
Trading Polarization for Bi-stable Catalysts
in P Systems with Active Membranes

Mario J. Pérez-Jiménez and Francisco José Romero-Campero

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{Mario.Perez, Francisco-Jose.Romero}@cs.us.es

Abstract. In the last time, several efforts have been made in order to
remove polarizations of membranes from P systems with active mem-
branes; the present paper is a contribution in this respect. In order to
compensate the loss of power represented by avoiding polarizations, we
use bi-stable catalysts. Polarizationless systems with active membranes
which use bi-stable catalysts are proven to be computationally complete
and able to solve efficiently NP-complete problems. In this paper we
present a solution to SAT in linear time. In order to illustrate the pre-
sented solution, we also provide a simulation with CLIPS.

1 Introduction

In membrane computing, P systems with active membranes are specially suitable
to solve efficiently NP-complete problems, because of the fact that they provide
membrane division, inspired from cell division. By using this operation, one can
create an exponential number of membranes (working space) in linear time; in
this way, we trade space for time to solve NP-complete problems (this has been
reported for SAT, VALIDITY, Subset Sum, Knapsack, etc.).

One important feature of P systems with active membranes is the polarization
of membranes; each membrane has an “electrical charge”, positive (+), negative
(−) or neutral (0). However, the electrical charges are not very realistic from a
biological point of view. Because of this, several efforts are being made in order
to remove the polarizations without losing the universality and the efficiency.

This paper goes into this direction of research: we remove the polarization of
the membranes but on the other hand we use bi-stable catalysts. This variant
of P systems with active membranes is proven to be computationally complete
and able to solve NP-complete problems like SAT in linear time.

The paper is organized as follows: Section 2 introduces bi-stable catalytic P
systems with active membranes without charges as generating devices and as
recognizer devices. In Section 3 the complexity classes for P systems are briefly
recalled. Sections 4, 5, and 6 present a cellular solution in linear time to the
SAT problem within the framework of this variant of P systems. In Section 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132457547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the programming language CLIPS is used to exhibit a simulation of the designed
solution in order to illustrate how it works. Conclusions are given in Section 8.

2 Bi-stable Catalytic P Systems with Active Membranes
Without Polarizations

Definition 1. A bi-stable catalytic P system with active membranes and without
polarizations is a tuple

Π = (Γ, K, H, µ, M1, . . . ,Mp, R),

where:

1. p ≥ 1 is the initial degree of the system;
2. Γ is the alphabet of symbol-objects;
3. K is a subset of Γ , K ⊆ Γ , such that if c ∈ K then c ∈ K (the elements of

K are called bi-stable catalysts);
4. H is a finite set of labels for membranes;
5. µ is a membrane structure consisting of p membranes labelled (not necessarily

in a one-to-one manner) with elements of H;
6. M1, . . . ,Mp are strings over Γ , describing the initial multisets of objects

associated with the regions of µ;
7. R is a finite set of evolution rules, of the following forms:

(a) [a → ω]h, for h ∈ H, a ∈ Γ − K, ω ∈ (Γ − K)∗. This is an object
evolution rule, associated with a membrane labelled with h but not directly
involving the membrane.

(b) [ca → cω]h, [ca → cω]h, [ca → cω]h, [ca → cω]h, for h ∈ H, c ∈ K
and a ∈ Γ − K, ω ∈ (Γ − K)∗ (bi-stable catalytic evolution rules). Such
a rule is an object evolution rule involving bi-stable catalysts, associated
with a membrane labelled with h but not directly involving the membrane.

(c) a []h → [b]h, for h ∈ H, a, b ∈ Γ −K (“send in” communication rules).
An object from the region immediately outside a membrane labelled with h
is introduced in this membrane, possibly transformed into another object.

(d) [a]h → b []h, for h ∈ H, a, b ∈ Γ − K (“send out” communication
rules). An object is sent out from membrane labelled with h to the region
immediately outside, possibly transformed into another object.

