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SYSTEMS AND THEIR RELATIONS

E. M. BONOTTO!, M. C. BORTOLAN, T. CARABALLO?, AND R. COLLEGARI?

ABSTRACT. In this work, we deal with several different notions of attractors that may appear
in the impulsive non-autonomous case and we explore their relationships to obtain properties
regarding the different scenarios of asymptotic dynamics, such as the cocycle attractor, the
uniform attractor and the global attractor for the impulsive skew-product semiflow. Lastly,
we illustrate our theory by exhibiting an example of a non-classical non-autonomous parabolic

equation with subcritical nonlinearity and impulses.
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1. INTRODUCTION

What are the differences that appear when we change from an autonomous equation to an
non-autonomous one? Does the asymptotic behavior of the solutions become different?

This change may be very underrated and our first answer may be negative. We might believe
that there are not many changes in the behavior of the solutions of autonomous and non-
autonomous equations. As one may see in [10) 1], this is not the case. In fact, there are
infinitely many differences between these two cases. To illustrate this difference, let us consider
a general differential equation of the form

uw= f(t,u), t > s,

(1.1)

u(s) = up € X,

where X is a Banach space and f: R x D < R x X — X is a map belonging to some metric
space €. Assume that there exists a unique solution [s,4+0) 3 t — u(t,s, f,ug) € X of (|L.1)
defined for all times ¢t > s, for each f € €, up € X and s € R.
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Thanks to the uniqueness of solution, one can see that when f is time-independent, that is,
f(t,z) = f(x) for all t € R, we have u(t, s, f,ug) = u(t —s,0, f,up) and the asymptotic behavior
of solutions can be studied when ¢ — 400 (that is, considering the evolution of the solution as
the final time evolves) or making s — —oo (which is equivalent to consider the behavior of the
solution as we take earlier and earlier initial times). In this case, these two scenarios coincide
and give us the same description.

However, if f is time dependent then these two scenarios give rise to completely different
behaviors. We may study the asymptotic behavior with respect to the elapsed time ¢t — s or
with respect to s (when s — —oo and ¢ is arbitrary but fixed). These are called, respectively,
forwards and pullback dynamics and are, in general, unrelated. It is natural that they are
unrelated, for instance, the set of vector fields driving the solution may be completely different.
We have one vector field f(¢,-) for each time t € R.

There is no reason for this to be different in the impulsive case. We know now, after the
previous discussion in [4], that the behavior of impulsive solutions in the non-autonomous case is
much richer (and harder to analyze) than in the autonomous case. Hence, bearing this in mind,
we may wonder about the relationships amongst the several different scenarios that appear in
the non-autonomous impulsive case.

Note that the theory described in [10, 1], 14} [I5] has, so far, no analogous when it comes to
the impulsive framework. So, this paper shall be devoted to relate the several different kinds of
attractors that come to play when dealing with non-autonomous impulsive dynamical systems.

Moreover, the results presented in this paper are totally different from the results which
deal with random dynamical systems, where the impulses occur in time. Indeed, the results of
this paper concern with impulses at variable times that depend on the phase space (impulses
“occur” in space). Impulses that vary in time are more attractive due to their complexity and
applicability in real world problems, see for instance [5], [0, [7]. As an example, we may cite the
billiard-type system which can be modeled by differential systems with impulses acting on the
first derivatives of the solutions. Indeed, the positions of the colliding balls do not change at
the moments of impact (impulse), but their velocities gain finite increments (the velocity will
change according to the position of the ball). The reader may consult [27] for the study of
pullback attractors of non-autonomous random dynamical systems.

In the next lines we describe the organization of the paper and the main results.

In Section [2, we present the continuous non-autonomous dynamical systems theory. We
remind the reader that the notion of attractors in the non-autonomous framework can have
several interpretations. For a more careful description, the reader may consult [11].

In Section (3| we present, also briefly, the theory of impulsive non-autonomous dynamical
systems which was first developed in [4]. The results of this section, of course, include the
theory of autonomous dynamical systems in [5], but with some differences. In Section , we are
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concerned with such differences and we present new results for the existence of global attractors
in the impulsive autonomous case. More precisely, in this section, we introduce the notion of
c-global attractors (see Definition and we exhibit a characterization result to ensure the
existence of c-global attractors for impulsive autonomous dynamical systems. We point out
that our result for c-global attractors (see Theorem possesses simpler hypotheses than the
results in [5]. Also, we present an alternate result to obtain global attractors as in [5] (see
Theorem .

In Section [5, we use the continuous theory presented in [11] to define different notions for
attractors in the impulsive non-autonomous case. The relationships among these attractors are
considered in this section.

Finally, we apply our theory to fully describe the dynamics of an impulsive non-autonomous

non-classical parabolic equation in Section [6]

2. NON-AUTONOMOUS DYNAMICAL SYSTEMS

We begin our study by brief recalling the theory of continuous non-autonomous dynamical
systems. For more details on this topic, the reader may consult [1} 2} 8], 1T}, 13 16} 23].

Let Ry = [0,4+00) and N = {1,2,3,...} be the set of all natural numbers. Let ¥ be a complete
metric space and {#;: t > 0} be a semigroup in X, that is, it is a family of continuous maps
from ¥ into itself, satisfying the following conditions: 8yo = o for all o € X, 6, s = 6,0, for all
t,s € R, and the map R, x 3 3 (¢,0) — 6,0 is continuous.

Also, let us consider another complete metric space (X, d) and for each pair (¢,0) € Ry x ¥,
let (t,0): X — X be a map satisfying the following properties:

(i) ¢(0,0)z =z for all z € X and 0 € &;

(ii) o(t+ s,0) = p(t,050)p(s,0) for all t,s e R, and o € ¥;
(iii) the map R, x X x X 3 (t,0,2) — ¢(t,0)x € X is continuous.

Definition 2.1. With the previous definitions and relations, (¢,0)x ) is said to be a non-
autonomous dynamical system, or simply a NDS.

The semigroup {6;: t > 0} in this context is called driving semigroup, the map ¢ is called
cocycle and the property (ii) above is commonly known as the cocycle property.

A non-autonomous set is a family D = {D(0)},ex of subsets of X indexed in X. We
say that D is an open (closed, compact) non-autonomous set if each fiber D(o) is an open
(closed, compact) subset of X. A non-autonomous set D is called p—invariant if

o(t,0)D(0) = D(0,0) forall t>0 and each o€ .
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A non-autonomous set A o—pullback attracts D iftlirfl dist(p(t,0_0)D(0_40), A(o)) = 0 for
—+00
all o € 2. Here, we use the Hausdorff semidistance between two sets, that is, for A, B ¢ X
nonempty we denote dist(A, B) = sup Ii)njg d(a,b).
€

aceA
A universe ® is a collection of non-autonomous sets which is closed with respect to inclusion,

that is, if D1 € ® and Dsy(0) © Dy (o) for all o € 3, then Dy € D.

Definition 2.2. Given a NDS (¢, 0)(x ) and a universe ©, a compact non-autonomous set A
is called the (¢, ®)—cocycle attractor if:
(i) A is p—invariant;
(ii) A p—pullback attracts all non-autonomous sets in D;
(iii) A is the minimal among all closed non-autonomous sets with property (ii).

