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Let X be a complex analytic manifold and D C X be a free divisor. If D is locally quasi-homogeneous,
then the logarithmic de Rham complex associated to D is quasi-isomorphic to Rj.(Cx\p), which is
a perverse sheaf. On the other hand, the logarithmic de Rham complex associated to a Koszul-free
divisor is perverse. In this paper, we prove that every locally quasi-homogeneous free divisor is Koszul
free.

1. INTRODUCTION

Let X be a complex analytic manifold. For a divisor D C X, let us write j: U = X \ D — X
for the corresponding open inclusion and Q°(xD) for the meromorphic de Rham complex with
poles along D. In [5], Grothendieck proved that the canonical morphism Q°(xD) — Rj.(Cy) is an
isomorphism (in the derived category). This result is usually known as (a version of) Grothendieck’s
Comparison Theorem.

In [9], K. Saito introduced the subcomplex Q% (log D) of Q°*(xD), which he called a logarithmic
de Rham compler associated to D, generalizing the well-known case of normal crossing divisors
(see [4]). In the same paper, K. Saito also introduced the important notion of free divisor.

In [3], it is proved that the logarithmic de Rham complex Q% (log D) computes the cohomology
of the complement U if D is a locally quasi-homogeneous free divisor (we say that D satisfies the
logarithmic comparison theorem). In other words, the canonical morphism Q% (log D) — Ryj.(Cy)
is an isomorphism, or, using Grothendieck’s result, the inclusion Q% (log D) — Q°®(xD) is a quasi-
isomorphism. In fact, in [2] it is proved that, in the case of dim X = 2, D is locally quasi-
homogeneous if and only if it satisfies the logarithmic comparison theorem.

Since the derived direct image Rj.(Cy) is a perverse sheaf (it is the de Rham complex of the
holonomic module of meromorphic functions with poles along D [7, II, Theorem 2.2.4]), we deduce
that the logarithmic comparison theorem for a free divisor D implies that the logarithmic de Rham
complex associated to D is a perverse sheaf.

On the other hand, the first author proved in [1] the following results. Let D C X be a Koszul-
free divisor (see Definition 2.3) and Z be the left ideal of the ring Dx of differential operators on X
generated by the logarithmic vector fields with respect to D. Then,

1) The left Dx-module Dx /Z is holonomic.
2) There is a canonical isomorphism in the derived category

Q% (log D) ~ RHomyp, (Px/Z,Ox).

As a consequence of these results, the logarithmic de Rham complex associated to a Koszul-free
divisor is a perverse sheaf.
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In this paper, we prove the following result, suggested by the previous ones: every locally
quasi-homogeneous free divisor is Koszul free (see Theorem 3.2).
At the end, we study some examples in dimensions two and three.

2. PRELIMINARY RESULTS

Let X be an n-dimensional complex analytic manifold. We denote by 7: T*X — X the
cotangent bundle, by Ox the sheaf of holomorphic functions on X, by Dx the sheaf of linear
differential operators on X (with holomorphic coefficients), by Grpe(Dx ) the graded ring associated
to the filtration by the order, and by o(P) the principal symbol of a differential operator P. We
will denote by O = Ox 5, D = Dx 4, and Grpe(D) = Grpe(Dx), the respective stalks at x, with
a point x in X. Let D C X be a hypersurface. We denote by Der(log D) the Ox-module of the
logarithmic vector fields with respect to D [9].

Definition 2.1. A divisor D is Euler homogeneous at x if there are a local equation h for D
around x and a germ of logarithmic vector field § such that §(h) = h.

The set of points where a divisor is Euler homogeneous is open.

Definition 2.2 (see [3]). A divisor D in an n-dimensional complex manifold X is locally quasi-
homogeneous if, at each point ¢ € D, there are local coordinates (U;z1,...,z,) centered at ¢ (i.e.,
with z;(¢) =0 for i = 1,...,n) with respect to which D NU has a weighted homogeneous defining
equation (with strictly positive weights).

Obviously, a locally quasi-homogeneous divisor is Euler homogeneous at every point.

Definition 2.3 [1, Definition 4.1.1]. Let D C X be a divisor. We say that D is a Koszul-free
divisor at x if there exists a basis {d1,...,d,} of Der(log D), such that the sequence of symbols
{o(61),...,0(8,)} is regular in Grpe(D) = Grpe(Dx),. If D is a Koszul-free divisor at each point
of D, we simply say that it is a Koszul-free divisor.