(e) [a]h → b, for h ∈ H, a, b ∈ Γ − K (dissolving rules). A membrane
labelled with h is dissolved in reaction with an object. The skin is never
dissolved.

(f) [a]h → [b]h [c]h, for h ∈ H, a, b, c ∈ Γ − K (division rules for ele-
mentary membranes). An elementary membrane can be divided into two
membranes with the same label, possibly transforming some objects.

Note that, in contrast to [2], the bi-stable catalysts are not always flip-flop-ing
from non-barred to barred versions and back, but also rules of the form ca → cw

and c̄a → c̄w are allowed. The case when the catalysts appear only in rules of
the form ca → c̄w and c̄a → cw is called restricted.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object which can evolve by one rule of any form,
should evolve.

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

• If at the same time a membrane h is divided by a rule of type (e) and there
are objects in this membrane which evolve by means of rules of type (a) and
(b), then we suppose that first the evolution rules of types (a) and (b) are
used, and then the division is produced. Of course, this process takes only
one step.

• The rules associated with membranes labelled with h are used for all copies of
this membrane. At one step, a membrane labelled with h can be the subject
of only one rule of types (c)-(f).

2.1 Bi-stable Catalytic P Systems with Active Membranes
Without Polarizations, as Generating Devices

As a generating device, the result (output) of a halting configuration of a bi-
stable catalytic P system is the cardinality of the multiset associated with the
environment in the last configuration. In these P systems a non halting compu-
tation yields no output.

Definition 2. We denote by N(Π) the set of all outputs of halting computations
with respect to a bi-stable catalytic P system Π.

Theorem 1. Restricted bi-stable catalytic P systems with active membranes
without polarization, using rules of type (b) and (d), are computationally com-
plete.

Proof. Let L be a recursively enumerable language. Let G be a matrix grammar
with appearance checking such that L(G) = L. We can consider that G =
(N, {a}, S, M, F) is given in Z-binary normal form, in the standard notation.
That is,

• N = N1 ∪ N2 ∪ {S, Z, �}, with these three sets mutually disjoint.
• The matrices in M are in one of the following forms:

1. (S → XA), where X ∈ N1, A ∈ N2,
2. (X → Y, A → x), where X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y, A → �), where X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
4. (Z → λ).

• F = {A → � | ∃m ∈ M(m = (X → Y, A → �)}.
Moreover, if the special symbol Z appears in a sentential form w, then we
have w = Zw′, with w′ ∈ (T ∪ {�})∗ (that is, no nonterminal from N2 is
present).

• The matrices in M will be ordered as follows:
m0 : (S → XinitAinit), with Xinit ∈ N1, Ainit ∈ N2,
m1 :
...
mk :

⎫⎪⎬
⎪⎭

(X → α, A → x), with x ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2,

mk+1 :
...
mn :

⎫⎪⎬
⎪⎭

(X → Y, A → �).
(X → Z, A → �) , with X, Y ∈ N1, A ∈ N2

mn+1 : (Z → λ)

We construct the system

Π = (Γ, K, {1}, []1,M1, R),

where:

• Γ = N ∪ K ∪ {a, �} ∪ {X ′, X, X
′ | X ∈ N1},

• K = {ci, ci | 0 ≤ i ≤ n},
• M1 = {Xinit, Ainit, E, c0, c1, . . . , cn},
• The set R consists of the following rules:

(1.)

[ciX → ciY
′]1

[ciA → cix]1
[ciE → ci�]1
[c0Y

′ → c0Y]1
[c0Y

′ → c0Y]1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for each mi : (X → Y, A → x), with 1 ≤ i ≤ k .

These rules simulate the matrices mi, for i = 1, . . . , k. When we have in
the skin region a multiset containing X and there exists in M a matrix
mi : (X → Y, A → x), the rule [ciX → ciY

′]1 is applicable. In order to
simulate the second component of the grammar one of the rules [c0Y

′ →
c0Y]1, [c0Y

′ → c0Y]1 (either c0 or c0 is present, hence one of these
rules can be used) provides a step in which if there exists an object A in
the skin region, then the rule [ciA → cix]1 can be applied; otherwise, if
there is no such object, the rule [ciE → ci�]1 produces the trap symbol
� showing that we can not apply this matrix and so this is not a correct
derivation.

