
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2013

A Dynamic Programming Approach to Achieving
an Optimal End State along a Serial Production
Line
Shih-Fen CHENG
Singapore Management University, sfcheng@smu.edu.sg

Blake E. Nicholson
Facebook

Marina A. Epelman
University of Michigan - Ann Arbor

Daniel J. Reaume
General Motors

Robert L. Smith
University of Michigan - Ann Arbor

DOI: https://doi.org/10.1080/0740817X.2013.770183

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, Business Commons, and the

Operations Research, Systems Engineering and Industrial Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CHENG, Shih-Fen; Nicholson, Blake E.; Epelman, Marina A.; Reaume, Daniel J.; and Smith, Robert L.. A Dynamic Programming
Approach to Achieving an Optimal End State along a Serial Production Line. (2013). IIE Transactions. 45, (12), 1278-1292. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1659

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13245687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1080/0740817X.2013.770183
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Dynamic Programming Approach to Achieving an Optimal

End-State Along a Serial Production Line

Shih-Fen Cheng

⇤†

Blake E. Nicholson

‡

Marina A. Epelman

§

Daniel J. Reaume

¶

Robert L. Smith

k

Abstract

In modern production systems, it is critical to perform maintenance, calibration, installation,

and upgrade tasks during planned downtime. Otherwise, the systems become unreliable and new

product introductions are delayed. For reasons of safety, testing, and access, task performance

often requires the vicinity of impacted equipment to be left in a specific “end state” when pro-

duction halts. Therefore, planning the shutdown of a production system to balance production

goals against enabling non-production tasks yields a challenging optimization problem. In this

paper, we propose a mathematical formulation of this problem and a dynamic programming ap-

proach that e�ciently finds optimal shutdown policies for deterministic serial production lines.

An event-triggered re-optimization procedure that is based on the proposed deterministic dy-

namic programming approach is also introduced for handling uncertainties in the production

line for the stochastic case. We demonstrate numerically that in these cases with random break-

downs and repairs, the re-optimization procedure is e�cient and even obtains results that are

optimal or nearly optimal.

Keywords: Manufacturing systems, shutdown planning, auto industry, dynamic programming

⇤Corresponding author
†School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902, Repub-

lic of Singapore, sfcheng@smu.edu.sg
‡Revenue Management Systems, Delta Air Lines, 1030 Delta Boulevard, Atlanta, GA 30320-6001, USA,

blaken@umich.edu

§Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor,
MI 48109-2117, USA, mepelman@umich.edu

¶Operations Research Activity, General Motors R&D and Strategic Planning M/C 480-106-359, 30500 Mound
Road, Warren, MI 48154, USA, daniel.reaume@gm.com

kDepartment of Industrial and Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor,
MI 48109-2117, USA, rlsmith@umich.edu

1

1 Introduction

Maximizing equipment utilization is essential to the profitability of capital-intensive production

processes. Although many researchers addressed the question of how to optimally schedule planned

system downtime and execute tasks during the downtime, little has been written about how to most

e↵ectively coordinate production leading up to the scheduled downtime to enable task completion.

Planned downtime is useful for a variety of critical tasks including preventive maintenance,

calibrations, installations, and upgrades, that can be performed only when a work station is down.

What makes scheduling such tasks challenging is that the state of the production system when it

shuts down may constrain their performance. For example, consider the task of upgrading a partic-

ular station in a production line consisting of stations separated by bu↵ers. Safety or accessibility

needs might dictate that this station be empty of jobs when the upgrade is performed. Moreover,

validating the upgrade requires a supply of jobs of appropriate types immediately upstream of the

station, together with su�cient empty space downstream to accept these jobs after they are pro-

cessed. Without an aid of an appropriate decision support tool, the problem of achieving as many

such requirements (called end-state goals in the rest of the paper) as possible while trading o↵ po-

tential lost production time or overtime costs presents a challenge to the line managers even if the

production line is assumed to be deterministic. As a result, managers usually resort to simple rules

of thumb in making shutdown decisions, leading to significantly suboptimal shutdown policies. For

the stochastic case, the development of a decision support tool is itself a significant challenge, since

an exact representation of a stochastic production line would require a Markov Decision Process

model whose state space explodes to an unmanageable size.

