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Abstract. In this paper we present a theory of computational complex-
ity in the framework of membrane computing. Polynomial complexity
classes in recognizer membrane systems and capturing the classical de-
terministic and non-deterministic modes of computation, are introduced.
In this context, a characterization of the relation P = NP is described.

1 Introduction

The necessity to define in a satisfactory way what means a definite method for 
solving mathematical problems was studied by A. Turing who investigated how 
such methods should be applied mechanically, and, moreover, he formalized the 
task of performing such methods in terms of the operations of a machine able to 
read and write symbols on a tape divided into parts called cells (simulating how 
a person can solve a problem with paper and pencil manipulating symbols).

The theory of computation deals with the mechanical solvability of problems, 
that is, searching solutions that can be described by a finite sequence of ele-
mentary processes or instructions. The first goal in the theory of computation is 
general problem solving; that is, to develop principles and special methods that 
are able to solve any problem from a certain class of questions.

A computational model tries to capture those aspects of mechanical solutions 
of problems that are relevant to these solutions, including their inherent limita-
tions. In some sense, we can think that computational models design machines 
according to certain necessity.

From a practical point of view, the goal of computation theory is to take 
real–life problems and try to solve them through a method capable of being 
simulated by a machine when we use a suitable language to communicate that 
problem to the machine (a language is a system of signs used to communicate 
information between different parties).

Abstract machines are formal computing devices that we use to investigate 
properties of real computing devices. Computable languages are a special type 
of formal languages that can be processed by abstract machines that represent 
computers.
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If we have a mechanically solvable problem and we have a specific algorithm
solving it that can be implemented in a real machine, then it is very important
to know how much computational resources (time or memory) are required for
a given instance, in order to recognize the limitations of the real device.

One of the main goals of the theory of computational complexity is the study
of the efficiency of algorithms and their data structures through the analysis of
the resources required for solving problems (that is, according to their intrinsic
computational difficulty). This theory provides a classification of the abstract
problems that allows us to detect their inherent complexity from the computa-
tional solutions point of view.

Of course, such a classification demands a precise and formal definition of
the concept of abstract problem and the model to be considered.

The following parameters are used to specify a complexity class within a
general computational framework:

– First: the model of computation, D (in our case, recognizer P systems).
– Second: the mode of computation, M (in our case, non-deterministic and

parallel).
– Third: the resource, r, that we wish to bound (usually time and space).
– Finally, we must specify an upper bound of the resources, f (a total recursive

function from natural numbers to natural numbers).

Then, a complexity class is defined as the set of all languages decided by the
device D operating in mode M and such that for any input string, u, D expends
at most f(|u|) units of the resource r, to accept or reject u.

Many interesting problems of the real world are presumably intractable and
hence it is not possible to execute algorithmic solutions in an electronic computer
when we deal with instances of those problems whose size is large. The theoretical
limitations of the Turing machines in terms of computational power are also
practical limitations to the digital computers.

Natural Computing is a new computing area inspired by nature, using con-
cepts, principles and mechanisms underlying natural systems. Evolutionary Al-
gorithms use different concepts from biology. Neural Networks are inspired in
the structures of the brain and nervous system. DNA Computing is based on the
computational properties of DNA molecules and on the capacity to handle them.
Membrane Computing is inspired by the structure and functioning of living cells.

These two last models of computation provide unconventional devices with
an attractive property (computational efficiency), they are able to create an
exponential workspace in polynomial time (and, in some sense, trading space for
time).

Can some unconventional devices be used to solve presumably intractable
problems in a feasible time? The answer is affirmative at least from a theoretical
point of view.

In this paper we provide a systematic and formal framework for the design of
polynomial solutions to hard problems, and to classify them according to their
polynomial solvability by cell–like membrane systems. Complexity classes in the



framework of membrane computing and their relationships with the problems
they contain, are the main subjects of this paper.

The paper is structured as follows. The next section is devoted to describe in
an informal way the deterministic and non-deterministic mode of computation in
a computing model. In Sections 3, 4, and 5 combinatorial optimization problems
and decision problems are introduced, and a relationship between them from a
complexity point of view is showed. The P versus NP problem is presented in
Section 6, and in Section 12 a characterization of that problem is obtained. In
Section 7 weakly and strongly NP–complete problems are studied. Sections 8
and 9 are devoted to present the general framework (recognizer membrane sys-
tems) within a theory of computational complexity developed here. Determin-
istic and non-deterministic polynomial complexity classes in membrane systems
are introduced in Sections 10 and 11. Finally, we study the P systems with the
capability to construct an exponential workspace in polynomial time, and the
polynomial complexity classes associated with them.

2 Determinism Versus Non-determinism

A model of computation is properly given when we formally define the concept
of mechanical procedure (algorithm). For that, it is necessary to syntactically
define it, and determine precisely how such procedures can be executed (the
semantic of the model).

The devices (systems or machines) modelling mechanical procedures can be
represented through configurations (containing a complete description of the
current state of the device). These configurations can evolve according to the
semantic of the model. Formally, the semantic defines the concept of transitions
from a configuration of the system to a next configuration; that is, the semantic
of the model specifies what means next configuration of a given configuration. A
configuration which has no next configuration is called a halting configuration.

A computation or execution of a device of a model is a sequence (finite or
infinite) of configurations such that each configuration (except the first) is ob-
tained from the previous one by a (step of) transition of the system. That is,
a computation starts with an initial configuration of the system, and then it
proceeds step by step, and halts when reaches a halting configuration (and then
the result is encoded in this configuration).