An important notion that relates the different aspects of the non-autonomous framework,
and is vastly used in [10} 1], is the skew-product semiflow, which we recall next.

Definition 2.3. Given a NDS (¢, 0)x 5, the semigroup {II(¢): ¢ > 0} in X = X x ¥ given by
(t)(z,0) = (¢(t,0)x,0,0) forall (x,0)eX and t =0, (2.1)

is said to be a skew-product semiflow. We say that {II(¢): ¢ > 0} is the skew-product
semiflow associated with the NDS (¢, 0)x 5.

Remark 2.4.

1. It is easy to see that if ¥ = {o¢}, then the NDS is, in fact, autonomous. Defining
7(t) = p(t,00) for all t = 0, we conclude that {7 (t): t = 0} defines a semigroup in X.

2. Although the general theory of non-autonomous dynamical systems can be developed
with a semigroup {6;: t = 0}, in order to simplify the notation we will consider only the

case where {0,: t € R} is a group.

Recall that an evolution process in X is a family of continuous maps
{T(t,s): t = s} from X to itself, satisfying the following conditions:

(a) T(t,t)xr =z for all z € X and ¢t € R;
(b) T'(t,s) =T(t,7)T(7,s) forallt =7 > s;
(c) the map P x X 3 (t,s,2) — T(t,s)r € X is continuous, where P = {(t,s) € R?: t > s}.

It is not difficult to verify that given an evolution process {T'(¢,s): t = s} in X, we can define
a NDS by the map (t,s,7) e R, x R x X — ¢(t,s)z € X given by

o(t,s)x =T(t+s,s)x, foreacht >0, se Rand z € X,

where we take ¥ = R and ;s =t + s for all £, s € R.
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2.1. Attractors of non-autonomous dynamical systems and their relations. We have
two important approaches that were developed in order to study the asymptotic behavior of
non-autonomous differential equations as (1.1)):

(1) the theory of uniform attractors, a minimal compact (not invariant) set that forwards
attracts bounded sets uniformly with respect to the initial time;

(2) the theory of pullback attractors, a family of compact sets which is invariant and pull-
back (but, in general, not forwards) attracts bounded sets.

These two approaches were treated, at first, as unrelated notions. However, in [10] the authors
explore both notions, and using the skew-product semiflow (2.1]) associated with equation (1.1)),
important relationships between (1) and (2) were proved in [10].

To give an idea of their results, we consider f € Cy(R x X, X), the set of all continuous
functions from R x X into X such that given B < X bounded and J < R, f(J x B) is bounded
in X with a suitable metric 0. Denote by ¥y the set of all translates of f in the first variable,

Zo(f) :{f(s—’_‘a'): SER}7
and define the shift operator 6, : C,(R x X, X) —> C,(R x X, X) by 0,f(-,-) = f(t + -, ).

Remark 2.5. Note that in this case, since f is defined for all times ¢t € R, 6, is in fact a group.

If f is autonomous, that is, f does not depend on the time variable, or if f is periodic on time,
then the set ¥y is a closed space. However, if f is more general (for instance, quasiperiodic
in time) then ¥, is not closed, so it is convenient to consider its closure in the metric o of
Cy(R x X, X):

¥ = closure of Xy(f) in Cp(R x X, X) in the metric o.

The set ¥ is commonly known as the hull of f in (Cy(R x X, X), 0) and it is also denoted by
H(f), see [106], 26]. It is clear that the continuity of §; in ¥ extends to the continuity of 6, in
2.

Remark 2.6. We could also consider f € Cp(R, x X, X), that is, f defined only for positive
times (which happens in general, when dealing with real world phenomena). In this case X is
the closure of the set {f(s + -,-): s = 0}, known as the positive hull of f, and 6; defines a

semigroup on ..

We may now study the differential equation as the combination of a base flow {6;};cr on
Y and, for each 0 € X, the map R, x X 3 (t,up) — ¢(t,0)ug € X where, for each ug € X,
R, 5t — p(t,0)up € X is the solution of the initial value problem

{u =o(t,u), t >0,

u(0) = ug € X. (22)
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Thus, given a non-autonomous differential equation such as (2.2), we have three different
systems to consider:

e the evolution process T,(t, s)ug = p(t — s,050)ug, for each o € ¥;

e the non-autonomous dynamical system (@, 0)x x);

e the skew-product semiflow {II(t): t > 0} associated with (¢,0)xx) defined on the pro-
duct space X = X x X.

Each of these dynamical systems yields different notions of attractors:

e a pullback attractor {A,(t)}er for the evolution process {T,(t,s): t = s}, for each o € ¥;
e a cocycle attractor {A(o)}qex for (¢, 0)xn);

e a uniform attractor A for (¢, 0)x »);

e a global attractor A for the skew-product semiflow {II(¢): ¢ > 0}.

The reader may consult [10] which presents the relations between the skew-product semiflow
and the uniform attractor, between the skew-product semiflow and the cocycle attractor and
the relation between the skew-product semiflow and the pullback attractor. These results will

be provided in the context of impulsive systems in Section 5.

3. IMPULSIVE NON-AUTONOMOUS DYNAMICAL SYSTEMS

In this section, we present the theory of impulsive non-autonomous dynamical systems, which
was first presented in [4]. To this end, let (¢,0)x,») be a NDS and for each D < X, J c R,

and o € X, we define
F,(D,J,0) ={xeX: ¢(t,o)x e D for some t e J},
and also, if D ¢ X = X x X we define
Fu(D,J) = {(z,0) e X: II(t)(x,0) € D for some t € J}.
A point z € X is said to be an initial point if F,(x,7,0) = @ for all 7 > 0 and for all 0 € X.

Definition 3.1. An impulsive non-autonomous dynamical system, or simply an INDS,
[(,0)(x,), M, I] consists of a NDS (¢, 0)x,5), a nonempty closed subset M < X such that for
each z € M and each o € X there exists €;, > 0 such that

U Fo(z,t,0_10)n M =2 and {p(s,0)z:s€(0,e,)} "M =02, (3.1)
te(0,€z,0)
and a continuous function 7: M — X whose action will be specified later.

The set M is called the impulsive set and the function [ is called impulse function. We
also define M7 (z,0) = {p(7,0)x: 7> 0} N M.
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One important property which may be observed is that if M (x,0) # @, then there exists
t > 0 such that ¢(t,0)z € M and ¢(1,0)x ¢ M for 0 < 7 < t, and as a consequence, for each
o € X, we are able to define the function ¢(-,0): X — (0, +o0] by

s, if p(s,0)re M and ¢(t,0)x ¢ M for 0 <t < s,

(3.2)
00, if p(t,0)x ¢ M for all t > 0.

¢(z,0) =

In the first case, the value ¢(z, o) represents the smallest positive time such that the positive

semitrajectory of x in the fiber ¢ meets M and we say that the point ¢(¢(x,0),0)x is the
impulsive point of x in the fiber o.