In this paper we address both of the above challenges. We present a mathematical model and

a dynamic programming approach that solves the deterministic version of the problem e�ciently.

Moreover, in the stochastic setting, we can utilize this deterministic dynamic programming model

within an e�cient event-triggered re-optimization procedure that obtains solutions which in our

numerical experiments were optimal or near-optimal. Among its contributions, this paper:

• Develops an e�cient dynamic programming (DP) formulation of the problem that leverages

the constraints imposed by the ordering and capacities of the line elements to limit the size

of the space of feasible solutions, which enables the use of the algorithm in real time.

2

• Proposes a DP-based, event-triggered re-optimization procedure that e↵ectively handles un-

expected breakdowns and repairs at stations. We demonstrate numerically that our procedure

produces results that are optimal or near optimal, by comparing them to shutdown policies

obtained under assumption of perfect hindsight.

• Applies the mathematical model to data taken from an actual production line of a major

automotive manufacturer, demonstrating that the model and the algorithm have real-world

utility. We use simulation experiments to demonstrate that the shutdown policy computed by

the algorithm significantly improves upon a typical rule-of-thumb approach used in practice.

This paper also charts new territory in looking at how to optimally control a production line

in the time leading up to a scheduled downtime. To the best of our knowledge, this topic has been

largely unaddressed in the literature. Most research related to maintenance either focuses on main-

tenance scheduling that balances the costs and benefits associated with performing maintenance

(see McCall, 1965; Pierskalla and Voelker, 1976; Sherif and Smith, 1981; Valdez-Flores and Feldman,

1989; Cho and Parlar, 1991, and references therein), or on optimizing the use of resources during

a period of planned downtime using methodologies such as the Critical Path Method (CPM) and

Material Requirements Planning (MRP) (Du↵uaa et al., 1998; Samaranayake et al., 2002). There

are some works on chemical production plants (Cheung et al., 2004) and clinical information sys-

tems (Nelson, 2007) that discuss how one can optimize the shutdown plans in order to minimize

negative impacts. However, even among those studies, we cannot find one that explicitly considers

both production and maintenance goals. Although we discuss an automotive assembly application

in this paper, this methodology is applicable to a variety of systems involving work-in-process in-

ventory. Examples include oil refineries, chemical processing plants, semiconductor manufacturing,

transactional back-o�ce operations, and new product development and introduction.

This paper is organized as follows. Section 2 introduces an abstract production line model,

and formally states the problem of finding an optimal shutdown policy when considering both

end-state and production goals. Section 3 presents an e�cient dynamic programming formulation

for finding an optimal shutdown policy in a deterministic environment. An event-triggered re-

optimization procedure is proposed in Section 4 to handle various uncertainties. Section 5 presents

computational experiments. Finally, Section 6 summarizes lessons learned.

3

2 A Model of the End-State Planning Problem

In this section we describe a network representation of a serial production line. We then explain

how end-state goals can be specified and formulate the optimization problem of balancing the value

of satisfying end-state goals against the costs of overtime and lost production time.

2.1 A Network Representation of a Production Line

A typical production line consists of two types of line elements, stations and bu↵ers, connected

together. Stations perform manufacturing tasks (welding, hemming, etc.) and can store work in

progress (WIP), while bu↵ers just store WIP.

By modeling stations and bu↵ers as nodes, and their connecting conveyors as arcs, we can

describe a general class of production systems as directed graphs. To simplify the problem, we focus

on the most common configuration, a serial line, for the rest of this paper. Figure 1 illustrates a

serial line configuration. Note that shutdown decisions are only made at the nodes in this network.

Each job entering the production line belongs to one of several types characterized by one or

more distinguishing characteristics. For example, jobs processed by a truck body assembly line

of an auto manufacturer can be distinguished by having an extended cab and/or a sun roof, thus

resulting in four job types that may require di↵erent processing at some of the stations. An ordered

list of jobs (and their types) to be processed on the line is typically specified ahead of time (it is

referred to as the build schedule), and is known to the managers controlling the production line.

We label the line elements sequentially in ascending order from the tail to the head of the line.