When we use the devices of a model of computation to solve certain kind
of problems on strings (in particular to recognize a language), it is necessary
to define what means to accept or reject a string. In this case it is possible to
consider two modes of computation in a computing model.

– The deterministic mode is characterized by the following fact: each configu-
ration has at most one next configuration. In a deterministic device, given
a current configuration, the next configuration of the system is uniquely
determined, if any.



– The non-deterministic mode verifies the following property: each non halting
configuration hast at least a next configuration. In a non-deterministic device
several next configurations can be reached from a current configuration.

The computation of deterministic devices can be viewed as a tree with only one
branch, whereas the computation of a non-deterministic device can be viewed as
a tree having many possible branches. The root of the tree corresponds to the
beginning of the computation, and every node in the tree corresponds to a point
of the computation at which the machine has eventually multiple choices. Each
branch of this tree determines one computation of the system.

Next we define what means to accept or reject a string by a deterministic or
non-deterministic device (whose answers are only yes or no).

– A deterministic device M accepts (respectively, rejects) a string a if the
answer of M on input a is yes (respectively, no).

– A non-deterministic device M accepts a string a if there exists a computation
of M with input a such that the answer is yes.

Let us note the difference between the definition of acceptance by deterministic
and non-deterministic devices. An input string a is accepted by a deterministic
machine M , if the computation of M on input a halts and answers yes. A non-
deterministic machine M accepts a string a if there exists some computation of
M on input a answering yes; that is, there exists a sequence of non-deterministic
choices that answers yes. In this case, it is possible that we accept a string but
that there exists another computation with the same input that either halts and
answers no, or does not halt.

Thus, a deterministic device can (mechanically) reject a string, but this is
not the case in non-deterministic machines. How can we decide (in a mechanical
way) whether there exists a non halting computation?

Non-deterministic Turing machines are like existential quantifiers: they ac-
cept an input string if there exists an accepting path in the corresponding com-
putation tree. In some sense, we can affirm that non-deterministic devices do not
properly capture the intuitive idea underlying the concept of algorithm, because
the result of such a machine on an input (that is, the output of a computation)
is not reliable, since the answer of the device is not always the same.

non-determinism can be considered as a generalization of determinism (the
computation may branch at each configuration), and it can be viewed as a kind
of parallel computation where several “processes” can be run simultaneously.

3 Combinatorial Optimization Problems

Roughly speaking, when we deal with combinatorial optimization problems we
wish to find the best solution (according to a given criterion) among a class
of possible (candidate or feasible) solutions. That is, in this kind of problems
there can be many possible solutions, each one has associated a value (a positive
rational number), and we aim to find a solution with the optimal (minimum or
maximum) value.



For example, a vertex cover of an undirected graph is a set of vertices such
that any edge of the graph has, at least, an endpoint in that set. Then, we may
want to find one of the smallest vertex covers among all possible vertex covers in
the input graph. This is the combinatorial optimization problem called Minimum
Vertex Cover Problem. The main ingredients in this problem are the following:
(a) the collection of all undirected graphs, (b) the finite set of all vertex covers
associated with a given undirected graph, and (c) the cardinality of each vertex
cover of a given undirected graph.

We can formalize these ideas in the following definition.

Definition 1. A combinatorial optimization problem, X, is a tuple (IX , sX , fX)
where:

– IX is a language over a finite alphabet.
– sX is a function whose domain is IX and, for each a ∈ IX , the set sX(a) is

finite.
– fX is a function (the objective function) that assigns to each instance a ∈ IX

and each ca ∈ sX(a) a positive rational number fX(a, ca).

The elements of IX are called instances of the problem X. For each instance
a ∈ IX , the elements of the finite set sX(a) are called candidate (or feasible)
solutions associated with the instance a of the problem. For each instance a ∈ IX

and each ca ∈ sX(a), the positive rational number fX(a, ca) is called solution
value for ca. The function fX provides the criterion to determine the best solution.

For example, the Minimum Vertex Cover problem is a combinatorial opti-
mization problem such that IX is the set of all undirected graphs, and for each
undirected graph G, sX(G) is the set of all vertex covers of G; that is, each
vertex cover of the graph is a candidate solution for the problem. The objective
function fX is defined as follows: for each undirected graph G and each vertex
cover C of G, fX(G, C) is the cardinality of C.

Definition 2. Let X = (IX , sX , fX) be a combinatorial optimization problem.
An optimal solution for an instance a ∈ IX is a candidate solution c ∈ sX(a)
associated with this instance such that,

– either for all c′ ∈ sX(a) we have fX(a, c) ≤ fX(a, c′) (and then we say that
c is a minimal solution for a),

– either for all c′ ∈ sX(a) we have fX(a, c) ≥ fX(a, c′) (and then we say that
c is a maximal solution for a).

A minimization (respectively, maximization) problem is a combinatorial opti-
mization problem such that each optimal solution is a minimal (respectively,
maximal) solution.

That is, an optimization problem seeks the best of all possible candidate
solutions, according to a simple cost criterion given by the objective function.
For example, the Minimum Vertex Cover problem is a minimization problem
because a minimal solution associated with an undirected graph G, provides one
of the smallest vertex covers of G.



An approximation computational device, D, for a combinatorial optimization
problem, X, provides a candidate solution c ∈ sX(a) for each instance a ∈ IX .
If the provided solution is always optimal, then D is called an optimization
computational device for X.

