is, then we obtain the

same object as if we first constructed the skew-product semiflow tΠptq : t ě 0u associated

with pϕ, θqpX,Σq and then using this skew-product to construct the impulsive dynamical system

pX,Π,M, Iq.
This is essential to the work that is about to be presented, relating several different notions

of asymptotic behavior in the impulsive non-autonomous case.

3.1. Tube conditions. The so called “tube conditions” are very important for the theory of

impulsive dynamical systems. Here, we briefly present the results of [4] (which uses the results

of [20] and the above diagram) for tube conditions of impulsive non-autonomous dynamical

systems. Recall that X “ X ˆ Σ and M “M ˆ Σ.

Definition 3.4. A closed set S containing px, σq P X is called a section through px, σq if there

exist λ ą 0 and a closed subset L of X such that:

(a) FΠpL, λq “ S;

(b) FΠpL, r0, 2λsq contains a neighborhood of px, σq;
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(c) FΠpL, νq
Ş

FΠpL, ζq “ ∅, if 0 ď ν ă ζ ď 2λ.

We say that the set FΠpL, r0, 2λsq is a λ´tube por simply tubeq and the set L is a bar.

The Definition 3.4 is the same definition of tube for general impulsive systems pX, π,M, Iq,

see [20].

Definition 3.5. A point px, σq P M satisfies the strong tube condition pSTCq, if there

exists a section S through px, σq such that S “ FΠpL, r0, 2λsq
Ş

M. Also, we say that a point

px, σq P M satisfies the special strong tube condition pSSTCq if it satisfies STC and the

λ´tube FpL, r0, 2λsq is such that FpL, r0, λsq
Ş

IpMq “ ∅.

Now, we introduce the concepts of STC and SSTC in the context of INDS.

Definition 3.6. Let rpϕ, θqpX,Σq,M, Is be an INDS. We say that a point x P M satisfies the

ϕ´strong tube condition pϕ´STCq, if for each σ P Σ, the pair px, σq satisfies STC with

respect to the impulsive skew-product pX,Π,M, Iq. Also, we say that a point x P M satisfies

the ϕ´special strong tube condition pϕ´SSTCq, if for each σ P Σ, the pair px, σq satisfies

SSTC with respect to the impulsive skew-product pX,Π,M, Iq.

Theorem 3.7. [4, Theorem 3.5] Let rpϕ, θqpX,Σq,M, Is be an INDS such that each point of M

satisfies ϕ´STC. Then φ is upper semicontinuous in XˆΣ and it is continuous in pXzMqˆΣ.

Moreover, if there are no initial points in M and φ is continuous at px, σq for some σ P Σ, then

x RM .

Proposition 3.8. [4, Proposition 3.7] Let rpϕ, θqpX,Σq,M, Is be an INDS such that IpMqXM “

∅ and let y PM satisfy ϕ´SSTC. Then, for each σ P Σ, the point py, σq satisfies SSTC with a

λ´tube FΠpL, r0, 2λsq such that Π̃ptqpX ˆ Σq
Ş

FΠpL, r0, λsq “ ∅ for all t ą λ.

3.2. Existence of impulsive cocycle attractors. In [4], the authors introduce the definition

of impulsive non-autonomous dynamical systems and also find sufficient conditions to ensure

the existence of an impulsive cocycle attractor. In this subsection, we present their main results.

The definition of ϕ̃´invariance is analogous to the notion of ϕ´invariance simply replacing

ϕ by ϕ̃.

Definition 3.9. Given an INDS rpϕ, θqpX,Σq,M, Is, a non-autonomous set B̂ is said to be

pullback pϕ̃,Dq´attracting, if for each σ P Σ and D̂ P D we have

lim
tÑ`8

distpϕ̃pt, θ´tσqDpθ´tσq, Bpσqq “ 0.

Definition 3.10. Given a universe D and an INDS rpϕ, θqpX,Σq,M, Is, a compact non-autonomous

set Â is called the pϕ̃,Dq´impulsive cocycle attractor if:

(i) ÂzM “ tApσqzMuσPΣ is ϕ̃´invariant;
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(ii) Â is pullback pϕ̃,Dq´attracting;

(iii) Â is minimal among the closed non-autonomous sets satisfying (ii).

Remark 3.11. If Â1 and Â2 are two pϕ̃,Dq´impulsive cocycle attractors then

A1pσqzM “ A2pσqzM for all σ P Σ.

In order to find sufficient conditions to ensure the existence of an impulsive cocycle attractor

for an INDS, the key role is played by the impulsive pullback ω-limit set.

Definition 3.12. Given a non-autonomous set B̂ and σ P Σ, we define the impulsive pullback

ω-limit of B̂ at σ as the set

ω̃pB̂, σq “
č

sě0

ď

těs

ď

εPr0,s´1q

ϕ̃pt` ε, θ´tσqBpθ´tσq

and the impulsive pullback ω-limit of B̂ as the non-autonomous set ω̃pB̂q “ tω̃pB̂, σquσPΣ.

The following characterization is crucial for the theory, and the proof (analogous to the

continuos case) can be found in [4, Lemma 4.2].

Lemma 3.13. We have

ω̃pB̂, σq “ tx P X : there exist sequences ttnunPN, tεnunPN Ď R` and txnunPN Ď Bpθ´tnσq

with tn
nÑ`8
ÝÑ `8, εn

nÑ`8
ÝÑ 0 such that ϕ̃ptn ` εn, θ´tnσqxn

nÑ`8
ÝÑ xu

and ω̃pB̂, σq is closed.

It is clear that, if we are in the continuous case, that is, M “ ∅, then the impulsive pullback

ω-limit coincides with the pullback ω-limit. Now, for the results that follow, we fix a universe

D.