Definition 3.2. Given o € ¥, the impulsive positive semitrajectory of xr € X starting
at o by the INDS [(¢,0)xx),M,I] is a map ¢(-,0)z defined in an interval J, . < Ry,
0 € Jiv,0), With values in X given inductively by the following rule: if M7 (z,0) = &, then
@(t,0)r = (t,o)x for all t € [0, +00) and in this case ¢(z,0) = +o0. However, if M (z,0) #
then we denote z = x§ and we define @(-,0)z on [0, ¢(zs,0)] by

o(t,0)at, it 0<t<o(ai,0),

o(t,o)r =
o(t,0) Hp(p(xd,0),0)xl), if t=¢(al, o).

Now let sg = ¢(zd,0), ©1 = @(so,0)zg and x{ = I(p(so,0)xg). In this case sp < +o0
and the process can go on, but now starting at zy. If Mf(z],0,,0) = @ then we define
o(t,0)x = p(t — so,05,0)x] for sy <t < +0o0 and in this case ¢(z],0,,0) = +00. However, if
M} (xf,05,0) # @, then we define (-, 0)x on [so, so + ¢(2],05,0)] by

o(t — s, 0s,0) 7, if  so<t<so+ P(a],0,,0),

Pt o)z =
I(p((27,0500), Oso0)ay), if =50+ (], 050).

Now let s; = ¢(a7,0,,0), 12 = @(s1,0,,0)r] and x5 = I(¢(s1,0,,0)x]), and so on. This
process ends after a finite number of steps if M} (z},0;,0) = @ for some n e Nu {0}, or it may

proceed indefinitely, if M} (z,;,0;,0) # @ for all n € Nu {0} and in this case §(-, o) is defined
+00

in the interval [0,7T(z, o)), where T'(z,0) = Z Si.
i=0

As in [4], we assume hereon the following assumption:
T(x,0)=+0 forall ze€X andoeX. (HO)

Remark 3.3. In the particular case when ¥ = {0y}, these previous definitions reduce to the case
of autonomous impulsive dynamical systems. The theory of autonomous impulsive dynamical
systems and their attractors, may be found, for instance, in [5, 6, [7, 8, 9] 17, 18], 19 2] 22} 24].
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The construction of the function ¢ and the impulsive positive semitrajectory ¢ allows us to
state the following important relationship, whose proof may be found in [4]. Let (¢,0)xx) be
a NDS and {II(t): t > 0} be its associated skew-product semiflow in X. Define I1* by

IT*(t)(z,0) = (p(t,0)x,0,0) forall (x,0)eX and t =0,
and also let {II(t): t > 0} be the impulsive dynamical system (X, IT, M, T), where M = M x %
and I : M — X is given by [(z,0) = (I(z),0), for z € M and o € X. Then
IT*(t) = 11(t) forall = 0.

Moreover, if ¢ is the function defined in (3.2)), then it coincides with the function used to define
the impulsive positive semitrajectory {II(): t = 0}. Also, for each o € ¥ and ¢, s € R, we have

Pt + s,0) = @(t,0,0)¢(s,0)
that is, ¢ satisfies the cocycle property.
A key property that the above relation provides, as seen in [4], is that the following diagram

1s commutative:
(QD, 9)(}(}2) {H(t) t = O}

[((:070>(X,Z)7M7 -[] (X, H,M, ]1)

that is, given a NDS (¢, 8)x ), if we construct the INDS [(y,0)x ), M, I] and we consider
the impulsive skew-product semiflow associated with [(p,0)xs), M, ], then we obtain the
same object as if we first constructed the skew-product semiflow {II(¢): ¢ > 0} associated
with (¢, 6)(x x) and then using this skew-product to construct the impulsive dynamical system
(X, I, M, T).

This is essential to the work that is about to be presented, relating several different notions

of asymptotic behavior in the impulsive non-autonomous case.

3.1. Tube conditions. The so called “tube conditions” are very important for the theory of
impulsive dynamical systems. Here, we briefly present the results of [4] (which uses the results
of [20] and the above diagram) for tube conditions of impulsive non-autonomous dynamical
systems. Recall that X = X x ¥ and M = M x X.

Definition 3.4. A closed set'S containing (x,0) € X is called a section through (x, o) if there
exist A > 0 and a closed subset I of X such that:

(a) Fp(L,\) =S;

(b) Fn(L, [0,2\]) contains a neighborhood of (z,0);
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(c) Fu(L, ) (Fu(L,C) = @, if 0 < v < ¢ < 2\.
We say that the set Fr(L, [0,2)]) is a A—tube (or simply tube) and the set L is a bar.

The Definition is the same definition of tube for general impulsive systems (X, 7, M, I),
see [20].

Definition 3.5. A point (x,0) € M satisfies the strong tube condition (STC), if there
exists a section S through (x,c) such that S = Fr(L, [0,2A]) (M. Also, we say that a point
(z,0) € M satisfies the special strong tube condition (SSTC) if it satisfies STC and the
A—tube F(L, [0,2)]) is such that F(L,[0,A]) (I(M) = &.

Now, we introduce the concepts of STC and SSTC in the context of INDS.

Definition 3.6. Let [(¢,0)xx), M,I] be an INDS. We say that a point x € M satisfies the
p—strong tube condition (p—STC), if for each o € ¥, the pair (z,0) satisfies STC with
respect to the impulsive skew-product (X, II, M I). Also, we say that a point z € M satisfies
the p—special strong tube condition (p—SSTC), if for each o € X, the pair (z,0) satisfies
SSTC with respect to the impulsive skew-product (X, IT, M, I).

Theorem 3.7. [4, Theorem 3.5] Let [(¢,0)x,n), M, I| be an INDS such that each point of M
satisfies o—STC. Then ¢ is upper semicontinuous in X x ¥ and it is continuous in (X\M) x 3.

Moreover, if there are no initial points in M and ¢ is continuous at (x,0) for some o € ¥, then

x¢ M.

Proposition 3.8. [4, Proposition 3.7] Let [(p, 0) x5, M, I] be an INDS such that I(M)nM =
@ and let y € M satisfy o—SSTC. Then, for each o € X3, the point (y, o) satisfies SSTC with a
A—tube Fry(LL, [0,2)]) such that T1(t)(X x ) () Fu(L,[0,\]) = @ for all t > ).

3.2. Existence of impulsive cocycle attractors. In [4], the authors introduce the definition
of impulsive non-autonomous dynamical systems and also find sufficient conditions to ensure
the existence of an impulsive cocycle attractor. In this subsection, we present their main results.

The definition of ¢—invariance is analogous to the notion of p—invariance simply replacing

@ by @.

Definition 3.9. Given an INDS [(p,6)(x.x), M, ], a non-autonomous set B is said to be
pullback (¢, ®)—attracting, if for each o € ¥ and D e ® we have

im_dist(@(t,0-0) D(0_0), B()) = 0.

Definition 3.10. Given a universe ® and an INDS [(y, 0)x x), M, I], a compact non-autonomous
set A is called the (@, ®)—impulsive cocycle attractor if:

(i) A\M = {A(0)\M}yes is p—invariant;
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(ii) A is pullback (¢, D)—attracting;
(iii) A is minimal among the closed non-autonomous sets satisfying (ii).