(2.)

[ciX → ciY
′
]1

[c0Y
′ → c0Y]1

[c0Y
′ → c0Y]1

[ciA → ci�]1
[ciY → ciY]1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for each mi : (X → Y, A → �), with k + 1 ≤ i ≤ n

These rules simulate the matrices mi, for i = k + 1, . . . , n. When we
have in the skin region a multiset containing X and there exists in M

a matrix mi : (X → Y, A → �), the rule [ciX → ciY
′
]1 is applicable.

In order to simulate the second component of the grammar, one of the
rules [c0Y

′ → c0Y]1,[c0Y
′ → c0Y]1 provides a step in which if

there exists an object A in the skin region, the rule [ciA → ci�]1 is
applied; otherwise, if there is no such object, then the rule [ciY → ciY]1
completes the simulation of this matrix.

(3.)
[a]1 → a []1, [c0� → c0�]1, [c0� → c0�]1,

The first of these two last rules, [a]1 → a []1, sends out to the en-
vironment the object a. In a halting configuration of the system the
multiplicity of the object a in the environment represents the length of
the word generated by G. If the computation of the system simulates a
non terminal derivation in G, then the rules [c0� → c0�]1, [c0� → c0�]1
produce a non halting computation.

From the above remarks it is easy to prove that the equality length(L(G)) =
N(Π) holds, where length(L(G)) is the length set of the language L(G), that is,
length(L(G)) = {|u| | u ∈ L(G)}. �

In the previous proof we do not actually use the fact that the membranes
are active (for instance, we do not use membrane division); otherwise stated, the
proof can be easily reformulated in terms of basic transition P systems, and this
makes necessary the comparison of Theorem 1 with universality results known
for such systems. First, the universality is known for systems with bi-stable
catalysts already from [5], where, however, one uses two membranes (see also
Theorem 3.4.7 from [2]; our results improves on this point, because we use only
one membrane. Then, in [1] it is proven that two catalysts are sufficient to get
universality in P systems without polarizations and without priorities, but the
systems considered in [1] contain both catalytic and non-catalytic rules.

2.2 Recognizer Bi-stable Catalytic P Systems with Active
Membranes Without Polarization

Definition 3. A P system with input is a tuple (Π, Σ, iΠ), where Π is a P
system, with working alphabet Γ , with p membranes labelled 1, . . . , p, and initial
multisets M1, . . . ,Mp associated with them, Σ is an (input) alphabet strictly
contained in Γ , the initial multisets are over Γ − Σ, and iΠ is the label of a
distinguished (input) membrane.

The computations of a P system with an input in the form of a multiset m
over Σ are defined in a natural way; they start from a configuration which is
obtained by adding the multiset m to the initial configuration of the system.

Definition 4. Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure and M1, . . . ,Mp the initial multisets

of Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ

∪ m, . . .Mp).

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way as for standard P systems – see
[2] – but with a small change. We consider that it is not possible to observe the
internal processes inside the P system and we can only know if the computation
has halted via some distinguished objects sent out of the skin. We can formalize
these ideas in the following way.

Definition 5. A recognizer bi-stable catalytic P system is a P system with
input, (Π, Σ, iΠ), and with external output such that:

1. Π is a bi-stable catalytic P system.
2. The working alphabet of Π contains two distinguished objects YES, NO.
3. All its computations halt.
4. If C is a computation of Π, then either the object YES or the object NO

(but not both) is sent to the environment, and only in the last step of the
computation.

We say that C is an accepting computation (respectively, rejecting compu-
tation) if the object YES (respectively, NO) appears in the environment in the
halting configuration of C.

In what follows we will deal with recognizer bi-stable P systems with ac-
tive membranes without polarizations. Let us denote by BAM the class of this
variant of recognizer P systems.

3 The Complexity Class PMCF

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem.