Remark 2.4. The ideal Ip, = Grpe(D)Der(log D), is generated by the elements of any
basis of Der(log D),. Since D is Koszul free at x if and only if depth(Ip 5, Grpe(D)) = n (see [6,
Corollary 16.8]), it is clear that the definition of a Koszul-free divisor does not depend on the choice
of a particular basis. By the coherence of Grpe(Dy), if a divisor is Koszul free at a point, then it
is Koszul free near this point.

We have not found a reference for the following well-known proposition (see [6, Theorem 17.4]
for the local case).

Proposition 2.5. Let C{x} be the ring of convergent power series in the variables x =
(x1,...,2n), and let G be the graded ring of polynomials in the variables &1, . .., & with coefficients
in C{x}. A sequence o1,...,0s of homogeneous polynomials in G is reqular if and only if the set of
zeros V (I) of the ideal I generated by o1, ...,05 has dimension n+t—s in U x Ct for some open
neighborhood U of 0 (then, each irreducible component has dimension n+t —s).

Proof. Let C{x,&} be the ring of convergent power series in the variables x1, ..., z,,&1,. .., &.
Since the o; are homogeneous and the ring C{z,£} is a flat extension of G, the o; are a regular
sequence in G if and only if they are a regular sequence in C{z,{}. But the last condition is
equivalent to the equality [6, Theorem 17.4]

dimg 0y (V(I)) = dim(C{z,{}/I) =n +t —s.
Finally, since all o; are homogeneous in the variables £, the local dimension of V(I) at (0,0)

coincides with its dimension in U x C? for some neighborhood U of 0. [

Corollary 2.6. Let D C X be a free divisor. Let J be the ideal in Op+x generated by

7 1Der(log D). Then, D is Koszul free if and only if the set V(J) of zeros of J has dimension n
(in this case, each irreducible component of V(J) has dimension n).
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Proposition 2.7. Let X be a complex manifold of dimension n and let D C X be a divisor.
Then, the following assertions are valid.

1. Let X' = X x C and D' = D x C. The divisor D C X is Koszul free if and only if D' C X’
1s Koszul free.

2. Let 'Y be another complexr manifold of dimension r and let E C'Y be a divisor. Then,
a) the divisor (D x Y)U (X x E) is free if D C X and E CY are free; and
b) the divisor (D x Y)U (X x E) is Koszul free if D C X and E CY are Koszul free.

Proof. 1. It is a consequence of [3, Lemma 2.2(iv)] and the fact that oy,...,0, is
a regular sequence in Ox p[1,...,&,] if and only if &,41,01,...,0, is a regular sequence in

OX’,(p,t) [517 NS fn-&-l]'
2. a) It is an immediate consequence of Saito’s Criterion (see [3, Lemma 2.2(v)]).
b) It is a consequence of a) and Corollary 2.6. [
Example 2.8. Let us consider examples of Koszul-free divisors.
1) Nonsingular divisors.
2) Normal crossing divisors.

3) Plane curves: If dime¢X = 2, we know that every divisor D C X is free [9, Corollary 1.7].
Let {d1,02} be a basis of Der(log D),. Their symbols {01,042} are obviously linearly independent
over O, and, by Saito’s Criterion [9, 1.8], they are relatively prime in Grpe (D) = O[¢1,&2]. So, they
form a regular sequence in Grpe (D), and D is Koszul free (see [1, Corollary 4.2.2]).

4) Proposition 2.7 gives a way to obtain Koszul-free divisors in any dimension.

5) There are irreducible Koszul-free divisors Y in dimensions greater than two, which are not
normal crossing and do not have nontrivial factors [8]; for example, X = C? and Y = {f = 0},
with

=283 — 27222 4 2%ty + 213%0y %2 — 2223y% — 33yt

A basis of Der(log f) is {01, 92,03}, with
&1 = 6yd, + (82 — 22%)0, — xyd.,
g = (42? — 482)0, + 122yd, + (9y* — 1622)0.,
03 = 220, + 3y0y + 420;,

and the sequence {0 (01),0(d2),0(d3)} is Grpe(D)-regular.

3. MAIN RESULTS

Proposition 3.1. Let D be a free divisor in an analytic manifold X and let > C D be a discrete
set of points. If D is Koszul free at every point x € D \ X, then D is Koszul free (at every point
of D).