Remark 3.11. If A; and A, are two (¢, ®)—impulsive cocycle attractors then

A1(0)\M = As(o)\M for all oeX.

In order to find sufficient conditions to ensure the existence of an impulsive cocycle attractor
for an INDS, the key role is played by the impulsive pullback w-limit set.

Definition 3.12. Given a non-autonomous set B and o € X, we define the impulsive pullback

ﬂU U D(t+€,0_,0)B(0_10)

s201t=s e[0,s1)

w-limit of B at o as the set

and the impulsive pullback w-limit of B as the non-autonomous set @(B) = {@(B, o) }es..

The following characterization is crucial for the theory, and the proof (analogous to the
continuos case) can be found in [4, Lemma 4.2].

Lemma 3.13. We have
O(B,o) = {x e X: there exist sequences {t, }nen, {entnen S Ry and {z,}neny S B(0_y,0)

0 ——+00

with t,, man +o0, €, "800 such that Pty + €, 04, 0)Ty jpmaregyy
and &(B, o) is closed.

It is clear that, if we are in the continuous case, that is, M = &, then the impulsive pullback

w-limit coincides with the pullback w-limit. Now, for the results that follow, we fix a universe

D.

Definition 3.14. An INDS [(¢,0)x,s), M, I] is said to be pullback ®—asymptotically com-
pact, if for any 0 € £, D € © and sequences {tn}nen © Ry, {zp}neny © X with ¢, fmaregNnoe
and x,, € D(0_4,0) for n € N, then the sequence {Q(t,,0_;,0)x,}neny POSsesses a convergent

subsequence.

The main result of [4] is stated next. The only difference is that we replace the condi-
tion “there is a pullback ®—absorbing non-autonomous set Ke® by “there is a pullback

(¢, ®)—attracting non-autonomous set K € ®©”. The proof is the same, see [4, Theorem 5.1].

Theorem 3.15. [4 Theorem 5.1] Let [(p, 0)(x,»), M, I] be an INDS pullback ®—asymptotically
compact such that I(M)nM = & and every point from M satisfies p—SSTC. Assume that there
exists a pullback (9, D)—attracting non-autonomous set K €®. Then, the non-autonomous set

A, given by A(0) = &(K,0), is the (p,D)—impulsive cocycle attractor.
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4. IMPULSIVE DYNAMICAL SYSTEMS: AUTONOMOUS VS. NON-AUTONOMOUS

In [5], the authors developed the theory of global attractors for the autonomous impulsive
scenario. In their work, they established sufficient conditions for the existence of the impul-
sive global attractor for a given autonomous impulsive system (X, w, M, I), with the following
definition:

Definition 4.1. A subset 4 < X will be called a global attractor for the IDS (X, 7, M, I) if
it satisfies the following conditions:
(i) A is precompact and A = A\M;
(ii) A is 7—invariant;
(iii) A 7—attracts all bounded subsets of X.

We recall in Definition 4.1 that a subset A < X is 7—invariant if 7(¢t)A = A for all t > 0 and
A c X m—attracts all bounded subsets of X if tliI_El dist(7(t) B, A) = 0 for all bounded B < X.
—+00

With this definition, the authors present their main result:

Theorem 4.2. [5, Theorem 4.7] Let (X, 7, M,I) be an IDS such that I(M) n M = &, every
point from M satisfies SSTC, there exists a precompact set K, with K n M = &, such that K
w—absorbs all bounded subsets of X (for any bounded subset B of X there is tg = 0 such that
7(t)B < K for all t > tg) and there exists £ > 0 such that ¢p(z) = & for all z € I(M). Then
(X,m,M,I) has a global attractor A and we have A = O(K)\M.

In the non-autonomous case, even when we impose the same hypotheses, we were not able
to prove the existence of an object that generalizes naturally the concept of global attractor
of Definition [.1l The crucial result that is used in [5] is Proposition 3.14, which ensures that
given a set B, if w(B) w—attracts B, then so does @(B)\M. Recall that @(B) = {x € X : there
exist sequences {Z,}neny € B and {t,}neny © Ry with ¢, "5 o such that 7(tn) s [marpay
With this result, they are able to construct a precompact set, disjoint from M, that T—attracts
all bounded subsets of X. The proof of this result is a direct consequence of Lemma 3.13 of

their paper. We present here the non-autonomous version of this lemma.

Lemma 4.3. (Non-autonomous version of [5, Lemma 3.13]) Let [(p,8)xx), M, ] be a pull-
back ©—asymptotically compact INDS, with I(M) n M = & and every point from M satisfies
©—SSTC. Let o € ¥ and assume that there exists & > 0 such that ¢(z,w) = & for all z € I(M)
and w 1 a neighborhood ¥, < ¥ of o. If Be®isa nonempty non-autonomous set and
x € (Z)(B,U) N M, then there exists a sequence {Ym}men Such that for each m € N we have

m——+0o0

Ym € D(B,0_10)\M, o(1/m,0_10)ym = x and y,, "=5" z.

Proof: Let z € d)(é, o) n M. Then there exist positive sequences t,, "2 4o, 6, =50 and

T, € B(0_,,0) such that z, = G(t, + €, 0_,0)x, =" x. By Proposition , the point (z,0)
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satisfies SSTC with a A—tube Fyy(L, [0,2)]) such that II(¢)(X x ) () Fu(L, [0,\]) = @ for all
t > A. Since

(t, + €n)(2Zn, 01, 0) = (20, 0e,0) "=5° (z,0),

we may assume that (z,,0. o) € Fi(L, (A, 2)A]) for all n € N.

We may choose a subsequence if necessary, which we will call the same, and a sequence
Mn "=, N, > 0, such that II(n,)(2,, 0,0) € M, that is, ¢(n,,0.,0)z, € M for all n e N. We
may also assume that n, < % for all n € N.

Let ¢ > 0 be such that 6,0 € &, for all t € (—(, (). Recall that there exists €,, > 0 such that
Urco,c00) Foo(2:t,0-40) n M = @. Let mg € N be such that mio < min{e, 5, 5,¢} and ng € N be
such that €, < ( for all n = ny.

For each integer m > mg, we consider the sequence w' = @(t,, — % + €n,0_4,0)x,, n € N.
By the pullback ®—asymptotic compactness and the fact that B e ®, we may assume that

m N—+0

Wyt = Y € @(B,&%U), for each m = my.

We claim that s = ¢(w,0., _10) > + for all n = ng and m > myg. Indeed, suppose to

the contrary that s' < % for some n = ng and m = mgy. We have ¢(s)',0, _10)w]" € M and
vyt = P(s7, 0, _1o)wy € I(M). Now note that

90(7771 + 1/m o S?’ es{{Urenin-)v:ln = 90(77na 66n0)90<1/m - Snm? 65W+6n7i0)vzﬁl =
= (M, 0,0)2n € M

since L — s™ < % < ¢ and stﬁn_%a € Y,. But it is a contradiction, since 0 < 7,, + % — s <

m ~ Sn "
N + = < & and v € I(M). This shows that for n > ny and m > mg, we have

e(1/m, 0, _1o)wr = G(1/m,0, 10w = 2,.