Definition 3.14. An INDS rpϕ, θqpX,Σq,M, Is is said to be pullback D´asymptotically com-

pact, if for any σ P Σ, D̂ P D and sequences ttnunPN Ă R`, txnunPN Ă X with tn
nÑ`8
ÝÑ `8

and xn P Dpθ´tnσq for n P N, then the sequence tϕ̃ptn, θ´tnσqxnunPN possesses a convergent

subsequence.

The main result of [4] is stated next. The only difference is that we replace the condi-

tion “there is a pullback D´absorbing non-autonomous set K̂ P D” by “there is a pullback

pϕ̃,Dq´attracting non-autonomous set K̂ P D”. The proof is the same, see [4, Theorem 5.1].

Theorem 3.15. [4, Theorem 5.1] Let rpϕ, θqpX,Σq,M, Is be an INDS pullback D´asymptotically

compact such that IpMqXM “ ∅ and every point from M satisfies ϕ´SSTC. Assume that there

exists a pullback pϕ̃,Dq´attracting non-autonomous set K̂ P D. Then, the non-autonomous set

Â, given by Apσq “ ω̃pK̂, σq, is the pϕ̃,Dq´impulsive cocycle attractor.
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4. Impulsive dynamical systems: autonomous vs. non-autonomous

In [5], the authors developed the theory of global attractors for the autonomous impulsive

scenario. In their work, they established sufficient conditions for the existence of the impul-

sive global attractor for a given autonomous impulsive system pX, π,M, Iq, with the following

definition:

Definition 4.1. A subset A Ă X will be called a global attractor for the IDS pX, π,M, Iq if

it satisfies the following conditions:

(i) A is precompact and A “ AzM ;

(ii) A is π̃´invariant;

(iii) A π̃´attracts all bounded subsets of X.

We recall in Definition 4.1 that a subset A Ă X is π̃´invariant if πptqA “ A for all t ě 0 and

A Ă X π̃´attracts all bounded subsets of X if lim
tÑ`8

distpπ̃ptqB,Aq “ 0 for all bounded B Ă X.

With this definition, the authors present their main result:

Theorem 4.2. [5, Theorem 4.7] Let pX, π,M, Iq be an IDS such that IpMq XM “ ∅, every

point from M satisfies SSTC, there exists a precompact set K, with K XM “ ∅, such that K

π̃´absorbs all bounded subsets of X pfor any bounded subset B of X there is tB ě 0 such that

π̃ptqB Ă K for all t ě tBq and there exists ξ ą 0 such that φpzq ě ξ for all z P IpMq. Then

pX, π,M, Iq has a global attractor A and we have A “ ω̃pKqzM .

In the non-autonomous case, even when we impose the same hypotheses, we were not able

to prove the existence of an object that generalizes naturally the concept of global attractor

of Definition 4.1. The crucial result that is used in [5] is Proposition 3.14, which ensures that

given a set B, if ω̃pBq π̃´attracts B, then so does ω̃pBqzM . Recall that ω̃pBq “ tx P X : there

exist sequences txnunPN Ď B and ttnunPN Ď R` with tn
nÑ`8
ÝÑ 8 such that π̃ptnqxn

nÑ`8
ÝÑ xu.

With this result, they are able to construct a precompact set, disjoint from M , that π̃´attracts

all bounded subsets of X. The proof of this result is a direct consequence of Lemma 3.13 of

their paper. We present here the non-autonomous version of this lemma.

Lemma 4.3. pNon-autonomous version of [5, Lemma 3.13]q Let rpϕ, θqpX,Σq,M, Is be a pull-

back D´asymptotically compact INDS, with IpMq XM “ ∅ and every point from M satisfies

ϕ´SSTC. Let σ P Σ and assume that there exists ξ ą 0 such that φpz, ωq ě ξ for all z P IpMq

and ω in a neighborhood Σσ Ă Σ of σ. If B̂ P D is a nonempty non-autonomous set and

x P ω̃pB̂, σq X M , then there exists a sequence tymumPN such that for each m P N we have

ym P ω̃pB̂, θ´ 1
m
σqzM , ϕp1{m, θ´ 1

m
σqym “ x and ym

mÑ`8
ÝÑ x.

Proof: Let x P ω̃pB̂, σq XM . Then there exist positive sequences tn
nÑ`8
ÝÑ `8, εn

nÑ`8
ÝÑ 0 and

xn P Bpθ´tnσq such that zn
.
“ ϕ̃ptn ` εn, θ´tnσqxn

nÑ`8
ÝÑ x. By Proposition 3.8, the point px, σq
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satisfies SSTC with a λ´tube FΠpL, r0, 2λsq such that Π̃ptqpX ˆ Σq
Ş

FΠpL, r0, λsq “ ∅ for all

t ą λ. Since

Π̃ptn ` εnqpxn, θ´tnσq “ pzn, θεnσq
nÑ`8
ÝÑ px, σq,

we may assume that pzn, θεnσq P FΠpL, pλ, 2λsq for all n P N.

We may choose a subsequence if necessary, which we will call the same, and a sequence

ηn
nÑ`8
ÝÑ 0, ηn ą 0, such that Πpηnqpzn, θεnσq P M, that is, ϕpηn, θεnσqzn PM for all n P N. We

may also assume that ηn ă
ξ
2

for all n P N.

Let ζ ą 0 be such that θtσ P Σσ for all t P p´ζ, ζq. Recall that there exists εx,σ ą 0 such that
Ť

tPp0,εx,σq
Fϕpx, t, θ´tσq XM “ ∅. Let m0 P N be such that 1

m0
ă mintεx,σ,

ξ
2
, ζu and n0 P N be

such that εn ă ζ for all n ě n0.

For each integer m ě m0, we consider the sequence wmn “ ϕ̃ptn ´
1
m
` εn, θ´tnσqxn, n P N.