For instance, an approximation machine for the Minimum Vertex Cover prob-
lem needs only find some vertex cover associated with each undirected graph,
whereas an optimization machine must always find a vertex cover with the least
cardinality associated with each undirected graph.

Having in mind that until now polynomial time optimization algorithms have
not be found for many presumably intractable problems (it is believed that this
kind of solutions can never be found), it is convenient to find an approximation
algorithm running in polynomial time and such that, for all problem instances
the candidate solution given by the algorithm is close, in a sense, to an optimal
solution.

4 Decision Problems

An important class of combinatorial optimization problems is the class of deci-
sion problems, that is, problems that require either an yes or a no answer.

Definition 3. A decision problem, X, is a pair (IX , θX) such that IX is a lan-
guage over a finite alphabet (whose elements are called instances) and θX is a
total boolean function (that is, a predicate) over IX .

Therefore, a decision problem X = (IX , θX) can be viewed as a combinatorial
optimization problem X = (IX , sX , fX) where for each instance a ∈ IX we have
the following:

– sX(a) = {θX(a)} (the only possible candidate solution associated with in-
stance a is 0 or 1, depending on the answer of the problem to a).

– fX(a, θX(a)) = 1.

Thus, each decision problem can be considered as a minimization (or maximiza-
tion) problem.

There exists a natural correspondence between languages and decision prob-
lems in the following way. Each language L, over an alphabet Σ, has a decision
problem, XL, associated with it as follows: IXL

= Σ∗, and θXL
= {(x, 1) | x ∈

L} ∪ {(x, 0) | x /∈ L}; reciprocally, given a decision problem X = (IX , θX), the
language LX over the alphabet of IX corresponding to it is defined as follows:
LX = {a ∈ IX | θX(a) = 1}.

Usually, NP-completeness has been studied in the framework of decision
problems. Many abstract problems are not decision problems, but combinatorial
optimization problems, in which some value must be optimized (minimized or
maximized). In order to apply the theory of NP-completeness to combinatorial
optimization problems, we must consider them as decision problems.

We can transform any combinatorial optimization problem into a roughly
equivalent decision problem by supplying a target/threshold value for the quan-



tity to be optimized, and asking the question whether this value can be attained.
Next we give two examples.

1. The Minimum Vertex Cover Problem.
Optimization version: Given an undirected graph G, find the cardinality of
a minimal set of a vertex cover of G.
Decision version: Given an undirected graph G, and a positive integer k,
determine whether or not G has a vertex cover of size at most k.

2. The Common Algorithmic Problem [10].
Optimization version: given a finite set S and a family F of subsets of S,
find the cardinality of a maximal subset of S which does not include any set
belonging to F .
Decision version: given a finite set S, a family F of subsets of S, and a
positive integer k, we are asked whether there is a subset A of S such that
the cardinality of A is at least k, and which does not include any set belonging
to F .

If a combinatorial optimization problem can be quickly solved, then its decision
version can be quickly solved as well (because we only need to compare the
solution value with a threshold value). Similarly, if we can make clear that a
decision problem is hard, we also make clear that its associated combinatorial
optimization problem is hard.

For example, let A be a polynomial time algorithm for the optimization
version of the Minimum Vertex Cover problem. Then we consider the following
polynomial time algorithm for the decision version of the Minimum Vertex Cover
problem: given an undirected graph G, and a positive integer k, if k < A(G)
(here A(G) is the cardinality of a smallest vertex cover of G), then answer no;
otherwise, the answer is yes.

Reciprocally, let B be a polynomial time algorithm for the decision version
of the Minimum Vertex Cover problem. Then we consider the following polyno-
mial time algorithm for the optimization version of the Minimum Vertex Cover
problem: given an undirected graph G, repeatedly while k ≤ number of vertices
of G (starting from k = 0, and in the next step considering k + 1) we execute
the algorithm A on input (G, k), until we reach a first yes answer, and then the
result is k.

5 Solving Decision Problems

Recall that, in a natural way, each decision problems has associated a lan-
guage over a finite alphabet. Next, we define the solvability of decision problems
through the recognition of languages associated with them.

In order to specify the concept of solvability we work with an universal com-
puting model: Turing machines.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ.

If M is a deterministic device (with Σ as working alphabet), then we say
that M recognizes or decides L whenever, for any string a over Σ, if a ∈ L, then



the answer of M on input a is yes (that is, M accepts a), and the answer is no
otherwise (that is, M reject a).

If M is a non-deterministic Turing machine, then we say that M recognizes
or decides L if the following is true: for any string a over Σ, a ∈ L if and only if
there exists a computation of M with input a such that the answer is yes. That
is, an input string a is accepted by M if there is an accepting computation of
M on input a. But now we do not have a mechanical criterion to reject an input
string.

Recall that any deterministic Turing machine with multiple tapes can be sim-
ulated by a deterministic Turing machine with one tape with a polynomial loss
of efficiency, whereas the simulation of non-determinism through determinism
involves an exponential loss of efficiency.

In the context of computation theory, we consider a problem X to be solved
when we have a general (definite) method (described in a model of computation)
that works for any instance of the problem. From a practical point of view,
such methods only run over a finite set of instances whose sizes depend on the
available resources.

We say that a Turing machine M solves a decision problem X if M recognizes
the language associated with X; that is, for any instance a of the problem: (1)
in the deterministic case, the machine (with input a) output yes if the answer of
the problem is yes, and the output is no otherwise; (2) in the non-deterministic
case, some computation of the machine (with input a) output yes if the answer
of the problem is yes.