This drawback can be easily avoided if we consider a P system with input.
Then, the same system could solve different instances of the problem, provided
that the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element decides all the instances of
“equivalent size” of the problem.

Definition 6. Let F be a class of recognizer P systems. We say that a deci-
sion problem X = (IX , θX) is solvable in polynomial time by a family Π =
(Π(n))n∈N+ , of systems from F , and we denote this by X ∈ PMCF , if the
following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N+ in
polynomial time.

• There exists a pair (g, h) of polynomial-time computable functions g : L →⋃
n∈N+ IΠ(n) and h : L → N+ such that for every u ∈ L we have

g(u) ∈ IΠ(h(u)), and
− the family Π is polynomially bounded with regard to (X, g, h); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(h(u)) with input g(u) is halting and, moreover, it per-
forms at most p(|u|) steps;

− the family Π is sound with regard to (X, g, h); that is, for each u ∈ IX , if
there exists an accepting computation of Π(h(u)) with input g(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, g, h); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(h(u)) with input g(u) is an
accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation with the same input produces the same
output.

The class PMCF is closed under polynomial–time reduction and comple-
ment, as proven, for instance, in [10].

4 Solving SAT in Linear Time

The SAT problem is the following one: Given a boolean formula in conjunctive
normal form (CNF), to determine whether or not it is satisfiable; that is, whether
there exits an assignment to its variables on which it evaluates true.

We will address the resolution of this problem via a brute force algorithm
within the framework of recognizer bi-stable catalytic P systems with active
membranes without charges. Our strategy will consist in:

• Generation stage: Using membrane division we generate all possible assign-
ments associated with the formula.

• Evaluation stage: In each membrane we evaluate the formula on the assign-
ment produced in that membrane.

• Checking stage: In each membrane we check wether or not the formula eval-
uates true on the assignment from that membrane.

• Output stage: Send to the environment the right answer according to the
previous stage.

Let us consider the function 〈 , 〉 defined by 〈n, m〉 = ((n+m)(n+m+1)/2)+n
for ϕ = C1∧· · ·∧Cm a propositional formula in CNF and V ar(ϕ) = {x1, . . . , xn}.
The function 〈 , 〉 is polynomial-time computable (it is primitive recursive and
bijective from N2 onto N). Also, the inverse function of 〈 , 〉 is polynomial.

The family presented here is

Π = { (Π(〈n, m〉), Σ(n, m), i(n, m)) | (n, m) ∈ N
2 }.

For each element of the family, the input alphabet is

Σ(n, m) = {xi,j , xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

the input membrane is i(n, m) = 2, and the P system

Π(〈n, m〉) = (Γ (n, m), K(n, m), {1, 2}, µ,M1,M2, R)

is defined as follows:

• Bi-stable catalysts:

K(n, m) = {tj , tj , fj , f j , si, si, ans, ans | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
• Working alphabet:

Γ (n, m) = Σ(n, m) ∪ K(n, m) ∪ {vj , pj , nj | 1 ≤ j ≤ n}
∪ {ci, ri | 1 ≤ i ≤ m} ∪ {nok | 1 ≤ k ≤ n + m + 3}
∪ {�, yes, Y ES, NO}.

• Membrane structure: µ = [1 [2]2]1 (we will say that every membrane with
label 2 is an internal membrane).

• Initial Multisets:

M1 = {no1, ans},
M2 = {v1, . . . , vn, t1, . . . , tn, f1, . . . , fn, s1, . . . , sm, c1}.

• The set R consists of the following rules:

1. [vj]2 → [pj]2 [nj]2, 1 ≤ j ≤ n.

The goal of these rules is to generate an internal membrane for each
assignment to the variables of the formula. The new membrane where
the object pj appears represents the assignment where xj = true and the
new membrane where the object nj appears represents the assignment
where xj = false.

2.
[tjpj → tjpj]2
[tj xi j → tj ri]2
[tj xi j → tj �]2

⎫⎬
⎭ for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The object pj activates the catalyst tj which “erases” the objects xi,j

(these objects represent the literals ¬xj), but reacts with the objects
xi,j (these objects represent the literals xj) to produce the object ri

(this object indicates that the clause number i evaluates true on the
assignment associated with the membrane).