Jobs, numbered sequentially from 1 to J , thus enter the line at element N , proceed through the

line in order, and exit at element 1. The rationale for this numbering will become clear later on.

Head

. . .J 1

Jobs Inflow

. . . 12N N−1

Tail

Figure 1: A serial production line. Jobs enter at line element N , and exit at line element 1.

We now formally introduce notation for the end-state planning problem:

• Let N = {1, . . . , N} denote the index set of the line elements. As noted, line elements are

labeled sequentially in ascending order going from the tail of the line to the head of the line.

4

• Let J = {1, . . . , J} denote the index set of the jobs flowing into the production line. Jobs are

labeled in ascending order starting with the first job to enter the line, and for each job, the

build schedule specifies its type.

• Let m
n

be the capacity, measured in jobs, of line element n, n 2 N.

• Let r
n

= (i1
n

, . . . , im
n

), m  m
n

, n 2 N, i1
n

, . . . , im
n

2 J, denote the tuple of WIP, described

as an ordered list of jobs contained in line element n at the time of line shutdown. Since the

jobs traverse the line in order, im
n

= i1
n

+ (m� 1). If m = 0, the line element is empty.

• Let K
n

= {1, . . . , k
n

} denote the index set of end-state goals associated with line element n,

n 2 N. If K
n

= ;, no end-state goal is associated with line element n.

• Let Rk

n

, k 2 K
n

, be the set of all tuples of WIP that would satisfy the end-state goal k for

line element n.

• Let vk
n

be the value awarded if, at shutdown, r
n

2 Rk

n

, and let pk
n

be the penalty assessed if,

at shutdown, r
n

/2 Rk

n

.

• Let T
d

be the desired line shutdown time, e.g., the end of the normal shift. A cost associated

with overtime or lost production time is assessed if the shutdown policy induces a shutdown

time other than T
d

; in particular:

– Let p
o

denote overtime cost per unit time;

– Let p
l

denote cost per unit time associated with lost production time.

• Let T
max

represent a “hard” upper bound on the time by which all line elements must be

shut down, e.g., the start time of the next shift.

2.2 The Formal Definition of the End-State Planning Problem

An end-state goal is, broadly speaking, a description of the desired contents of a line element

(for example, the desired quantity or combination of jobs) when the production line shuts down,

which would enable performance of a particular task during downtime. The objective of the end-

state planning problem is to optimize the trade-o↵ between meeting end-state goals versus meeting

production targets. In particular, we would like to maximize the net value of meeting end-state

goals minus the penalty due to not meeting end-state goals, overtime, or lost production time.

Although build schedules are known to the managers, figuring out the above-mentioned trade-

o↵ is non-trivial in general, because: 1) multiple goals specified for an individual line element may

5

conflict with one another; 2) the build schedule may cause conflicts between line elements; 3) given

a set of end-state goals that can be jointly satisfied, the line might have to be run beyond (or

stopped before) the desired shutdown time, causing excessive overtime (or lost production).

A shutdown schedule, or shutdown policy, can be specified either in terms of an absolute shut-

down time of each line element, or in terms of locations of jobs in the production line at the time

of shutdown. For our purposes, a shutdown policy will be specified in the latter form by specifying,

for each n 2 N, the index of the last job j
n

2 J to exit this line element. One reason for this

choice is that it is easier to ascertain feasibility of a shutdown policy specified in this form, ensuring

that no line element is shut down in mid-cycle and verifying the capacity constraints at each line

element. In addition, job-based shutdown policy guarantees that the same set of end-state goals

will be achieved even if the production system is subject to uncertainty (e.g., line elements may

break down at random and need to be repaired).

With a (feasible) shutdown policy specified in the above form, it is also easy to identify which

end-state goals are met by calculating, for each line element n 2 N, the tuple of WIP r
n

contained

in that line element using the build schedule: since j
n+1

is the last job to enter n from n+1, while

j
n

+ 1 is the first job in n, we can determine r
n

as a function of j
n

and j
n+1

, namely

r
n

(j
n

, j
n+1

) = (j
n

+ 1, . . . , j
n+1

), n  N, (1)

where line element n is empty if j
n

= j
n+1

. (To handle line element N , we introduce a dummy line

element N +1 with capacity large enough to hold all jobs in the build schedule, and specify j
N+1

.)