Due to the fact that we represent the instances of abstract problems as strings
we can consider their size in a natural manner: the size of an instance is the length
of the string. Then, how do the resources required to execute a method increase
according to the size of the instance? This is a relevant question in computational
complexity theory.

6 The P Versus NP Problem

In order to solve an abstract problem by a computational device, problem in-
stances must be represented (encoded) in an adequate way that the device un-
derstands.

Given a problem it is possible to use different reasonable encoding schemes
to represent the instances (we do not attempt to define reasonable, however
informally we say that reasonable means [8] to codify instances in a concise
manner, without irrelevant information, and the numbers occurring in them
should be represented in binary, or any fixed base other than 1). It is easy to
prove that the input sizes that different reasonable encoding schemes determine
differ, at most, polynomially from one another.

Recall that complexity classes provide a way to group decision problems of
similar computational complexity.

P is the class of all decision problems solvable (or languages recognized) by
some deterministic Turing machine in a time bounded by a polynomial on the



size of the input. Having in mind that all reasonable deterministic computational
models are polynomially equivalent (that is, any one of them can simulate an-
other with only a polynomial loss of efficiency), this class is the same for all
models of computation that are polynomially equivalent to the deterministic
Turing machine with one tape. Moreover, informally speaking, P corresponds
to the class of problems having a feasible algorithm that gives an answer in a
reasonable time; that is, problems that are realistically solvable on a machine
(even for large instances of the problem).

NP is the class of all decision problems solvable in a polynomial time by
non-deterministic Turing machines; that is, for every accepted input there exists
at least one accepting computation taking an amount of steps bounded by a
polynomial on the length of the input. This class is invariant for all reasonable
non-deterministic computational models because all of them are polynomially
equivalent.

Every deterministic Turing machine can be considered as a non-deterministic
one, so we have P ⊆ NP. In terms of the previously defined classes, the P versus
NP problem can be expressed as follows: is it verified the relation NP ⊆ P?
That is, the P versus NP problem is the problem of determining whether every
language recognized by some non-deterministic Turing machine in polynomial
time is also can be recognized by some deterministic Turing machine in polyno-
mial time.

The P ?= NP question is one of the outstanding open problems in theoretical
computer science. The relevance of this question is not only the inherent pleasure
of solving a mathematical problem, but in this case an answer to it would provide
information of high economical interest. On the one hand, a negative answer to
this question would confirm that the majority of current cryptographic systems are
secure from a practical point of view. On the other hand, a positive answer would
not only show the uncertainty about the secureness of these systems, but also this
kind of answer is expected to come together with a general procedure provides a
deterministic algorithm solving most of NP-complete problem in polynomial time
(furthermore, mathematics would be transformed because real computers will be
able to find a formal proof of any theorem which has a proof of reasonable length).

In the last years several computing models using powerful tools from nature
have been developed (because of this, they are known as bio-inspired models)
and several solutions in polynomial time to problems from the class NP have
been presented, making use of non-determinism and/or of an exponential amount
of space. This is the reason why a practical implementation of such models (in
biological, electronic, or other mediums) could provide a significant advance in
the resolution of NP-complete problems.

7 Strongly NP–Complete Problems

The Subset Sum problem is the following: given a finite set A, a weight function,
w : A → N, and a constant k ∈ N, determine whether or not there exists a
subset B ⊆ A such that w(B) = k.



It is well known that Subset Sum can be solved in time O(n · k), using a
dynamic programming algorithm. Hence, that algorithm is polynomial in the
number of input items n and the magnitude of the items k. But such a algo-
rithm is not a polynomial algorithm because its time bound is not a polynomial
function on the size of the input (that is, of the order Ω(n · logk)). Then we say
that such a algorithm is pseudo-polynomial, and that the problem can be solved
in pseudo-polynomial time. Nevertheless if we represent the input in unary form
then that algorithm becomes a polynomial algorithm.

Definition 4. An algorithm that solves a problem X will be called a pseudo-
polynomial time algorithm for X if its running time would be polynomial if all
input numbers associated with each instance were expressed in unary notation.

The Knapsack and Partition problems are also NP–complete problems that can
be solved by a pseudo-polynomial time algorithm.

Often, problems which can be solved in pseudo-polynomial time are also
called weakly NP–complete problems. The existence of a pseudo-polynomial time
algorithm for a given NP–complete problem illustrate that the problem is not
so intractable after all.

Thus it is important to determine whether a problem is weakly NP–complete,
or whether it has the following stronger property.

Definition 5. A problem is said to be NP–complete in the strong sense if the
variant of it in which any instance of size n is restricted to contain integers of
size at most p(n), where p is a polynomial, remains NP–complete.

Decision Problems

NP−complete

NP−complete
Strongly

NP−complete problems (binary encoding)

NP−complete problems (unary encoding)

Conventional Model of Computation

Fig. 1. NP–Completeness and codification of instances

That is, the strongly NP–complete problems remains NP–complete even if
all numbers in the input are written in unary notation.

For example, the decision version of the Minimum Vertex Cover problem is
a strongly NP–complete problem since the numbers in the input (an undirected
graph) are bounded by a polynomial in the number of vertices (input size).



Other strongly NP–complete problems are the following: 3–Partition, Sat,
Clique, HPP (Hamiltonian Path Problem), TSP (Travelling Salesman Problem),
and Bin Packing.

What happens if a strongly NP–complete problem can be solved by a pseudo-
polynomial time algorithm? Let X be such a problem. Then the variant Y of
it in which all input numbers of X are written in unary notation is also NP–
complete. Moreover, if A is a pseudo-polynomial time algorithm solving X, then
it is also a polynomial time algorithm that solves Y . Hence, P=NP.