By the continuity of ¢, as n — 40, we get ¢(1/m, Hfia)ym =x e M. Since 1/m < €, we
obtain 1, € ©(B,0_10)\M.

If {4 }men does not converge to x, then we can choose a convergent subsequence {y,,, }ien to
a point xy # x, but x = ¢(1/my, G*mﬁa)yml masy ©(0,0)xy = xp, which gives us a contradiction

and proves that y, "—" . 0

As an immediate consequence of this result we obtain:

Corollary 4.4. With the conditions of Lemma[4.5, given e > 0 we have

w(B,o) n M c U &(B,0_,0)\M for all o€,
s€[0,¢]
We can easily check that Corollary is not enough to prove a result as Proposition 3.14 of
[5] for the non-autonomous case. It was expected that a result as in [5] would not be natural,
since as in the non-autonomous case, we are constantly changing the fibers o.
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Also, we can see that Definition [3.10] is not a natural extension of Definition to the
non-autonomous case. With this idea in mind, we introduce the following definition:

Definition 4.5. A subset A c X is called a c—global attractor for the IDS (X, 7w, M, I) if:
(i) A is compact;
(ii) A\M is 7—invariant;
(iii) A 7T—attracts all bounded subsets of X.

In order to obtain a simpler result to the autonomous case, we first need to the following
definition:
Definition 4.6. An IDS (X, m, M, I) is called asymptotically compact if for any bounded
sequence {z,},eny © X and any sequence {t, }n,en < Ry such that ¢, "5 4 o0 and {7 (tn)Tn tnen
is bounded, then the set {7 (¢,)z,}nen iS precompact.

The results of [4] can now be applied to the autonomous case, see the next theorem.

Theorem 4.7. Let (X, m, M,I) be an asymptotically compact IDS such that I(M) n M = &,
every point from M satisfies SSTC and there exists a bounded set K which 7™—attracts bounded
subsets from X. Then (X, 7, M,I) has a c—global attractor A and we have A = O(K).

Proof: Let ¥ = {o} and © be the universe of all bounded subsets of X. Let [(¢,0)x ), M, I]
be an INDS, where
o(t, o) =7(t)x

for all t € Ry and x € X, and 6,0 = o for all t € R. Note that [(¢,0)x ), M, I] is pullback
D —asymptotically compact and K = {K (o)}, with K(¢) = K, is a pullback (p, ®)—attracting
non-autonomous set. Define X = X x {o}, M = M x {0}, Il(z,0) = (I(x),0) for all z € X
and T1(t)(z,0) = (p(t,0)x,0,0) for all t € R, and x € X. We claim that M satisfies ¢—SSTC.
Indeed, let x € M be arbitrary. Since x satisfies SSTC there exist a A—section S through x and
a bar L such that FI(L,\) = S, F(L,[0,2X]) is a neighborhood of =, F(L,u) n F(L,v) = & for
all 0 < pu<v<2\and F(L,[0,\])nI(M) = @. Now, we define S = S x {o} and L = L x {c}.
It is not difficult to see that Fr(L, [0,2A]) is a A—tube through (x, ) with section S satisfying
Fr(L, [0,A]) n (M) = @&. Thus, the claim is proved.

By Theorem m, the the non-autonomous set A, given by A(o) = 0(K,0), is the (¢, D)—im-
pulsive cocycle attractor of [(¢,6)xx), M, I]. Note that @(K,0) = @(K) and it satisfies the
conditions (i), (ii) and (iii) from Definition [£.5] Consequently, @(K) is the c—global attractor
of (X, 7, M, I). .

It is clear that c—global attractors extend Definition 4.1, Thus, we have a straightforward
relationship between these two object, given by the following result.
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Proposition 4.8. Let (X, 7, M,I) be an IDS. If A is its global attractor, then A, = A is its
c—global attractor.

However, the other implication is not true, that is, if A < X is a c—global attractor for the
IDS (X, m, M, I), then Ay = A\M may not be an impulsive attractor for the IDS (X, 7, M, I) in
general, since property (iii) of Definition |4.1|may not be satisfied. Nevertheless, using Theorem
and Corollary we are able to state one more result:

Theorem 4.9. Let (X, m, M,I) be an asymptotically compact IDS such that I(M) n M = &,
every point from M satisfies SSTC, there exists a bounded set K which 7—attracts bounded
subsets from X and there ezists & > 0 such that ¢(z) = € for all z € I(M). Then (X, 7, M,I)
possesses a global attractor A and we have A = 0(K)\M.

Note that this is the same result as Theorem without the assumption that K n M = &
and with the condition of 7—absorbing sets replaced by m—attraction. One can see that the
notion of c—global attractor is more natural to deal with in the autonomous framework if we
want to consider the impulsive cocycle attractors in the non-autonomous case, since the latter
is a natural extension of the first. That being said, throughout the paper, we shall use the

notion of c—global attractors for the autonomous case.

4.1. Asymptotic compactness. In this subsection, we shall explore the property of asymp-
totic compactness for an impulsive autonomous dynamical system, given in Definition 4.6 The
definition of asymptotic compact for a semigroup {7 (¢): ¢ > 0} in X is analogous, just replacing
7 by 7.

First, we shall prove that, if we do not assume any additional hypothesis on the impulsive
set M and the impulsive function I, these two concepts are not equivalent.

Example 4.10. Consider the ordinary differential equation in R given by
T = |z| (4.1)

and let 7(t)zo denote the solution of for t = 0 with initial condition z,. We have 7(t)zo =
zoe ! for xy < 0 and 7(t)xg = xoe' for zg = 0. The semigroup {7 (¢): t = 0} is not asymptotically
compact.

Now, consider the set M =N = {1,2,3,---} and the impulsive function given by I(n) = —1,
for all integers n > 1. It is simple to see that (R,m, M,I) is an asymptotically compact

autonomous impulsive dynamical system.
Example 4.11. Consider the ordinary differential equation in R given by

T =— (4.2)
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and let 7(t)zo denote the solution of for t = 0 with initial condition xy. We have 7(t)zo =
xoe ! for all 5 € R. Then this semigroup has a global attractor, namely the set {0} and, hence,
it is asymptotically compact.

Now, define M = {n—1:neNandn > 2} and I(n — %) = n + 1 for each natural n > 2.
It is not difficult to see that (R,w, M, I) is an autonomous impulsive dynamical system. For
any o > %, we can check that 7(t)xg — +00 as t — 400, which means that (R, 7, M, I) is not

asymptotically compact.

The conclusion is that the asymptotic compactness of {m(¢): t = 0} does not imply the as-
ymptotic compactness of (R, 7, M, I). Moreover, the system (R, 7, M, I) can be asymptotically
compact even when {m(t): t = 0} is not. So the natural question is: may we impose conditions
on {m(t): t =0}, M and I to ensure the asymptotic compactness of (X, m, M, I)?

Our next result provides a positive answer to this question, with a fairly simple condition.

Proposition 4.12. Assume that (X, m, M, I) is an IDS such that {m(t): t = 0} is asymptotically
compact and I(M) is precompact. Then (X, 7, M, I) is asymptotically compact.