3.
[f jnj → fjnj]2
[fj xi j → fj ri]2
[fj xi j → fj �]2

⎫⎬
⎭ for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The object nj activates the catalyst fj which “erases” the objects xi,j

(these objects represent the literals xj), but reacts with the objects xi,j

(these objects represent the literals ¬xj) to produce the object ri (this
object indicates that the clause number i evaluates true on the assign-
ment associated with the membrane).

4. [siri → siri]2, for 1 ≤ i ≤ m,
[sici → sici+1]2, for 1 ≤ i ≤ m − 1,
[sm cm → sm yes]2.

The objects ci are counters which represent the number of clauses that
evaluate true on the assignment associated with the internal membrane.
So the object ci, for 1 ≤ i ≤ m − 1, reacts with the catalyst si, which is
activated by the object ri, to produce the object ci+1, and the object cm

reacts with the object rm to produce the object yes in order to show that
every clause of the formula evaluates true on the assignment associated
with the internal membrane.

5. [yes]2 → yes []2,
[ans yes → ansY ES]1,
[Y ES]1 → Y ES []1.

These rules produce and send the object Y ES to the environment.

6. [noi → noi+1]1, for 1 ≤ i ≤ n + 2m + 3,
[ans non+2m+4 → ansNO]1,
[NO]1 → NO []1.

These rules produce and send out the object NO to the environment.
Note that the object NO appears one step later than the object Y ES
and that the catalyst ans get barred in the output stage in order to make
sure that the system sends out the right answer.

5 An Overview of the Computation

First of all we must define a suitable pair (g, h) of polynomial-time computable
functions (see Definition 6) associated with the SAT problem. Given a formula
ϕ = C1 ∧ . . . Cm in CNF such that V ar(ϕ) = {x1, . . . , xn}, we define h(ϕ) =
〈n, m〉 (recall the bijection mentioned in the previous section) and g(ϕ) = {xij |
xj ∈ Ci} ∪ {xj | ¬xj ∈ Ci}

Next we will informally describe how the recognizer bi-stable catalytic P
system Π(h(ϕ)) with input g(ϕ) works.

The computation starts with the generation and evaluation stages. These two
stages take place in parallel following the rules from group 1 to 3. The gener-
ation of membranes is controlled by the objects vj , for 1 ≤ j ≤ n. When an
object vj is present in an internal membrane the rule in 1 is applicable and
so the system produces two new membranes. In one of these two new mem-
branes the object pj appears encoding that in the assignment associated with

the membrane we have xj = true. In the other membrane the object nj ap-
pears to show that in the assignment associated with this membrane we have
xj = false.

The evaluation stage takes place in a similar way in every internal membrane.
The object pj (respectively nj) representing that xj = true (respectively xj =
false) in the assignment associated with the internal membrane, activates the
bi-stable catalyst tj (respectively fj). The active catalyst tj (respectively fj)
according to the rules in 2 (respectively 3) reacts with the objects xij and xij to
produce the objects � and ri. The objects ri represent that the clause Ci evaluates
true on the assignment associated with the membrane. These two stages take
place in parallel and they take n steps of division, one step to activate the
catalysts and m steps to evaluate each clause, that is, an overall of at most
n + m + 1 steps.

The checking stage takes place according to the rules in 4. The object ri

activates the catalyst si which reacts with the object ci for 1 ≤ i ≤ m − 1 to
produce the object ci+1. The object ci represents that the clauses C1, . . . , Ci−1
for 1 ≤ i ≤ m, evaluate true on the assignment associated with the internal
membrane. So, the catalyst sm reacts with the object cm to produce the object
yes, in order to show that the whole formula evaluates true on the assignment
associated with the internal membrane. As it can be seen, the checking stage
takes one step to activate the catalysts and m steps to check that every clause
evaluates true; that is, an overall of at most m + 1 steps.