Theorem 1. The following propositions are equivalent:

1. P = NP.
2. Every strongly NP–complete problem can be solved by a pseudo-polynomial

time algorithm.
3. There exists a strongly NP–complete problem that can be solved by a pseudo-

polynomial time algorithm.

Thus, to prove P=NP suffices to find a strongly NP–complete problem solv-
able in pseudo-polynomial time. Recall that the concept of solvability above
mentioned is formally associated with deterministic Turing machines.

pseudopolynomial time

in

Strongly

NP−complete

problems

STRONG

PSEUDO

NP

P

NPC

Solvable by det. TM

polynomial time

in

Solvable by det. TM

Fig. 2. Kinds of NP–complete problems

However, P systems take multisets as input and handle them through compu-
tations. Hence the inputs in P systems are provided in unary, so it is necessary
to analyze with more details when it is said that a problem is polynomial-time
solvable in the framework of membrane computing (particularly, concerning the
size of the problem instances).



In this context we can say that polynomial solutions to NP–complete prob-
lems in the framework of membrane computing, can be considered, in a sense,
as pseudo-polynomial solutions in the classical sense.

8 Recognizer Membrane Systems

Membrane computing is a recent branch of natural computing initiated in [23].
It has been developed basically from a theoretical point of view.

Membrane systems – usually called P systems – are distributed parallel com-
puting models inspired by the structure and functioning of living cells.

Membrane systems have several syntactic ingredients: a membrane structure
consisting of a hierarchical arrangements of membranes embedded in a skin mem-
brane, and delimiting regions or compartments where multisets of objects and
sets (eventually empty) of (evolution) rules are placed.

Also, P systems have two main semantic ingredients: their inherent paral-
lelism and non-determinism. The objects inside the membranes can evolve ac-
cording to given rules in a synchronous (in the sense that a global clock is
assumed), parallel, and non-deterministic manner.

Can this parallelism and non-determinism be used to solve hard problems in
a feasible time? The answer is affirmative, but we must point out two consider-
ations. On the one hand, we have to deal with the non-determinism in such a
way that the solutions obtained from these devices are algorithmic solutions in
the classic sense; that is, the answers of the computations of the system must
be reliable. On the other hand, the drastic decrease of the execution time from
an exponential to a polynomial one is not achieved for free, but by the use of an
exponential workspace (in the form of membranes or string–objects), although
this space is created in polynomial (often linear) time.

In this paper we use membrane computing as a framework to attack the
resolution of decision problems. In order to solve this kind of problems and having
in mind the relationship between the solvability of a problem and the recognition
of the language associated with it, we consider P systems as recognizer languages
devices.

Moreover, for technical reasons we only work with devices such that all com-
putations halt, and such that the result (yes or no answer, because we deal with
recognition of strings) is collected in the environment (and in the last step of
the computation).

All these restrictions make more difficult the process of designing families of
recognizer P systems to solve decision problems.

Definition 6. A recognizer P system is a P system with external output such
that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either object yes or object no (but

not both) must have been released into the environment, and only in the last
step of the computation.



In recognizer P systems, we say that a computation C is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion of C. Hence, these devices send to the environment an accepting or rejecting
answer, in the end of their computations.

If we want these kind of systems to properly solve decision problems and
capture the true algorithmic concept, it is necessary to require a condition of
confluence; that is, the system must always give the same answer. In order to
accept or reject a string it should be enough to read the answer of any computa-
tion of the system. In this manner, an observer outside the system can identify
the exact moment when the system halts, and know the answer.

Since P systems work in a non-deterministic manner, we need to adapt the
usual definition of acceptance in non-deterministic Turing machines.

9 Soundness and Completeness

In order to assure that a family of recognizer P systems solves a decision problem,
two main properties must to be proved: for each instance of the problem,

(a) if there exists an accepting computation of the membrane system process-
ing it, answering yes, then the problem also answer yes for that instance
(soundness);

(b) if the problem answers yes, then any computation of the system processing
that instance, answer yes (completeness).

If we demand that the family of membrane systems is sound and complete, then
it satisfies a condition of confluence: every computation of a system from the
family has the same output.

Next, we formalize these ideas in the following definition.

Definition 7. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer membrane systems without input.

– We say that the family Π is sound with regard to X if the following is
true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(w), then θX(w) = 1.

– We say that the family Π is complete with regard to X if the following is
true: for each instance of the problem w ∈ IX , if θX(w) = 1, then every
computation of Π(w) is an accepting computation.

The soundness property means that if we obtain an acceptance response of the
system (associated with an instance) through some computation, then the answer
of the problem (for that instance) is yes. The completeness property means that
if we obtain an affirmative response to the problem, then any computation of
the system must be an accepting one.
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These concepts can be extended to families of recognizer P systems with input
membrane in a natural way, but in this case a P system belonging to the family
can process several instances of the problem provided that an appropriate input,
depending on the instance, is supplied to the system.

Definition 8. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer membrane systems with input. A polynomial encoding of
X in Π is a pair (cod, s) of polynomial time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number and cod(w) is an input
multiset of the system Π(s(w)).

Definition 9. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer membrane systems with input. Let (cod, s) be a polynomial
encoding of X in Π.



– We say that the family Π is sound with regard to (X, cod, s) if the following
is true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

– We say that the family Π is complete with regard to (X, cod, s) if the following
is true: for each instance of the problem u ∈ IX , if θX(u) = 1 then every
computation of Π(s(u)) with input cod(u) is an accepting computation.