Proof: Let {t,},en © R, be a sequence with ¢, "5 400 and {xn}nen © X be a bounded

sequence such that {7 (t,)x,}nen is bounded. In the sequel, we consider some cases:

(i) t, < ¢(z,) for all n € N. In this case, we have 7(t, )z, = 7(t,)z, and every subsequence
of {7(t,)xn}nen possess a convergent subsequence, by the asymptotic compactness of
{m(t): t = 0}.

(ii) t, = ¢(z,) for all n € N. Clearly 7(t,)z, = I(n(t,)x,) and every subsequence of
{7(t,) T, }nen has a convergent subsequence, since I(M) is precompact.

(iii) ¢, > ¢(x,) for all n € N. In this case, there exist sequences {s, }neny < Ry and {2z, }neny <
I(M) such that 7(t,)x, = 7(8n)2zn. If {Sn}nen is bounded, the precompactness of (M)
and the continuity of the map R, x X 3 (¢, z) — m(t)z € X shows that every subsequence
of {7 (t,)Tn}neny has a convergent subsequence. On the other hand, if s, "21° 4 o0, then
every subsequence of {7(t,)z,}nen has a convergent subsequence, by the asymptotic
compactness of {m(t): t = 0}.

Lastly, note that considering subsequences if necessary, we can always assume that one of

conditions (i), (ii) or (iii) holds, which proves that {7 (t,)z,}nen is precompact. Therefore,
(X, m, M, I) is asymptotically compact. 0

Remark 4.13. Proposition [4.12| can be easily extended to the non-autonomous case, when %
is the universe of non-autonomous sets with bounded union. Namely, in this case, if (¢, 0)x x)
is pullback © —asymptotically compact and (M) is precompact, then [(¢,8)x ), M, I] is also
pullback ®—asymptotically compact. In this case, the asymptotic compactness of (¢,6)x ) is
defined as in Definition [3.14] with ¢ replaced by ¢.
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5. RELATIONSHIPS AMONG ATTRACTORS

In order to reach the full depth of properties of an impulsive non-autonomous dynamical
system, we must be able to relate all possible different frameworks that one can obtain when
dealing with a non-autonomous impulsive problem. We will explore each framework in detail
to obtain the relations among all the different scenarios. To this end, we will assume from now
on the following assumption:

Y. is compact and invariant under the action of the driving group {6;: t € R}. (5.1)

5.1. The impulsive uniform attractor and the impulsive skew-product semiflow. In
what follows, we present the definition of an impulsive uniform attractor for an impulsive non-
autonomous dynamical system. Besides, we derive its relationship with the global attractor of
the associated impulsive skew-product semiflow.

To begin, we present a result that relates impulsive attraction of the impulsive non-autonomous
dynamical system with attration of the impulsive skew-product semiflow. For that, let d be a
metric in X and p be a metric in 2. We consider the space X x Y with metric

dxxx((z1,01), (x2,02)) = d(x1,22) + p(o1,02) for all x1,29 € X and 01,09 € 2.

Thus, for A, B < X and ¥, Y5 © X, we have dist(A, B) = sup ing d(a,b) and

acA be
Dist(A x X1, B x 3) = sup inf  dxxs((a,01),(b,09)).
(a,o1)eA><21 (bng)EBXZQ
Proposition 5.1. Let [(¢,0)x.x), M,I] be an INDS, {TI(t) : t = 0} be its associated skew-
product semiflow on X x ¥ and assume that (5.1)) holds. Then the following two properties are
equivalent:

(i) there exists a compact subset K of X x X such that for every bounded subset B of X x ¥

lim Dist(II(#)B, K) = 0;

t—+00

(ii) there exists a compact subset K of X such that for every bounded subset B of X

lim supdist(¢(t,0)B, K) = 0.

t—>+0 sen

Proof: Suppose that (i) holds. Let K = PxK (the canonical projection of the first coor-
dinate), B be a bounded subset of X and B := B x ¥. Then B is bounded in X x ¥ and

lim Dist(II(¢)B, K) = 0. Since
t——+00

dist(¢(t, 0) B, K) < Dist(II(t)B, K),

for all o € X, then (ii) follows.
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Now, let us assume that (ii) holds. Take K = K x ¥, which is compact since K and ¥ are
compact. Since any bounded subset B of X x ¥ is contained in a set of the form B x ¥, where
B is a bounded subset of X, and

(6B < OB x ] < | J@t,0)B x %,

o€y

if follows that

oeY o€EY

Dist(I1(t)B, K) < Dist <U @(t,0)B x 3, K x 2) < sup dist(3(t, 0) B, K).

Therefore, (i) follows. 0

This result forms the basis of the following definition.

Definition 5.2. An INDS [(p,0)x5), M, 1] is said to be uniformly asymptotically com-
pact, if there exists a compact set K < X such that for every bounded subset B of X
lim supdist(¢(t,0)B, K) = 0. (5.2)

t—>+0 S5

We have just shown that, if the INDS [(y, 0)x 5), M, I] is uniformly asymptotically compact,
I(M) n M = @ and each point of M satisfies ¢—SSTC, then the associated skew-product
semiflow {II(t) : t > 0} has a c—global attractor A (see Theorem . Note that the attracting
property of A for {II(t): t > 0} implies the attracting property of the set A = PyA for
[(0,0) (x5, M, I].

One can see that the property of minimality is preserved, that is, the global attractor A is the
minimal closed set in X x ¥ that attracts all bounded sets and its projection A is the minimal
closed subset of X that is uniformly attracting (in the sense of (5.2)), for all bounded subsets B
of X, because if A c X is uniformly attracting then A x ¥ is attracting for {II(t) : t = 0}, from
whence A ¢ A x ¥ and thus A  A. This remark thus yields the definition of the impulsive
uniform attractor.

Definition 5.3. The impulsive uniform attractor A of the INDS [(p,0)x ), M, 1] is a
compact subset of X such that given B < X bounded, we have

lim supdist(¢(t,0)B,A) =0 (5.3)

t—>+0 sen

and A is minimal among all closed sets with property (/5.3).
We have therefore the following result.

Theorem 5.4. Let [(p,0)(x.x), M, I] be an INDS and {I1(t) : t = 0} be its associated skew-
product semiflow on X x X. Assume that (M) n M = @& and every point from M satisfies
©—=S8STC. Then [(¢,0)xx), M, 1] has an impulsive uniform attractor A, if and only if {f[(t) :
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t = 0} has a c—global attractor A. Moreover, when these attractors exist, if we define A = PxA,
then
A\M c A, c A.

Proof: Note that the existence of each one of them implies the existence of the other, see
Proposition [5.1} Theorem and the comments after Definition When these attractors
exist, since A clearly uniformly attracts bounded sets, the minimality condition of A4; ensures
that A; < A. To see the second inclusion, note that A; x X attracts bounded sets of X x X
under II. This fact and the invariance of A\(M x %) show that A\(M x ) c A; x ¥, and
therefore AA\M < A;. 0O

5.2. The impulsive uniform attractor, the impulsive skew-product semiflow and
the impulsive cocycle attractor. In this subsection, we dedicate ourselves to describe the
relations between the previously defined impulsive uniform attractor and the impulsive cocycle
attractor defined in Section [3] To this end, we also use the impulsive skew-product semiflow,
as we will see in the two following results. The first one ensures the existence of an impulsive
cocycle attractor, known as the existence of the impulsive uniform attractor.