By the pullback D´asymptotic compactness and the fact that B̂ P D, we may assume that

wmn
nÑ`8
ÝÑ ym P ω̃pB̂, θ´ 1

m
σq, for each m ě m0.

We claim that smn
.
“ φpwmn , θεn´ 1

m
σq ą 1

m
for all n ě n0 and m ě m0. Indeed, suppose to

the contrary that smn ď
1
m

for some n ě n0 and m ě m0. We have ϕpsmn , θεn´ 1
m
σqwmn P M and

vmn “ ϕ̃psmn , θεn´ 1
m
σqwmn P IpMq. Now note that

ϕpηn ` 1{m´ smn , θsmn `εn´ 1
m
σqvmn “ ϕpηn, θεnσqϕp1{m´ s

m
n , θsmn `εn´ 1

m
σqvmn “

“ ϕpηn, θεnσqzn PM

since 1
m
´ smn ă

1
m
ă ξ and θsmn `εn´ 1

m
σ P Σσ. But it is a contradiction, since 0 ă ηn`

1
m
´ smn ă

ηn `
1
m
ă ξ and vmn P IpMq. This shows that for n ě n0 and m ě m0, we have

ϕp1{m, θεn´ 1
m
σqwmn “ ϕ̃p1{m, θεn´ 1

m
σqwmn “ zn.

By the continuity of ϕ, as nÑ `8, we get ϕp1{m, θ´ 1
m
σqym “ x PM . Since 1{m ă εx,σ, we

obtain ym P ω̃pB̂, θ´ 1
m
σqzM .

If tymumPN does not converge to x, then we can choose a convergent subsequence tymlulPN to

a point x0 ‰ x, but x “ ϕp1{ml, θ´ 1
ml

σqyml
lÑ`8
ÝÑ ϕp0, σqx0 “ x0, which gives us a contradiction

and proves that ym
mÑ`8
ÝÑ x.

As an immediate consequence of this result we obtain:

Corollary 4.4. With the conditions of Lemma 4.3, given ε ą 0 we have

ω̃pB̂, σq XM Ă
ď

sPr0,εs

ω̃pB̂, θ´sσqzM for all σ P Σ.

We can easily check that Corollary 4.4 is not enough to prove a result as Proposition 3.14 of

[5] for the non-autonomous case. It was expected that a result as in [5] would not be natural,

since as in the non-autonomous case, we are constantly changing the fibers σ.
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Also, we can see that Definition 3.10 is not a natural extension of Definition 4.1 to the

non-autonomous case. With this idea in mind, we introduce the following definition:

Definition 4.5. A subset A Ă X is called a c´global attractor for the IDS pX, π,M, Iq if:

(i) A is compact;

(ii) AzM is π̃´invariant;

(iii) A π̃´attracts all bounded subsets of X.

In order to obtain a simpler result to the autonomous case, we first need to the following

definition:

Definition 4.6. An IDS pX, π,M, Iq is called asymptotically compact if for any bounded

sequence txnunPN Ă X and any sequence ttnunPN Ă R` such that tn
nÑ`8
ÝÑ `8 and tπ̃ptnqxnunPN

is bounded, then the set tπ̃ptnqxnunPN is precompact.

The results of [4] can now be applied to the autonomous case, see the next theorem.

Theorem 4.7. Let pX, π,M, Iq be an asymptotically compact IDS such that IpMq XM “ ∅,

every point from M satisfies SSTC and there exists a bounded set K which π̃´attracts bounded

subsets from X. Then pX, π,M, Iq has a c´global attractor A and we have A “ ω̃pKq.

Proof: Let Σ “ tσu and D be the universe of all bounded subsets of X. Let rpϕ, θqpX,Σq,M, Is

be an INDS, where

ϕpt, σqx “ πptqx

for all t P R` and x P X, and θtσ “ σ for all t P R. Note that rpϕ, θqpX,Σq,M, Is is pullback

D´asymptotically compact and K̂ “ tKpσqu, with Kpσq “ K, is a pullback pϕ̃,Dq´attracting

non-autonomous set. Define X “ X ˆ tσu, M “ M ˆ tσu, Ipx, σq “ pIpxq, σq for all x P X

and Πptqpx, σq “ pϕpt, σqx, θtσq for all t P R` and x P X. We claim that M satisfies ϕ´SSTC.

Indeed, let x PM be arbitrary. Since x satisfies SSTC there exist a λ´section S through x and

a bar L such that F pL, λq “ S, F pL, r0, 2λsq is a neighborhood of x, F pL, µq XF pL, νq “ ∅ for

all 0 ď µ ă ν ď 2λ and F pL, r0, λsqX IpMq “ ∅. Now, we define S “ Sˆtσu and L “ Lˆtσu.

It is not difficult to see that FΠpL, r0, 2λsq is a λ´tube through px, σq with section S satisfying

FΠpL, r0, λsq X IpMq “ ∅. Thus, the claim is proved.

By Theorem 3.15, the the non-autonomous set Â, given by Apσq “ ω̃pK, σq, is the pϕ̃,Dq´im-

pulsive cocycle attractor of rpϕ, θqpX,Σq,M, Is. Note that ω̃pK, σq “ ω̃pKq and it satisfies the

conditions (i), (ii) and (iii) from Definition 4.5. Consequently, ω̃pKq is the c´global attractor

of pX, π,M, Iq.

It is clear that c´global attractors extend Definition 4.1. Thus, we have a straightforward

relationship between these two object, given by the following result.
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Proposition 4.8. Let pX, π,M, Iq be an IDS. If A is its global attractor, then A1 “ Ā is its

c´global attractor.