The soundness property means that if given an instance we obtain an ac-
ceptance response of the system associated with it (and individualized by the
appropriate input multiset) through some computation, then the answer of the
problem (for that instance) is yes. The completeness property means that if we
obtain an affirmative response to the problem, then any computation of the sys-
tem associated with it (and individualized by the appropriate input multiset)
must be an accepting one.

10 Polynomial Complexity Classes in Membrane
Systems

Next, we consider different complexity classes in the framework of recognizer
membrane systems.

10.1 Recognizer Membrane Systems Without Input

The first results about solvability of NP–complete problems in polynomial time
(even linear) by membrane systems were given by Gh. Păun [25], C. Zandron
et al. [43], S.N. Krishna et al. [12], and A. Obtulowicz [16] in the framework of
P systems that lack an input membrane. Thus, the constructive proofs of such
results design one system for each instance of the problem.

In this context, next we define polynomial complexity classes in recognizer
membrane systems without input. In order to solve a decision problem we need,
then, to associate with each instance of the problem a system which decides
the instance. We impose these systems to be confluent in the following sense: an
instance of the problem will have a positive answer if and only if every (or, equiv-
alently, there exists a) computation of the corresponding system is an accepting
computation.

We also demand that every computation is bounded, in execution time, by
a polynomial function. This is because we do not only want to obtain the same
answer, independently of the chosen computation, but that all the computations
consume, at most, the same amount of resources (in time).

Definition 10. Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is solvable in polynomial time by a fam-
ily Π = (Π(w))w∈IX

, of P systems of type R, and we denote it by X ∈ PMC∗
R,

if the following is true:

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(w) from the instance w ∈ IX .
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– The family Π is polynomially bounded; that is, there exists a polynomial
function p(n) such that for each w ∈ IX , all computations of Π(w) halt in
at most p(|w|) steps.

– The family Π is sound and complete with regard to X.

Note that in this complexity class we consider two different tasks: the first one
is the construction of the family, which we require to be done in polynomial
time (sequential time by deterministic Turing machines). The second one is the
execution of the systems of the family, in which we imposed that the total number
of steps performed by their computations are bounded by the function g (parallel
time by non-deterministic membrane systems).

As a direct consequence of working with recognizer membrane systems is the
fact that these complexity classes are closed under complement.

Moreover, the complexity classes are closed under polynomial time reduction,
in the classical sense. Recall that if X = (IX , θX) and Y = (IY , θY ) are decision
problems, then we say that X is reducible to Y in polynomial time if there exists
a polynomial time function f from IX to IY verifying the following condition:
for each w ∈ IX we have θX(w) = 1 if and only if θY (f(w) = 1.

Proposition 1. Let R be a class of recognizer P systems without input mem-
brane. Let X and Y be two decision problems such that X is reducible to Y in
polynomial time. If Y ∈ PMC∗

R, then X ∈ PMC∗
R.

The Hamiltonian Path Problem can be solved in quadratic time by a family
R of recognizer P systems without input in an uniform way (see [26]). Then
NP ⊆ PMC∗

R.

10.2 Recognizer Membrane Systems with Input

A computation of a Turing machine starts when the machine is in the initial state
and we “write” a string in the input tape of the machine. Then, the machine
starts to compute according to the transition function. In the definitions of basic
P systems that have been initially considered, there is no membrane in which
we can “introduce” input objects before allowing the system to begin to work.
However, it is easy to consider input membranes in this kind of devices.

5.



In this section we deal with recognizer membrane systems with an input mem-
brane and we propose to solve hard problems in an uniform way in the following
sense: all instances of a decision problem that have the same size (according
to a prefixed polynomial time computable criterion) are processed by the same
system, to which an appropriate input, that depends on the specific instance, is
supplied.

Now, we formalize these ideas in the following definition.
Definition 11. Let X = (IX , θX) be a decision problem. We say that X is
solvable in polynomial time by a family of recognizer membrane systems with
input Π = (Π(n))n∈N, and we denote it by X ∈ PMCR, if the following is
true:
– The family Π is polynomially uniform by Turing machines; that is, there

exists a deterministic Turing machine that constructs in polynomial time
the system Π(n) from n ∈ N.

– There exists a polynomial encoding (cod, s) of X in Π such that:
• The family Π is polynomially bounded with regard (X, cod, s); that is,

there exists a polynomial function p(n) such that for each w ∈ IX every
computation of the system Π(s(w)) with input cod(w) is halting and,
moreover, it performs at most p(|w|) steps.

• The family Π is sound and complete with regard to (X, cod, s).
Note that in the above definition and in order to decide about an instance,
w, of a decision problem, first of all we need to compute the natural number
s(w), obtain the input multiset cod(w), and construct the system Π(s(w)). This
is properly a pre-computation stage, running in polynomial time expressed by
a number of sequential steps in the framework of the Turing machines. After
that, we execute the system Π(s(w)) with input cod(w). This is properly the
computation stage, also running in polynomial time, but now it is described by
a number of parallel steps, in the framework of membrane computing.

As mentioned above, these complexity classes are closed under complement.
Moreover, these complexity classes are closed under polynomial time reduc-

tion, in the classical sense.

Proposition 2. Let R be a class of recognizer P systems with input membrane.
Let X and Y be two decision problems such that X is reducible to Y in polynomial
time. If Y ∈ PMCR, then X ∈ PMCR.