In the output stage the rules in 4 and 5 are applied to send the correct answer
to the environment. The answer Y ES is sent out following the rules in 5; the
object yes is sent to the skin by the first rule, in the second rule the bi-stable
catalyst ans reacts with the object yes to produce the object Y ES and ans
remains barred from now on, and finally the object Y ES is sent out to the
environment. On the other hand, following the first rule in 5, the object nok

waits n + 2m + 4 and, if no object yes has been sent to the skin, the bi-stable
catalyst ans and non+2m+4 react to produce the object NO which is sent out to
the environment. Note that the object non+2m+4 appears a step later than the
object yes in order to be sure that the system sends out the right answer. Thus,
the output stage takes at most 4 steps.

6 Required Resources

The presented family of recognizer bi-stable catalytic P systems solving the
SAT is polynomially uniform by Turing machines. Note that the definition of the
family is done in a recursive manner starting from a given instance, in particular,
from the constants n and m. Furthermore, the required resources to build the
element Π(〈n, m〉) of the family are the following:

• Size of the alphabet: 2nm + 8n + 5m + 9 ∈ O((max{n, m})2).
• Number of membranes: 2 ∈ Θ(1).
• |M1| + |M2| = 3n + m + 3 ∈ O(n + m).

• Sum of the rules lengths: 32nm + 27n + 32m + 60 ∈ O((max{n, m})2).

The number of steps in each stage in the worst case are the following:

1. Generation and evaluation stage: n + m + 1 steps.
2. Checking stage: m + 1 steps.
3. Output stage: 4 steps.

Therefore, the overall number of steps is n + 2m + 6 ∈ O(max{n, m}).
From the above discussion we deduce the following results:

Theorem 2.

1. SAT ∈ PMCBAM.
2. NP ⊆ PMCBAM, and NP ∪ co − NP ⊆ PMCBAM.

Proof. In order to prove the theorem, it suffices to make the following remarks:
the SAT problem is NP−complete, SAT ∈ PMCBAM and the class PMCBAM
is closed under polynomial-time reduction, and under complement. ��

7 A CLIPS Session with ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)

In this section we illustrate how the designed family of recognizer bi-stable cat-
alytic P systems works by presenting a simulation with CLIPS for the instance
ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2).

Configuration number: 1

[environment [multiset]]
[skin [children 3 4]

[label 1] [multiset ans , no 2]]
[membrane

[number 4] [children] [father 1]
[label 2] [multiset v 1 , n 2 , t- 1 , t- 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 3] [children] [father 1]
[label 2] [multiset v 1 , p 2 , t- 1 , t- 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

Here it can be seen how the generation stage takes place. In the presence of
the object v2 the system produces two new membranes. The membrane number
4, where the object n2 appears, indicates that in the assignment associated with
this membrane we have x2 = false. The membrane number 3, where the object
p2 appears, indicates that in the assignment associated with this membrane we
have x2 = true.

Configuration number: 2

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 3]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset n 1 , # , t- 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 7] [children] [father 1]
[label 2] [multiset p 1 , # , t- 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 6] [children] [father 1]
[label 2] [multiset n 1 , # , t- 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 5] [children] [father 1]
[label 2] [multiset p 1 , # , t- 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

Configuration number: 3

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 4]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , # , -x 2 1 , x 2 2]]

[membrane
[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , r 1 , -x 2 1 , x 2 2]]

[membrane
[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , r 2]]

[membrane
[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s- 1 , s- 2 , c 1 ,

x 1 1 , r 1 , -x 2 1 , x 2 2]]

Configuration number: 4

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 5]]
[membrane

[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 1 , # , r 1 , -x 2 1 , #]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 , r 1 , # , -x 2 1 , r 2]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , -x 2 1 , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s- 2 , c 1 , x 1 1 , # , r 2 , #]]

At the end of the generation and evaluation stage it can be seen that the as-
signment associated with the internal membranes are: {x1 = false, x2 = false}
with the membrane number 8, {x1 = false, x2 = true} with the membrane
number 6, {x1 = true, x2 = false} with the membrane number 7, and {x1 =
true, x2 = true} with the membrane number 5.