However, the other implication is not true, that is, if A Ă X is a c´global attractor for the

IDS pX, π,M, Iq, then A2 “ AzM may not be an impulsive attractor for the IDS pX, π,M, Iq in

general, since property (iii) of Definition 4.1 may not be satisfied. Nevertheless, using Theorem

4.7 and Corollary 4.4, we are able to state one more result:

Theorem 4.9. Let pX, π,M, Iq be an asymptotically compact IDS such that IpMq XM “ ∅,

every point from M satisfies SSTC, there exists a bounded set K which π̃´attracts bounded

subsets from X and there exists ξ ą 0 such that φpzq ě ξ for all z P IpMq. Then pX, π,M, Iq

possesses a global attractor A and we have A “ ω̃pKqzM .

Note that this is the same result as Theorem 4.2, without the assumption that K XM “ ∅
and with the condition of π̃´absorbing sets replaced by π̃´attraction. One can see that the

notion of c´global attractor is more natural to deal with in the autonomous framework if we

want to consider the impulsive cocycle attractors in the non-autonomous case, since the latter

is a natural extension of the first. That being said, throughout the paper, we shall use the

notion of c´global attractors for the autonomous case.

4.1. Asymptotic compactness. In this subsection, we shall explore the property of asymp-

totic compactness for an impulsive autonomous dynamical system, given in Definition 4.6. The

definition of asymptotic compact for a semigroup tπptq : t ě 0u in X is analogous, just replacing

π̃ by π.

First, we shall prove that, if we do not assume any additional hypothesis on the impulsive

set M and the impulsive function I, these two concepts are not equivalent.

Example 4.10. Consider the ordinary differential equation in R given by

9x “ |x| (4.1)

and let πptqx0 denote the solution of (4.1) for t ě 0 with initial condition x0. We have πptqx0 “

x0e
´t for x0 ă 0 and πptqx0 “ x0e

t for x0 ě 0. The semigroup tπptq : t ě 0u is not asymptotically

compact.

Now, consider the set M
.
“ N “ t1, 2, 3, ¨ ¨ ¨ u and the impulsive function given by Ipnq “ ´1,

for all integers n ě 1. It is simple to see that pR, π,M, Iq is an asymptotically compact

autonomous impulsive dynamical system.

Example 4.11. Consider the ordinary differential equation in R given by

9x “ ´x (4.2)
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and let πptqx0 denote the solution of (4.2) for t ě 0 with initial condition x0. We have πptqx0 “

x0e
´t for all x0 P R. Then this semigroup has a global attractor, namely the set t0u and, hence,

it is asymptotically compact.

Now, define M
.
“ tn ´ 1

n
: n P N and n ě 2u and Ipn ´ 1

n
q “ n ` 1 for each natural n ě 2.

It is not difficult to see that pR, π,M, Iq is an autonomous impulsive dynamical system. For

any x0 ą
3
2
, we can check that π̃ptqx0 Ñ `8 as tÑ `8, which means that pR, π,M, Iq is not

asymptotically compact.

The conclusion is that the asymptotic compactness of tπptq : t ě 0u does not imply the as-

ymptotic compactness of pR, π,M, Iq. Moreover, the system pR, π,M, Iq can be asymptotically

compact even when tπptq : t ě 0u is not. So the natural question is: may we impose conditions

on tπptq : t ě 0u, M and I to ensure the asymptotic compactness of pX, π,M, Iq?

Our next result provides a positive answer to this question, with a fairly simple condition.

Proposition 4.12. Assume that pX, π,M, Iq is an IDS such that tπptq : t ě 0u is asymptotically

compact and IpMq is precompact. Then pX, π,M, Iq is asymptotically compact.

Proof: Let ttnunPN Ă R` be a sequence with tn
nÑ`8
ÝÑ `8 and txnunPN Ă X be a bounded

sequence such that tπ̃ptnqxnunPN is bounded. In the sequel, we consider some cases:

(i) tn ă φpxnq for all n P N. In this case, we have π̃ptnqxn “ πptnqxn and every subsequence

of tπ̃ptnqxnunPN possess a convergent subsequence, by the asymptotic compactness of

tπptq : t ě 0u.

(ii) tn “ φpxnq for all n P N. Clearly π̃ptnqxn “ Ipπptnqxnq and every subsequence of

tπ̃ptnqxnunPN has a convergent subsequence, since IpMq is precompact.

(iii) tn ą φpxnq for all n P N. In this case, there exist sequences tsnunPN Ă R` and tznunPN Ă

IpMq such that π̃ptnqxn “ πpsnqzn. If tsnunPN is bounded, the precompactness of IpMq

and the continuity of the map R`ˆX Q pt, xq ÞÑ πptqx P X shows that every subsequence

of tπ̃ptnqxnunPN has a convergent subsequence. On the other hand, if sn
nÑ`8
ÝÑ `8, then

every subsequence of tπ̃ptnqxnunPN has a convergent subsequence, by the asymptotic

compactness of tπptq : t ě 0u.

Lastly, note that considering subsequences if necessary, we can always assume that one of

conditions (i), (ii) or (iii) holds, which proves that tπ̃ptnqxnunPN is precompact. Therefore,

pX, π,M, Iq is asymptotically compact.

Remark 4.13. Proposition 4.12 can be easily extended to the non-autonomous case, when D

is the universe of non-autonomous sets with bounded union. Namely, in this case, if pϕ, θqpX,Σq
is pullback D´asymptotically compact and IpMq is precompact, then rpϕ, θqpX,Σq,M, Is is also

pullback D´asymptotically compact. In this case, the asymptotic compactness of pϕ, θqpX,Σq is

defined as in Definition 3.14, with ϕ̃ replaced by ϕ.
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5. Relationships among attractors

In order to reach the full depth of properties of an impulsive non-autonomous dynamical

system, we must be able to relate all possible different frameworks that one can obtain when

dealing with a non-autonomous impulsive problem. We will explore each framework in detail

to obtain the relations among all the different scenarios. To this end, we will assume from now

on the following assumption:

Σ is compact and invariant under the action of the driving group tθt : t P Ru. (5.1)

5.1. The impulsive uniform attractor and the impulsive skew-product semiflow. In

what follows, we present the definition of an impulsive uniform attractor for an impulsive non-

autonomous dynamical system. Besides, we derive its relationship with the global attractor of

the associated impulsive skew-product semiflow.