Proof. Let p € ¥ and let {01,...,0,} be a basis of the logarithmic derivations of D at p.
By Corollary 2.6, we have to prove that the symbols o; = o(0;) define an analytic set V =
V(o1,...,0n) C 7 YU) of dimension n = dim X for some open neighborhood U C X of p. Let U
be an open neighborhood of p such that U N ¥ = {p}. By hypothesis, we know that D is Koszul
free in U\ {p}, and so (Corollary 2.6) the dimension of V Na~ (U \ {p}) = V\ T X is n. Now, let
W be an irreducible component of V. It has, at least, dimension n. If W is contained in 7,7 X, then
it must be equal to Ty X, and dim W = n. If not, dim W = dim(W \ T, X) < dim(V \ T; X) = n.
So, we conclude that V' has dimension n. [

TPYOblI MATEMATUYECKOI'O UHCTUTYTA UM. B.A. CTEKJIOBA, 2002, T. 238 6*



84 CALDERON-MORENO, NARVAEZ-MACARRO

Theorem 3.2. Fvery locally quasi-homogeneous free divisor is Koszul free.

Proof. We proceed by induction on the dimension ¢t of the ambient manifold X. For ¢t = 1,
the theorem is trivial, and, for t = 2, the theorem is directly proved in Example 2.8, 3). Now, we
suppose that the result is true for ¢ < n, and let D be a locally quasi-homogeneous free divisor of
a complex analytic manifold X of dimension n. Let p € D, and let {d1,...,d,} be a basis of the
logarithmic derivations of D at p.

Thanks to [3, Proposition 2.4 and Lemma 2.2(iv)], there is an open neighborhood U of p such
that, for each ¢ € U N D with ¢ # p, the germ of pair (X, D,q) is isomorphic to a product
(C"! x C,D" x C,(0,0)), where D’ is a locally quasi-homogeneous free divisor. The induction
hypothesis implies that D’ is a Koszul-free divisor at 0. Then, by assertion 1 of Proposition 2.7,
D is a Koszul-free divisor at g too. We have then proved that D is a Koszul-free divisor in U \ {p}.
We conclude by using Proposition 3.1. [

Corollary 3.3. FEvery free divisor that is locally quasi-homogeneous at the complement of
a discrete set is Koszul free.

In particular, the last corollary gives rise to a new proof of the fact that every divisor in
dimension two is Koszul free (see Example 2.8, 3)).

4. EXAMPLES
We know several (related) kinds of free divisors:
[LQH] Locally quasi-homogeneous (Definition 2.2).
[EH] Euler homogeneous (Definition 2.1).
[LCT] Free divisors satisfying the logarithmic comparison theorem.
[KF] Koszul free (Definition 2.3).
[P

We have then the following implications:

]
] Free divisors such that the complex Q% (log D) is a perverse sheaf.

[LQH] = [EH] (obvious),

[LQH] = [LCT] by [3, Theorem 1.1],

[LCT] = [P] by [7, II, Theorem 2.2.4],
[KF] = [P] by [1, Theorem 4.2.1],

[LQH] = [KF] by Theorem 3.2.

Example 4.1 (free divisors in dimension two). We recall Theorem 3.9 from [2]. Let X be a
complex analytic manifold of dimension two and D C X be a divisor. The following conditions are
equivalent:

1. D is Euler homogeneous.
2. D is locally quasi-homogeneous.
3. The logarithmic comparison theorem holds for D.

Consequently, in dimension two we have
[LQH] & [EH] < [LCT]
and [KF] and [P] always hold (see Example 2.8, 3)). In particular,
IKF)  [LQH], [EH], [LCT].
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Examples of plane curves not satisfying logarithmic comparison theorem are, for instance, the
curves of the family (see [2])

9+ y? 4+ zyP =0, p>q+1>5.

Example 4.2 (an example in dimension three). Let us consider X = C3 and D = {f = 0},
with f = zy(z + y)(y + zz) [1]. A basis of Der(log D) is {01, 2,03} with

01 = 20y + Y0y,
Sy = 220, — y?0, — 2(x + )0,
(53 = (a:z + y)az,

the determinant of the coefficients matrix being — f and

(f)=4f, 0(f)=Q@x=3y)f,  &(f)==zf

In particular, D is Euler homogeneous and satisfies the logarithmic comparison theorem [2].
Let I C Ogp+«x be the ideal generated by the symbols {o1,09,03} of the basis of Der(log D).
By Corollary 2.6, D is not Koszul free, because the dimension of V'(I) at ((0,0,),0) € T*X (X # 0)
is greater than three. So, D is not locally quasi-homogeneous either.

Thus,

[LCT] # [KF], [LQH],  [EH] % [KF], [LQH].

Finally, for the only relation that we have not solved, we quote the following conjecture from [2]:

Conjecture 4.3. If the logarithmic comparison theorem holds for D, then D is Fuler homo-
geneous.
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