Configuration number: 5

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 6]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , c 1 , # , # , # , #]]
[membrane

[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , c 2 , # , # , # , #]]

Configuration number: 6

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 7]]
[membrane

[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , c 2 , # , # , # , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , yes , # , # , # , #]]

As a result of the checking stage the object Y ES is produced and sent out
to the environment in the output stage.

Configuration number: 7

[environment [multiset]]
[skin [children 5 6 7 8]

[label 1] [multiset yes , ans , no 8]]
[membrane

[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , yes , # , # , # , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]

Configuration number: 8

[environment [multiset]]

[skin [children 5 6 7 8]
[label 1] [multiset yes , YES , ans- , no 9]]

[membrane
[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , # , # , # , #]]

Configuration number: 9

[environment [multiset YES]]
[skin [children 5 6 7 8]

[label 1] [multiset yes , ans- , no 10]]
[membrane

[number 7] [children] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]
[membrane

[number 5] [children] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , # , # , # , #]]

The system has reached a halting configuration in the step number
9 and the element YES has been released into the environment.

8 Conclusions

In this paper we have presented a variant of P systems with active membrane
in which we have traded polarization for bi-stable catalysts. We have proven

that this variant is computationally complete and able to solve efficiently NP-
complete problems like SAT.

Future projects are to design families of recognizer bi-stable catalytic P sys-
tems to solve numerical NP-complete problems like Knapsack and Tripartite
Matching and to study the computational power and efficiency of P systems
with active membranes without polarizations.

CLIPS has been shown to be a convenient programming language for simu-
lating P systems and it was helpful to debug the design and to understand how
the P systems from the family Π work.

Acknowledgement

This work is supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain, by
the Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced
by FEDER funds, and by a FPI fellowship (of the second author) from the
University of Seville.

References

1. R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems
without priorities: Two catalysts suffice. Theoretical Computer Sci., to appear.

2. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, 2002.
3. Gh. Păun, Computing with membranes. Journal of computer and Systems Sciences,

61(1), 2000, 108–143.
4. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, P systems with tables of rules.

In: Gh. Păun, A. RiscosNúñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.,
Proceedings of the Second Brainstorming Week on Membrane Computing, Report
RGNC 01/04, 2004, 366–380.

5. Gh. Păun, S. Yu, On synchronization in P systems. Fundamenta Informaticae, 38,
4 (1999), 397–410.

6. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Com-
plejidad en modelos de computacion celular con membranas, Ed. Kronos, Sevilla,
2002.

7. M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the Subset-Sum problem by active
membranes. New Generation Computing, in press.

8. M.J. Pérez-Jiménez, A. Riscos-Núñez, A linear-time solution for the Knapsack
problem using active membranes. Lecture Notes in Computer Science, 2933 (2004)
140–152.

9. M.J. Pérez-Jiménez, F.J. Romero-Campero, A CLIPS simulator for recognizer
P systems with active membranes. In: Gh. Păun, A. Riscos-Núñez, A. Romero-
Jiménez, F. Sancho-Caparrini, eds., Proceedings of the Second Brainstorming Week
on Membrane Computing, Report RGNC 01/04, 2004, 387–413.

10. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial com-
plexity class in P systems using membrane division. In: E. Csuhaj-Varjú, C. Kin-
tala, D. Wotschke, Gy. Vaszyl, eds., Proceedings of the Fifth International Work-
shop on Descriptional Complexity of Formal Systems, 2003, 284–294.

	Introduction
	Bi-stable Catalytic P Systems with Active Membranes Without Polarizations
	Bi-stable Catalytic P Systems with Active Membranes Without Polarizations, as Generating Devices
	Recognizer Bi-stable Catalytic P Systems with Active Membranes Without Polarization

	The Complexity Class PMC$_F$
	Solving SAT in Linear Time
	An Overview of the Computation
	Required Resources
	A CLIPS Session with $\varphi = (x_1 + \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$
	Conclusions