To begin, we present a result that relates impulsive attraction of the impulsive non-autonomous

dynamical system with attration of the impulsive skew-product semiflow. For that, let d be a

metric in X and ρ be a metric in Σ. We consider the space X ˆ Σ with metric

dXˆΣppx1, σ1q, px2, σ2qq “ dpx1, x2q ` ρpσ1, σ2q for all x1, x2 P X and σ1, σ2 P Σ.

Thus, for A,B Ă X and Σ1,Σ2 Ă Σ, we have distpA,Bq “ sup
aPA

inf
bPB

dpa, bq and

DistpAˆ Σ1, B ˆ Σ2q “ sup
pa,σ1qPAˆΣ1

inf
pb,σ2qPBˆΣ2

dXˆΣppa, σ1q, pb, σ2qq.

Proposition 5.1. Let rpϕ, θqpX,Σq,M, Is be an INDS, tΠ̃ptq : t ě 0u be its associated skew-

product semiflow on X ˆΣ and assume that (5.1) holds. Then the following two properties are

equivalent:

(i) there exists a compact subset K of XˆΣ such that for every bounded subset B of XˆΣ

lim
tÑ`8

DistpΠ̃ptqB,Kq “ 0;

(ii) there exists a compact subset K of X such that for every bounded subset B of X

lim
tÑ`8

sup
σPΣ

distpϕ̃pt, σqB,Kq “ 0.

Proof: Suppose that (i) holds. Let K “ PXK (the canonical projection of the first coor-

dinate), B be a bounded subset of X and B :“ B ˆ Σ. Then B is bounded in X ˆ Σ and

lim
tÑ`8

DistpΠ̃ptqB,Kq “ 0. Since

distpϕ̃pt, σqB,Kq ď DistpΠ̃ptqB,Kq,

for all σ P Σ, then (ii) follows.
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Now, let us assume that (ii) holds. Take K “ K ˆ Σ, which is compact since K and Σ are

compact. Since any bounded subset B of X ˆΣ is contained in a set of the form B ˆΣ, where

B is a bounded subset of X, and

Π̃ptqB Ă Π̃ptqrB ˆ Σs Ă
ď

σPΣ

ϕ̃pt, σqB ˆ Σ,

if follows that

DistpΠ̃ptqB,Kq ď Dist

˜

ď

σPΣ

ϕ̃pt, σqB ˆ Σ, K ˆ Σ

¸

ď sup
σPΣ

distpϕ̃pt, σqB,Kq.

Therefore, (i) follows.

This result forms the basis of the following definition.

Definition 5.2. An INDS rpϕ, θqpX,Σq,M, Is is said to be uniformly asymptotically com-

pact, if there exists a compact set K Ă X such that for every bounded subset B of X

lim
tÑ`8

sup
σPΣ

distpϕ̃pt, σqB,Kq “ 0. (5.2)

We have just shown that, if the INDS rpϕ, θqpX,Σq,M, Is is uniformly asymptotically compact,

IpMq X M “ ∅ and each point of M satisfies ϕ´SSTC, then the associated skew-product

semiflow tΠ̃ptq : t ě 0u has a c´global attractor A (see Theorem 4.7). Note that the attracting

property of A for tΠ̃ptq : t ě 0u implies the attracting property of the set A “ PXA for

rpϕ, θqpX,Σq,M, Is.

One can see that the property of minimality is preserved, that is, the global attractor A is the

minimal closed set in X ˆΣ that attracts all bounded sets and its projection A is the minimal

closed subset of X that is uniformly attracting (in the sense of (5.2)), for all bounded subsets B

of X, because if Ã Ă X is uniformly attracting then ÃˆΣ is attracting for tΠ̃ptq : t ě 0u, from

whence A Ă Ã ˆ Σ and thus A Ă Ã. This remark thus yields the definition of the impulsive

uniform attractor.

Definition 5.3. The impulsive uniform attractor A of the INDS rpϕ, θqpX,Σq,M, Is is a

compact subset of X such that given B Ă X bounded, we have

lim
tÑ`8

sup
σPΣ

distpϕ̃pt, σqB,Aq “ 0 (5.3)

and A is minimal among all closed sets with property (5.3).

We have therefore the following result.

Theorem 5.4. Let rpϕ, θqpX,Σq,M, Is be an INDS and tΠ̃ptq : t ě 0u be its associated skew-

product semiflow on X ˆ Σ. Assume that IpMq XM “ ∅ and every point from M satisfies

ϕ´SSTC. Then rpϕ, θqpX,Σq,M, Is has an impulsive uniform attractor A1 if and only if tΠ̃ptq :
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t ě 0u has a c´global attractor A. Moreover, when these attractors exist, if we define A “ PXA,

then

AzM Ă A1 Ă A.

Proof: Note that the existence of each one of them implies the existence of the other, see

Proposition 5.1, Theorem 4.7 and the comments after Definition 5.2. When these attractors

exist, since A clearly uniformly attracts bounded sets, the minimality condition of A1 ensures

that A1 Ă A. To see the second inclusion, note that A1 ˆ Σ attracts bounded sets of X ˆ Σ

under Π̃. This fact and the invariance of AzpM ˆ Σq show that AzpM ˆ Σq Ă A1 ˆ Σ, and

therefore AzM Ă A1.

5.2. The impulsive uniform attractor, the impulsive skew-product semiflow and

the impulsive cocycle attractor. In this subsection, we dedicate ourselves to describe the

relations between the previously defined impulsive uniform attractor and the impulsive cocycle

attractor defined in Section 3. To this end, we also use the impulsive skew-product semiflow,

as we will see in the two following results. The first one ensures the existence of an impulsive

cocycle attractor, known as the existence of the impulsive uniform attractor.