The Satisfiability Problem can be solved in linear time by a family R of recognizer
P systems with input (see [36]). Then NP ⊆ PMCR.

11 (Non-deterministic) Polynomial Complexity Classes
in Membrane Systems

According to the usual manner of considering acceptance by non-deterministic
Turing machines, we can consider non-deterministic complexity classes in P sys-
tems without requiring them to be confluent, that is, characterizing the accep-
tance of an input string by the existence of an accepting computation.



Definition 12. Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is non-deterministically solvable in
polynomial time by a family Π = (Π(w))w∈IX

, of P systems of type R, and we
denote it by X ∈ NPMC∗

R, if the following is true:

– The family Π is polynomially uniform by Turing machines.
– The family Π is polynomially bounded.
– The family Π is sound and complete with regard to X, in the following sense:

for each instance w ∈ IX of the problem, θX(w) = 1 if and only if there exists
an accepting computation of Π(w).

Note that in this definition, in contrast to the corresponding definition for de-
terministic complexity classes, we only demand that for each instance w with
affirmative answer there exists at least one accepting computation of the system
Π(w), instead of demanding every computation of the system to be an accepting
one.

Again, this class is closed under polynomial time reduction, but notice that
it does not have to be closed under complement.

Let us denote by T the class of recognizer transition P systems (see [23]).
In [36] we construct a family of recognizer transition P systems solving HPP
(in the directed version with two distinguished nodes) in linear time, in a non-
deterministic manner. That is, we have the following:

Proposition 3. HPP ∈ NPMC∗
T , and NP ⊆ NPMC∗

T .

In a similar way we can define non-deterministic complexity classes for rec-
ognizer membrane systems with input.

Definition 13. Let X = (IX , θX) be a decision problem. We say that X is non-
deterministically solvable in polynomial time by a family of recognizer membrane
systems with input Π = (Π(n))n∈N, and we denote it by X ∈ NPMCR, if the
following is true:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) of X in Π such that:

• The family Π is polynomially bounded with regard to (X, cod, s).
• The family Π is sound and complete with regard to (X, cod, s), but now in

the following sense: for each instance w ∈ IX of the problem, θX(w) = 1
if and only if there exists an accepting computation of Π(s(w)) with input
cod(w).

This class is closed under polynomial time reduction, but it does not have to be
closed under complement.

In [36] we construct a family of recognizer transition P systems solving SAT
in constant time, in a non-deterministic manner. That is, we have the following:

Proposition 4. SAT ∈ NPMCT , and NP ⊆ NPMCT .



12 Characterizing the P �= NP Relation Through P
Systems

In this section we show how it is possible to attack the P versus NP problem
within the framework of membrane computing.

We consider deterministic Turing machines as language decision devices. That
is, the machines halt over any string on the input alphabet, with the halting
state being equal to the accepting state, in the case that the string belongs to
the decided language, and with that state equal to the rejecting state, in the
case that the string does not belong to that language.

It is possible to associate with a Turing machine a decision problem, which
will permit us to say when such a machine is simulated by a family of P systems.

Definition 14. Let TM be a Turing machine with input alphabet ΣTM . The
decision problem associated with TM is the problem XTM = (I, θ), where I =
Σ∗

TM , and for every w ∈ Σ∗
TM , θ(w) = 1 if and only if TM accepts w.

Obviously, the decision problem XTM is solvable by the Turing machine TM .

Definition 15. We say that a Turing machine TM is simulated in polynomial
time by a family of recognizer P systems if XTM ∈ PMCR.

In P systems, evolution rules, communication rules and rules involving dissolu-
tion are called basic rules. That is, by applying this kind of rules the size of the
structure of membranes does not increase. Hence, it is not possible to construct
an exponential working space in polynomial time using only basic rules in a P
system.

In Chapter 9 of [40], and following the ideas from [41], we state that every
deterministic Turing machine can be simulated in polynomial time by a family
of systems of the class R.

Proposition 5. Let TM be a deterministic Turing machine working in poly-
nomial time. Then TM can be simulated in polynomial time by a family of
recognizer P systems using only basic rules.

In [38], we proved the following result that can be considered as a reciprocal of
the above proposition.

Proposition 6. If a decision problem is solvable in polynomial time by a fam-
ily of recognizer P systems (using only basic rules), then there exists a Turing
machine solving it in polynomial time.

From the above propositions, we establish characterizations of the P �= NP
relation by means of the polynomial time unsolvability of NP–complete problems
by families of recognizer P systems.



Theorem 2. The following conditions are 

equivalent:

(1) P �= NP.
(2) There exists an NP–complete decision problem unsolvable in polynomial time

by a family of of recognizer P systems using only basic rules.
(3) Each NP–complete decision problem is unsolvable in polynomial time by a

family of of recognizer P systems using only basic rules.

From the constructive proof given in [38], we can deduce the following nice result
characterizing the class P.

Proposition 7. Let T the class of recognizer transition P systems. Then P =
PMCT .

13 P Systems with Active Membranes

P systems with membrane division were introduced in [25], and in this variant
the number of membranes can increase exponentially in polynomial time.

Next, we define P systems with active membranes using 2-division for ele-
mentary membranes, with polarizations, but without cooperation and without
priorities (and without permitting the change of membrane labels by means of
any rule).