If r
n

(j
n

, j
n+1

) 2 Rk

n

, i.e., the corresponding end-state goal k is met, a reward of value vk
n

is awarded;

otherwise, a penalty of value pk
n

is assessed. It should be noted that we express goal satisfaction in

the above form of set containment for notational convenience. Although occasionally an end-state

goal for a line element is so specific that the corresponding set Rk

n

consists of only a small number

of WIP tuples, often the goal is fairly general, e.g., “5 jobs regardless of their types,” or “at least

one job of type 1.” In such cases the contents of the set Rk

n

will be described using predicates ,

=, and � on the number of jobs, or jobs of particular types, and containment r
n

(j
n

, j
n+1

) 2 Rk

n

will be checked simply by verifying that the tuple r
n

(j
n

, j
n+1

) satisfies the resulting constraints.

In contrast to end-state goal satisfaction, with the shutdown policy specified in the above form,

6

the shutdown time of each line element and the overall shutdown time is not easily computable.

Even in a perfectly predictable, i.e., deterministic line with known job cycle times at each station

and no unpredictable breakdowns, interactions between elements of a capacitated serial production

line, such as starving and blocking, result in lack of an analytical expression for the time at which line

element n releases job j
n

, and thus shuts down. To overcome this di�culty, a recursive procedure is

developed for the deterministic environment (see Section 3). With this recursive procedure, we can

identify the shutdown time for each line element. While line elements in the production line may

stop at di↵erent times, here we define the shutdown time of the line as the latest shutdown time over

all line elements. This definition is particularly well-suited for highly automated production lines,

which tend not to have direct labor operators assigned to each line element, but rather floating

personnel that are “on the clock” as long as some portion of the line is running. The body shop

section of an automotive assembly plant, where various pieces of metal are attached together to

form the body of the vehicle, is an example of such a highly automated area. Based on the above

definition, the shutdown time of the line can be defined to be a function of shutdown decisions,

T
s

(j), where j = (j
1

, . . . , j
N+1

).

Given the shutdown time of the line, the associated overtime or lost production time cost is

easily computed. Recall that T
d

denotes the desired stopping time. When T
s

(j) > T
d

, overtime cost

is incurred at the rate of p
o

per unit time. Otherwise, when T
s

(j) < T
d

, a penalty associated with

lost production time is charged at the rate of p
l

per unit time. (The model and the forthcoming

DP formulation can be easily modified to consider other possible time-related cost definitions.)

If we define the set J̃ ⇢ JN+1 as the set of all decision vectors that satisfy line capacity and

ordering constraints, the end-state planning problem can be formally defined as:

max
j2J̃⇢JN+1

X

n2N

X

k2Kn

h
Ik
n

vk
n

� (1� Ik
n

)pk
n

i
� p

o

(T
s

(j)� T
d

)+ � p
l

(T
d

� T
s

(j))+ (2)

s.t.

Ik
n

=

8
>><

>>:

1, r
n

(j
n

, j
n+1

) 2 Rk

n

0, o/w

, 8 k 2 K
n

, 8 n 2 N

T
s

(j)  T
max

.

Note that (2) only captures deterministic problem instances; once uncertainties are introduced, the

7

production line shutdown time, T
s

(·), becomes a random variable and (2) is no longer an adequate

model. The handling of such uncertainties is deferred to Section 4, in which an event-triggered

re-optimization procedure is introduced.

3 Deterministic Dynamic Programming Formulation

In this section we develop an e�cient dynamic programming formulation of the end-state planning

problem (2) in a deterministic setting. Specifically, we assume that the equipment is reliable and

there are no unpredictable breakdowns. This dynamic programming formulation will serve as the

foundation for building the re-optimization procedure in Section 4, in which we will relax the

deterministic assumption and deal with uncertainties.

Toward providing an e�cient algorithm for solving (2), observe that in a serial production

line, shutdown decisions (j
1

, . . . , j
N

, j
N+1

) can be made sequentially along the production line.