Theorem 5.5. Let rpϕ, θqpX,Σq,M, Is be an INDS, IpMq XM “ ∅, each point of M satisfies

ϕ´SSTC, tΠ̃ptq : t ě 0u be its associated skew-product semiflow on X ˆ Σ with a c´global

attractor A and D be the universe of all non-autonomous sets D̂ with
ď

σPΣ

Dpσq bounded in X.

Then there exists a pϕ̃,Dq´impulsive cocycle attractor Â1 of rpϕ, θqpX,Σq,M, Is. Moreover, the

non-autonomous set Â with Apσq “ tx P X : px, σq P Au is such that Â P D is compact,

tApσqzMuσPΣ is ϕ̃´invariant, ApσqzM Ă A1pσq Ă Apσq and

AzpM ˆ Σq Ă

˜

ď

σPΣ

rApσq ˆ tσus

¸

zpM ˆ Σq Ă
ď

σPΣ

rA1pσq ˆ tσus Ă
ď

σPΣ

rApσq ˆ tσus Ă A.

In particular, AzpM ˆ Σq “

˜

ď

σPΣ

rApσq ˆ tσus

¸

zpM ˆ Σq “

˜

ď

σPΣ

rA1pσq ˆ tσus

¸

zpM ˆ Σq.

Proof: Since A is the c´global attractor of tΠ̃ptq : t ě 0u, it follows that Â P D, Apσq “ tx P

X : px, σq P Au is compact and tApσqzMuσPΣ is ϕ̃´invariant for each σ P Σ.

By Theorem 5.4 and Theorem 3.15, the INDS rpϕ, θqpX,Σq,M, Is admits an impulsive uniform

attractor K such that the pϕ̃,Dq´impulsive cocycle attractor is given by the non-autonomous

set tω̃pK̂, σquσPΣ, where Kpσq “ K for each σ P Σ. By the ϕ̃´invariance of tApσqzMuσPΣ we

have

distpApσqzM, ω̃pK̂, σqq “ distpϕ̃pt, θ´tσqApθ´tσqzM, ω̃pK̂, σqq Ñ 0, as tÑ `8,

that is, ApσqzM Ă ω̃pK̂, σq for all σ P Σ.
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Now, let x P ω̃pK̂, σq. Then there exist sequences ttnunPN Ă R`, tεnunPN Ă R` and txnunPN Ă

K with tn
nÑ`8
ÝÑ `8, εn

nÑ`8
ÝÑ 0 such that ϕ̃ptn ` εn, θ´tnσqxn

nÑ`8
ÝÑ x. By the proof of

Proposition 5.1 and by Theorem 4.7, if we put K “ K ˆ Σ, then the c´global attractor of

the associated skew-product semiflow tΠ̃ptq : t ě 0u is given by A “ ω̃pKq. If we consider the

sequence pxn, θ´tnσq P K, n P N, then we get

Π̃ptn ` εnqpxn, θ´tnσq “ pϕ̃ptn ` εn, θ´tnσqxn, θεnσq
nÑ`8
ÝÑ px, σq.

Then px, σq P A which implies that ω̃pK̂, σq Ă Apσq. Consequenlty,

AzpM ˆ Σq Ă

˜

ď

σPΣ

rApσq ˆ tσus

¸

zM ˆ Σ Ă
ď

σPΣ

”

ω̃pK̂, σq ˆ tσu
ı

Ă
ď

σPΣ

rApσq ˆ tσus Ă A.

With this theorem, we get a direct result relating the impulsive uniform attractor and the

impulsive cocycle attractor.

Corollary 5.6. If IpMqXM “ ∅, each point of M satisfies ϕ´SSTC, D is the universe of all

non-autonomous sets D̂ with
ď

σPΣ

Dpσq bounded in X and the INDS rpϕ, θqpX,Σq,M, Is has an

impulsive uniform attractor A, then it possesses a pϕ̃,Dq´impulsive cocycle attractor Â1 and

we have
ď

σPΣ

A1pσqzM “ AzM. (5.4)

Proof: By Theorem 5.4, the impulsive skew-product semiflow tΠ̃ptq : t ě 0u has a c´global

attractor, which we shall denote by A2, and if A2 “ PXA2 then

A2zM Ă A Ă A2. (5.5)

Now, using Theorem 5.5, the c´global attractor A2 of Π̃ implies the existence of a pϕ̃,Dq´im-

pulsive cocycle attractor Â1 of rpϕ, θqpX,Σq,M, Is such that A2pσqzM Ă A1pσq Ă A2pσq, for each

σ P Σ, where A2pσq “ tx P X : px, σq P A2u. Clearly we have A2 “
ď

σPΣ

A2pσq, which proves

that

A2zM Ă
ď

σPΣ

A1pσq Ă A2. (5.6)

Thus, equations (5.5) and (5.6) prove the result.

To obtain the converse result, that is, to ensure the existence of the impulsive uniform

attractor using the impulsive cocycle attractor, we need some additional hypothesis of uniform

attraction, as present the next result.
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Theorem 5.7. Let rpϕ, θqpX,Σq,M, Is be an INDS, IpMq X M “ ∅, each point of M satis-

fies ϕ´SSTC, tΠ̃ptq : t ě 0u be the associated skew-product semiflow on X ˆ Σ and D be

the universe of all non-autonomous sets D̂ with
ď

σPΣ

Dpσq bounded in X. Assume that Â is

the pϕ̃,Dq´impulsive cocycle attractor of rpϕ, θqpX,Σq,M, Is,
ď

σPΣ

Apσq is precompact in X and

ď

σPΣ

Apσq is uniformly attracting, that is, for each bounded subset B of X we have

lim
tÑ`8

sup
ωPΣ

dist

˜

ϕ̃pt, ωqB,
ď

σPΣ

Apσq

¸

“ 0.