Theorem 5.5. Let [(p,0)xx), M, 1] be an INDS, I(M) n M = &, each point of M satisfies
©—SSTC, {II(t) : t = 0} be its associated skew-product semiflow on X x ¥ with a c—global
attractor A and © be the universe of all non-autonomous sets D with U D(o) bounded in X .

o€

Then there exists a (p,D)—impulsive cocycle attractor A, of [(p,0)(x,x), M, I]. Moreover, the
non-autonomous set A with A(o) = {x € X : (x,0) € A} is such that A € D is compact,
{A(0)\M }pes, is ¢—invariant, A(c)\M < A;(c) < A(o) and

A\(M x %) c (U [A(0) x {0}]) \(M x X) < U [A1(0) x {0}] < U [A(0) x {o}] = A.

ey oeX oeX

In particular, A\(M x ¥) = (U [A(0) x {a}]) \(M x %) = (U [A1(0) % {a}]> \(M x ).

oEY oY

Proof: Since A is the c—global attractor of {II(t) : t > 0}, it follows that A e @, A(0) = {z €
X : (z,0) € A} is compact and {A(0)\M }sex is p—invariant for each o € X.

By Theorem [5.4) and Theorem , the INDS [(p, 0)(x,x), M, I] admits an impulsive uniform
attractor K such that the (¢, ®)—impulsive cocycle attractor is given by the non-autonomous
set {O(K,0)}oex, where K(0) = K for each 0 € ¥. By the g—invariance of {A(0)\M },es we
have

dist(A(o)\M,&(K,0)) = dist(p(t, 0_0)A(O_,0)\M,&(K,0)) — 0, as t — +oo0,
that is, A(0)\M < &(K, o) for all o € 3.
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Now, let x € (Z)(R’, o). Then there exist sequences {t,}nen € Ry, {€,}neny © Ry and {x,, }peny <
K with t, "=5° 4w, €, "=5° 0 such that Pty + €n,0_4,0)x, "2 2. By the proof of
Proposition [5.1] and by Theorem [£.7 if we put K = K x X, then the c—global attractor of
the associated skew-product semiflow {II(t) : ¢ > 0} is given by A = &(K). If we consider the
sequence (z,,0_y,0) € K, neN, then we get

n—+o0

ﬂ(tn + €n)(Tn, 04, 0) = (P(tn + €n,0_4,0)xp, 0., 0) —> (x,0).

Then (z,0) € A which implies that @(K,0) c A(o). Consequenlty,

o€ oeEY

A\(MXE)C(U[ (o )x{a}])\MxEcU[ (K, 0) x{a}] U[A(U)x{a}]cA

O

With this theorem, we get a direct result relating the impulsive uniform attractor and the

impulsive cocycle attractor.

Corollary 5.6. If (M)~ M = &, each point of M satisfies op—SSTC, ® is the universe of all
non-autonomous sets D with U D(0) bounded in X and the INDS [(p,0)xx, M, 1] has an

ogEN
impulsive uniform attractor A, then it possesses a (¢, ®)—impulsive cocycle attractor A; and

we have

| Ai(o)\ M = A\ (5.4)

oY

Proof: By Theorem [5.4] the impulsive skew-product semiflow {II(¢): ¢ > 0} has a c—global
attractor, which we shall denote by A, and if Ay = PxA, then

A\M < A c As. (5.5)

Now, using Theorem the c—global attractor A, of IT implies the existence of a (p,D)—im-
pulsive cocycle attractor A, of [(¢, 8)(x,x), M, I] such that Ay(o)\M < Ai(0) < As(0), for each
o € 3, where Ay(0) = {x € X: (z,0) € Ay}. Clearly we have Ay = U Ay(0), which proves

oED
that
A\M < U Ay (o) c As. (5.6)
oEY
Thus, equations (|5.5)) and ([5.6|) prove the result. 0

To obtain the converse result, that is, to ensure the existence of the impulsive uniform
attractor using the impulsive cocycle attractor, we need some additional hypothesis of uniform
attraction, as present the next result.
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Theorem 5.7. Let [(p,0)xxn), M, 1] be an INDS, I(M) n M = @, each point of M satis-
fies 0—SSTC, {T1(t) : t = 0} be the associated skew-product semiflow on X x ¥ and D be
the universe of all non-autonomous sets D with U D(o) bounded in X. Assume that A is

ogEN
the (p,©)—impulsive cocycle attractor of [(v,0)xx), M, 1], U A(o) is precompact in X and
oeX
U A(o) is uniformly attracting, that is, for each bounded subset B of X we have

o€eY

t—>~+0 e oS

lim sup dist (@(t,w)B, U A(o)) = 0.

Then the impulsive skew-product semiflow {II(t) : t = 0} has a c—global attractor A,, and
defining A = U [A(0) x {c}], we have

o€y

A\(M x ¥) = A\(M x %).

Proof: Define K = | J, s, A(c). We know that K is compact by hypothesis and K ¢—uniformly

ey
attracts bounded sets. Hence, the impulsive skew-product semiflow {II(t) : t > 0} has a
c—global attractor A; by Proposition and Theorem

The invariance of A\(M x ¥X) follows from the @p—invariance of {A(c)\M },ex and it shows
that A\(M x X) < Aj\(M x ).

We can apply now Theorem to ensure the existence of a (¢, ®)—impulsive cocycle attrac-

tor Ay such that, if A;(0) = {z € X: (z,0) € A}, we have
Al(O')\M = AQ(O’) e Al(O').

Since Ay(c)\M = A(c)\M, by Remark [3.11] we have A;(c)\M < A(¢c)\M and hence
AN\(M x X)) c A\(M x X0). 0

5.3. The impulsive uniform attractor, the impulsive pullback attractor and the im-
pulsive skew-product semiflow. To begin this subsection, we present some definitions. A
non-autonomous set, in this context, is a family D = {D(t)},er of subsets of X indexed in
R. We say that D is an open (closed, compact) non-autonomous set if each fiber D(t) is
an open (closed, compact) subset of X. A universe ® is a collection of non-autonomous sets
such that, if D, e® and Dy (t) < Dy(t) for all t € R, then Dye®.

Definition 5.8. Given an INDS [(¢,8)x ), M, I] and o € ¥, we define the impulsive evo-
lution process associated to ¢ as the two-parameter family {T,(t,s): t > s} given by

Ty(t,s)x = o(t — s,0,0)x forall xe X. (5.7)
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It is fairly easy to verify that T, (¢, t)x =  for all t € R and z € X and T, (t,7)T,(7,s) =
T,(t,s) forallt > 7 = s. Moreover, we say that a non-autonomous set D is called T,—invariant
if T,(t, s)D(s) = D(t) for all t > s, and a non-autonomous set A T,—pullback attracts D if

lim dist(T,(t,s)D(s), A(t)) =0 forall teR.