Definition 16. A P system with active membranes using 2-division for elemen-
tary membranes is a tuple Π = (Σ, H, µ,M1, . . . ,Mm, R), where:

1. m ≥ 1, is the initial degree of the system;
2. Σ is an alphabet of symbol-objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, of m membranes, labelled (not necessarily in a

one-to-one manner) with elements of H;
5. M1, . . . ,Mm are strings over Σ, describing the initial multisets of objects

placed in the m regions of µ;
6. R is a finite set of evolution rules, of the following forms:

(a) [ a → ω ]αh for h ∈ H,α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗: This is an object evo-
lution rule, associated with a membrane labelled with h and depending on
the polarity of that membrane, but not directly involving the membrane.

(b) a [ ]α1
h → [ b ]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
from the region immediately outside a membrane labelled with h is intro-
duced in this membrane, possibly transformed into another object, and,
simultaneously, the polarity of the membrane can be changed.

(c) [ a ]α1
h → b [ ]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
is sent out from membrane labelled with h to the region immediately
outside, possibly transformed into another object, and, simultaneously,
the polarity of the membrane can be changed.

(d) [ a ]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Σ: A membrane labelled with
h is dissolved in reaction with an object. The skin is never dissolved.



(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ: An

elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and their polarities.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

– If at the same time a membrane labelled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Note that these P systems have some important properties:

– They use three electrical charges.
– The polarization of a membrane can be modified by the application of a rule.
– The label of a membrane cannot be modified by the application of a rule.
– They do not use cooperation neither priorities.

Let us denote by AM the class of recognizer P systems with active membranes
using 2-division for elementary membranes.
In this class of recognizer membrane systems:

– Some weakly NP–complete problems are solvable in polynomial time: for
example, Knapsack ([31]), Subset Sum ([30]), Partition ([9]) ∈ PMCAM.

– Some strongly NP–complete problems are solvable in polynomial time: for
example, the following problems SAT ([36]), Clique ([3]), Bin Packing ([33]),
CAP ([34]) belong to the complexity classes PMCAM.

Recall that polynomial time solutions to strongly NP–complete problems by
recognizer membrane systems, can be considered as pseudo-polynomial solutions
in the classical sense.

Having in mind that the complexity class PMCAM is closed under comple-
ment and polynomial time reductions we have the following result.

Proposition 8. NP ⊆ PMCAM, and co-NP ⊆ PMCAM.

P. Sosik in [42] provides a semi–uniform efficient solution to QBF (satisfia-
bility of quantified propositional formulas), a well known PSPACE–complete
problem, in the framework of P systems with active membranes but using 2–
division for non–elementary membranes. Hence we have the following result.



Proposition 9. Let AM∗ be the class of recognizer P systems with active mem-
branes using 2-division for non–elementary membranes. Then, PSPACE ⊆
PMC∗

AM∗ .

This result shows that the complexity classes PMCAM and PMC∗
AM∗ are not

precise enough to describe classical complexity classes below NP. Therefore,
it is challenging to investigate weaker variants of P systems with active mem-
branes able to characterize classical complexity classes (especially, the classes
NP and PSPACE).

In [4], universality has been achieved removing the polarization of membranes
from P systems with active membranes but allowing the change of membrane
labels by means of communication rules and membrane division rules. Moreover,
in this framework it is possible to solve NP–complete problems (e.g., the SAT
problem) in linear time.

Several efficient solutions to NP–complete problems have been obtained
within the following variants of membrane systems with active membranes:

– P systems using 2–division for elementary membranes, without coopera-
tion, without priorities, without label changing, but using only two electrical
charges ([1], [39]).

– P systems using 2–division for elementary membranes, without cooperation,
without priorities, without changing of membrane labels, without polariza-
tions, but using bi–stable catalysts ([32]).

– P systems without polarizations, without cooperation, without priorities,
without label changing, without division, but using three types of membrane
rules: separation, merging, and release ([19]).

– P systems with separation rules instead of division rules, in two different
cases: in the first, using polarizations and separation rules; and in the second
one, without polarizations, without change of membrane labels but using
separation rules with change of membrane labels ([20]).

It is easy to obtain solutions to NP–complete problems through P systems
with active membranes using 2-division for elementary membranes, without po-
larizations, without priorities, without label changing possibilities, but using
cooperation (or trading cooperation by priority).

But, what happens if we consider only recognizer P systems with active mem-
branes using 2-division for elementary membranes, without polarizations, without
cooperation,withoutpriority, andwithout changingofmembrane labels?LetAM0

be the class of recognizer P systems of this kind.
What is exactly the class of decision problems solvable in polynomial time

by families of systems belonging to AM0? Is the relation P = PMCAM0 true?
Another interesting questions about the relationship between classical and

cellular complexity classes are the following ones:
Question 1: Is there a classical complexity class C, such that C = PMCAM?
Question 2: Given a classical complexity class C, determine a (minimal in a
descriptive sense) class of recognizer P systems F such that C = PMCF?



14 Conclusions

In this paper, some polynomial complexity classes in recognizer membrane sys-
tems, without or with input, and capturing the “classical” deterministic and non-
deterministic modes of computation, have been introduced.

The complexity classes corresponding to membrane systems without input
(respectively, with input) provide the general framework to design solutions to
decision problems in a semi–uniform (respectively, uniform) way.

In this context we have proven that membrane computing offers a new way
to attack the P versus NP problem.

The convenience of characterizing classical complexity classes through these
new classes is an interesting topic in order to study the minimal ingredients
required, from membrane systems point of view, to obtain certain computational
efficiency.
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33. M.J. Pérez–Jiménez, F.J. Romero-Campero, An efficient family of P systems for
packing items into bins. Journal of Universal Computer Science, 10, 5 (2004),
650–670.
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