Then the impulsive skew-product semiflow tΠ̃ptq : t ě 0u has a c´global attractor A1, and

defining A “
ď

σPΣ

rApσq ˆ tσus, we have

AzpM ˆ Σq “ A1zpM ˆ Σq.

Proof: Define K
.
“
Ť

σPΣApσq. We know that K is compact by hypothesis and K ϕ̃´uniformly

attracts bounded sets. Hence, the impulsive skew-product semiflow tΠ̃ptq : t ě 0u has a

c´global attractor A1 by Proposition 5.1 and Theorem 4.7.

The invariance of AzpM ˆ Σq follows from the ϕ̃´invariance of tApσqzMuσPΣ and it shows

that AzpM ˆ Σq Ă A1zpM ˆ Σq.

We can apply now Theorem 5.5 to ensure the existence of a pϕ̃,Dq´impulsive cocycle attrac-

tor Â2 such that, if A1pσq “ tx P X : px, σq P A1u, we have

A1pσqzM Ă A2pσq Ă A1pσq.

Since A2pσqzM “ ApσqzM , by Remark 3.11, we have A1pσqzM Ă ApσqzM and hence

A1zpM ˆ Σq Ă AzpM ˆ Σq.

5.3. The impulsive uniform attractor, the impulsive pullback attractor and the im-

pulsive skew-product semiflow. To begin this subsection, we present some definitions. A

non-autonomous set, in this context, is a family D̂ “ tDptqutPR of subsets of X indexed in

R. We say that D̂ is an open pclosed, compactq non-autonomous set if each fiber Dptq is

an open pclosed, compactq subset of X. A universe D is a collection of non-autonomous sets

such that, if D̂1 P D and D2ptq Ă D1ptq for all t P R, then D̂2 P D.

Definition 5.8. Given an INDS rpϕ, θqpX,Σq,M, Is and σ P Σ, we define the impulsive evo-

lution process associated to σ as the two-parameter family tT̃σpt, sq : t ě su given by

T̃σpt, sqx “ ϕ̃pt´ s, θsσqx for all x P X. (5.7)
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It is fairly easy to verify that T̃σpt, tqx “ x for all t P R and x P X and T̃σpt, τqT̃σpτ, sq “

T̃σpt, sq for all t ě τ ě s. Moreover, we say that a non-autonomous set D̂ is called T̃σ´invariant

if T̃σpt, sqDpsq “ Dptq for all t ě s, and a non-autonomous set Â T̃σ´pullback attracts D̂ if

lim
sÑ´8

distpT̃σpt, sqDpsq, Aptqq “ 0 for all t P R.

Definition 5.9. Given an impulsive evolution process tT̃σpt, sq : t ě su associated to σ as

in (5.7) and a universe D, a compact non-autonomous set Â is called the pT̃σ,Dq´pullback

attractor if:

(i) Â is T̃σ´invariant;

(ii) Â T̃σ´pullback attracts all non-autonomous sets in D;

(iii) Â is the minimal among all closed non-autonomous sets with property (ii).

We may now present our result for impulsive evolution processes.

Theorem 5.10. Let rpϕ, θqpX,Σq,M, Is be an INDS, IpMq XM “ ∅, each point of M satisfies

ϕ´SSTC, tΠ̃ptq : t ě 0u be its associated skew-product semiflow and D be the universe of

all non-autonomous sets D̂ with
ď

tPR

Dptq bounded in X. Assume that tΠ̃ptq : t ě 0u has a

c´global attractor A and let A “ PXA. Then, for each σ P Σ, the impulsive evolution process

tT̃σpt, sq : t ě su given by

T̃σpt, sqx “ ϕ̃pt´ s, θsσqx, x P X,

possesses a pT̃σ,Dq´pullback attractor Âσ “ tAσptqutPR. Moreover,

AzpM ˆ Σq “

˜

ď

σPΣ

ď

tPR

Aσptq ˆ tθtσu

¸

zpM ˆ Σq and
ď

tPR

AσptqzM Ă AzM.

Proof: Let D1 be the universe of all non-autonomous sets D̂ with
Ť

σPΣ Dpσq bounded in X.

By Theorem 5.4 and Corollary 5.6, there exists a pϕ̃,D1q´impulsive cocycle attractor Â1 of

rpϕ, θqpX,Σq,M, Is such that
ď

σPΣ

A1pσqzM “ AzM and AzpM ˆ Σq “
ď

σPΣ

”

A1pσq ˆ tσu
ı

zpM ˆ Σq. (5.8)

Let σ P Σ be arbitrary and defineAσptq “ A1pθtσq for all t P R. Then Âσ is a pT̃σ,Dq´pullback

attractor with
ď

tPR

AσptqzM Ă
ď

ωPΣ

A1pωqzM “ AzM. Moreover, by (5.8), we get

AzpM ˆ Σq “
ď

σPΣ

”

A1pσq ˆ tσu
ı

zpM ˆ Σq “
ď

σPΣ

”

Aσp0q ˆ tσu
ı

zpM ˆ Σq

“

˜

ď

σPΣ

ď

tPR

Aσptq ˆ tθtσu

¸

zpM ˆ Σq,

which concludes the proof.
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6. Application

We will consider the following non-classical non-autonomous parabolic equation
$

’

’

&

’

’

%

ut ´ γptq∆ut ´∆u “ fpuq, in Ω

u “ 0, on BΩ

up0, xq “ u0pxq, in Ω,

(6.1)

where Ω Ă Rn is a smooth bounded domain, for some n ě 3, with f and γ satisfying some

suitable conditions. A detailed study of this equation and some non-autonomous perturbations

can be found, for instance, in [12, 25].