§——00

Definition 5.9. Given an impulsive evolution process {T,(t,s): t > s} associated to o as
in and a universe », a compact non-autonomous set A is called the (T >, ©)—pullback
attractor if:

(i) A is T, —invariant;

(ii) A T,—pullback attracts all non-autonomous sets in D;

(iii) A is the minimal among all closed non-autonomous sets with property (ii).

We may now present our result for impulsive evolution processes.

Theorem 5.10. Let [(p,0)xxn), M, 1] be an INDS, I(M) n M = &, each point of M satisfies
©—SSTC, {II(t) : t = 0} be its associated skew-product semiflow and © be the universe of
all non-autonomous sets D with UD(t) bounded in X. Assume that {II(t) : t = 0} has a

c—global attractor A and let A = P]_iA. Then, for each o € X, the impulsive evolution process
{T,(t,s): t = s} given by

T,(t,s)x = @¢(t — s,0,0)x, z € X,
possesses a (T, ®)—pullback attractor A, = {A,(t)}wer. Moreover,

A\(M x %) (UUA x{Qm}) \(M x %) and UA (tH)\M < A\M.
oeX teR teR

Proof: Let ©; be the universe of all non-autonomous sets D with U, s, D(0) bounded in X.

By Theorem and Corollary [5.6, there exists a (p,D;)—impulsive cocycle attractor A; of

[(¢,0)(x,x), M, I] such that

LJAi(0)\M =AM and A\(M x %) = U[Al(a)x{a}]\(MxZ). (5.8)

Let o € X be arbitrary and define A, (t) = A;(6,0) for all t € R. Then A, is a (T,,, ©)—pullback
attractor with UA N\M < U Ai(w)\M = A\M. Moreover, by (5.8), we get

M\ % 2) = [ [ 410) x (o} \(M x D) = [ |45(0) x {o} [\ x )
- (Yyato < 0o} var

which concludes the proof. 0
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6. APPLICATION

We will consider the following non-classical non-autonomous parabolic equation
u — () Auy — Au = f(u), in Q
u =0, on 0N (6.1)
U(O,ZL‘) = UO(':E>’ in 2,
where ) < R"™ is a smooth bounded domain, for some n > 3, with f and v satisfying some
suitable conditions. A detailed study of this equation and some non-autonomous perturbations
can be found, for instance, in [12] 25].

Assume that v : R — (0, +00) is a uniformly continuous function which satisfies 0 < vy <
v(t) <71 < +o0 and f is a twice continuously differentiable function from R to R satisfying

f(s1) = fs2)] < ¢lsi = sal(1+ [s1/77 + [55]°71), 51,80 € R, (H1)
and
lim sup ) <0< A, (H2)
|s|>+00 S
where \; is the first eigenvalue of A = —A with Dirichlet boundary condition, for some ¢ > 0

n+2
and 1 <p< oy

Let us consider the L?(2)-bounded operators
By (t) = (I + V(t)A)_l and Av@) = AB, (1),

whose domains do not depend on time and the operators R 3t — B, (t) and R 3t — A, (t) are
absolutely continuous functions.
Then, we can rewrite equation (6.1)) as
u = —A,(t)u + B, (t)f(u), in Q
u =0, on 0f2 (6.2)
u(0,x) = ug(x), in Q.
It is a well known result that, since f satisfies (H1)), its associated Nemytskii operator f¢
defines a map from H}(Q) into Ln%(Q) which is Lipschitz continuous in bounded subsets of
H}(Q). Moreover f¢ takes bounded subsets of Hj(2) in precompact sets of H~1 = (H}(Q))'.

Now, let C,(R) be the space of continuous bounded functions from R to R. Define the shift
operator 05: Cp(R) — Cy(R) by 659(-) = g(s + -) and consider the set

I' = {057}5611%

where the closure is taken in Cy(R). Let Z; = CY(R x H}(Q), H}(2)) be the set of continuous
functions which are bounded in the variable in the first coordinate and bounded in bounded
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subsets of Hj(€) in the second variable. Define

- 7

Y= {QS(Ber - Av)}seR
Then, using [12, Lemma 5.2], we have ¥ = {B, f¢ — A, },er and clearly ¥ is compact.
We can use the results of [12] to obtain the following properties for (6.1):

Theorem 6.1. Assume that (H1)-(H2|) hold. Then:

1. equation (6.1) generates a non-autonomous dynamical system in (o, 9)(H3(Q)7E);
2. there exist constants o, k, 8 > 0, independent of o € I', such that

lo(t, o)uol3py < alluolFpe™ + B, (6.3)

where p(t, o) is the solution of (6.1)) at time t, with o € T replacing ~;
3. the skew-product semiflow {IL(t): t = 0} associated with the non-autonomous dynamical
system given in the previous item possesses a global attractor A in H}(Q) x T,

Now, we assume that M is an impulsive set for the NDS (¢, 9)(1{3(9),2) generated by
such that every point of M satisfies ¢—SSTC, I: M — H}() is a continuous function such
that I(M) n M = @, I(M) is compact in Hj(Q) and for a given o € X there is § = §(a) > 0
such that ¢(x,w) = ¢ for all z € I(M) and w € {f,0 : t € R} (this hypothesis also ensures

condition (HOJ))).

Defining ® as the universe of all non-autonomous sets indexed in ¥ with bounded union, we
can use Theorem (condition 2) and Proposition to see that the impulsive skew-product
semiflow (H}(Q) x 3,11, M x X, 1) is asymptotically compact, where I(z, \) = (I(x), \) for each
(x,\) e M x X.

Using similar results as in [4], one can show the existence of a uniform attracting bounded
set K for the INDS [(p, 0)xx), M, I].

Proposition 6.2. There exists a bounded set K such for any bounded subset B of HJ () there
exists ty = to(B) = 0 with

P(t,o)Bc K forall t >ty ando € X.

Proof: Since I(M) is compact, there exists u > 0 such that |u|gq) < , for all u e I(M).
Define K as the ball in H}(Q) centered in zero of radius 2(au + 3), where a and 3 are taken
from the assertion of Theorem [6.1] The result now follows as in [4, Proposition 6.4]. 0

This previous proposition and Proposition [5.I]imply that there exists a bounded set K = K x
¥ © H}(Q) which TI—attracts bounded subsets of H}(Q). This, together with the asymptotical
compactness of {II(t): t > 0} ensures the existence of a c—global attractor A for (H(Q) x
¥, 11, M x ¥, T). Thus, using Theorem , Corollary and Theorem we have:
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(a) the INDS [(¢,0)(x,5), M, I] has an impulsive uniform attractor A; and if A = Py g)A
we get

ANM = A\M;
(b) the INDS [(¢,0)x,x), M,I] has a (¢,®)—impulsive cocycle attractor {A(A)}ex and

AM = JAO)\M;

AEX

(c) for each o € ', if A = B, f¢ — A,, the impulsive evolution process Th(t,s) = @(t — s, 6,\)
possesses a pullback (T, D)—attractor {Ay(t)}er and

AM = | J|JAr@)\M.

AeX teR
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