Assume that γ : R Ñ p0,`8q is a uniformly continuous function which satisfies 0 ă γ0 ď

γptq ď γ1 ă `8 and f is a twice continuously differentiable function from R to R satisfying

|fps1q ´ fps2q| ď c|s1 ´ s2|p1` |s1|
ρ´1

` |s2|
ρ´1
q, s1, s2 P R, (H1)

and

lim sup
|s|Ñ`8

fpsq

s
ď δ ă λ1, (H2)

where λ1 is the first eigenvalue of A “ ´∆ with Dirichlet boundary condition, for some c ą 0

and 1 ď ρ ă n`2
n´2

.

Let us consider the L2pΩq-bounded operators

Bγptq “ pI ` γptqAq
´1 and Ãγptq “ ABγptq,

whose domains do not depend on time and the operators R Q t ÞÑ Bγptq and R Q t ÞÑ Ãγptq are

absolutely continuous functions.

Then, we can rewrite equation (6.1) as
$

’

’

&

’

’

%

ut “ ´Ãγptqu`Bγptqfpuq, in Ω

u “ 0, on BΩ

up0, xq “ u0pxq, in Ω.

(6.2)

It is a well known result that, since f satisfies (H1), its associated Nemytskii operator f e

defines a map from H1
0 pΩq into L

2n
n`2 pΩq which is Lipschitz continuous in bounded subsets of

H1
0 pΩq. Moreover f e takes bounded subsets of H1

0 pΩq in precompact sets of H´1 “ pH1
0 pΩqq

1.

Now, let CbpRq be the space of continuous bounded functions from R to R. Define the shift

operator θs : CbpRq Ñ CbpRq by θsgp¨q “ gps` ¨q and consider the set

Γ “ tθsγusPR,

where the closure is taken in CbpRq. Let Z1 “ C0
b pRˆH1

0 pΩq, H
1
0 pΩqq be the set of continuous

functions which are bounded in the variable in the first coordinate and bounded in bounded
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subsets of H1
0 pΩq in the second variable. Define

Σ “ tθspBγf e ´ ÃγqusPR
Z1

.

Then, using [12, Lemma 5.2], we have Σ “ tBσf
e ´ ÃσuσPΓ and clearly Σ is compact.

We can use the results of [12] to obtain the following properties for (6.1):

Theorem 6.1. Assume that (H1)-(H2) hold. Then:

1. equation (6.1) generates a non-autonomous dynamical system in pϕ, θqpH1
0 pΩq,Σq

;

2. there exist constants α, k, β ą 0, independent of σ P Γ, such that

}ϕpt, σqu0}
2
H1

0
ď α}u0}

2
H1

0
e´kt ` β, (6.3)

where ϕpt, σq is the solution of (6.1) at time t, with σ P Γ replacing γ;

3. the skew-product semiflow tΠptq : t ě 0u associated with the non-autonomous dynamical

system given in the previous item possesses a global attractor A in H1
0 pΩq ˆ Σ.

Now, we assume that M is an impulsive set for the NDS pϕ, θqpH1
0 pΩq,Σq

generated by (6.1)

such that every point of M satisfies ϕ´SSTC, I : M Ñ H1
0 pΩq is a continuous function such

that IpMq XM “ ∅, IpMq is compact in H1
0 pΩq and for a given σ P Σ there is δ “ δpσq ą 0

such that φpx, ωq ě δ for all x P IpMq and ω P tθtσ : t P Ru (this hypothesis also ensures

condition (H0)).

Defining D as the universe of all non-autonomous sets indexed in Σ with bounded union, we

can use Theorem 6.1 (condition 2) and Proposition 4.12 to see that the impulsive skew-product

semiflow pH1
0 pΩqˆΣ,Π,M ˆΣ, Iq is asymptotically compact, where Ipx, λq “ pIpxq, λq for each

px, λq PM ˆ Σ.

Using similar results as in [4], one can show the existence of a uniform attracting bounded

set K for the INDS rpϕ, θqpX,Σq,M, Is.

Proposition 6.2. There exists a bounded set K such for any bounded subset B of H1
0 pΩq there

exists t0 “ t0pBq ě 0 with

ϕ̃pt, σqB Ă K for all t ě t0 and σ P Σ.

Proof: Since IpMq is compact, there exists µ ą 0 such that }u}H1
0 pΩq

ď µ, for all u P IpMq.

Define K as the ball in H1
0 pΩq centered in zero of radius 2pαµ ` βq, where α and β are taken

from the assertion of Theorem 6.1. The result now follows as in [4, Proposition 6.4].

This previous proposition and Proposition 5.1 imply that there exists a bounded set K “ Kˆ

Σ Ă H1
0 pΩq which Π̃´attracts bounded subsets of H1

0 pΩq. This, together with the asymptotical

compactness of tΠ̃ptq : t ě 0u ensures the existence of a c´global attractor Ã for pH1
0 pΩq ˆ

Σ,Π,M ˆ Σ, Iq. Thus, using Theorem 5.4, Corollary 5.6 and Theorem 5.10 we have:
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(a) the INDS rpϕ, θqpX,Σq,M, Is has an impulsive uniform attractor A1 and if A “ PH1
0 pΩq

Ã
we get

A1zM “ AzM ;

(b) the INDS rpϕ, θqpX,Σq,M, Is has a pϕ̃,Dq´impulsive cocycle attractor tApλquλPΣ and

AzM “
ď

λPΣ

ApλqzM ;

(c) for each σ P Γ, if λ “ Bσf
e´ Ãσ, the impulsive evolution process T̃λpt, sq “ ϕ̃pt´ s, θsλq

possesses a pullback pT̃λ,Dq´attractor tAλptqutPR and

AzM “
ď

λPΣ

ď

tPR

AλptqzM.
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