Moreover, once a decision has been made at one line element, feasible decisions at neighboring

line elements are significantly restricted. As such, as long as we know the decision made at the

immediate previous line element, all decisions made at other line elements would provide no further

information. In other words, the decision at the immediate previous line element summarizes the

state of the system.

Once the potential states of the system — its state space — are defined, we can solve the

optimization problem by using dynamic programming (DP), which is known to be extremely

e�cient for sequential decision problems (for more detail, refer to Denardo, 1982).

3.1 Feasible Shutdown Policies

A shutdown policy (j
1

, j
2

, . . . , j
N

, j
N+1

) must be jointly feasible in the sense that it does not

violate the ordering of the jobs given by the build schedule nor the capacities of the line elements.

In particular, 1) for two consecutive line elements n + 1 and n, j
n+1

must be at least j
n

; 2) since

r
n

(j
n

, j
n+1

) = (j
n

+ 1, . . . , j
n+1

) for n  N , we require that j
n+1

� j
n

 m
n

. Summarizing the

8

above two observations, the values for j
n

are constrained as follows:

j
n

2

8
>><

>>:

J, n = 1,

{j
n�1

, j
n�1

+ 1, . . . , j
n�1

+m
n�1

}, n > 1.

(3)

3.2 Computing the Shutdown Time from the Shutdown Policy

Let e
j,n

denote the time when job j exits line element n. We refer to the matrix {e
j,n

, j 2 J, n 2 N}

as the flow matrix as it contains information about the flow of the jobs through the line.

Let t
j,n

be the processing time, or cycle time, of job j at line element n (the dummy element

N +1 is assumed to have zero processing time), and assume that the processing time also includes

the transfer time of the job between line elements n+1 and n. When job j completes processing at

line element n, it can move on to line element n� 1 if there is spare capacity available. Therefore,

the time e
j,n

at which job j can exit line element n has to satisfy three conditions:

1. Job j must have already exited line element n+1, which occurs at time e
j,n+1

, and completed

processing at line element n, which takes t
j,n

units of time. Therefore, e
j,n

� e
j,n+1

+ t
j,n

.

2. Job j � 1 must have already exited line element n, which occurs at time e
j�1,n

, and job j

must subsequently have been processed at line element n, requiring t
j,n

units of time. This

yields e
j,n

� e
j�1,n

+ t
j,n

.

3. Line element n � 1 must have available capacity to accept job j. Since the capacity of line

element n� 1 is m
n�1

, there will be room for job j in line element n� 1 once job (j �m
n�1

)

exits. As this event occurs at time e
j�mn�1,n�1

, we have e
j,n

� e
j�mn�1,n�1

.

Since we assume that the line operates without interruptions, e
j,n

can be computed by taking the

maximum over these three lower bounds, yielding the recursive equation:

for j = 1, . . . , J do

for n = N, . . . , 1 do

e
j,n

= max{e
j,n+1

+ t
j,n

, e
j�1,n

+ t
j,n

, e
j�mn�1,n�1

} (4)

end for

end for

where we set e
j,n

= 0 if either j  0 or n  0 or n > N .

9

We can compute the production line shutdown time from the flow matrix {e
j,n

} and the col-

lection of decisions {j
n

} as T
s

= max
n2N{e

jn,n}. Alternatively, if we denote by T
n

the maximum

shutdown time of line elements 1 through n, the production line shutdown time could be computed

recursively as

T
0

= 0, T
n

= max{e
jn,n, T

n�1

}, n = 1, . . . , N, and T
s

= T
N

. (5)

3.3 Dynamic Programming Model

Based on the above discussion, problem (2) can be cast as a sequential decision process, where a

decision is made at each line element, starting from line element 1. From Equation (3), we see

that the set of feasible decisions at line element n is constrained by j
n�1

. The time when each job

leaves each line element, assuming the line element has not yet been shut down, can be computed

a priori as shown in Equation (4), and the resulting flow matrix is considered to be input data for

the problem. Then, given T
n�1

, we can compute T
n

using Equation (5) as soon as j
n

is chosen.

From the above description, the information required to make a decision at each line element

includes: n, the current line element ID, j
n�1

, the decision from the downstream line element, and

T
n�1

, the maximum shutdown time up to and including line element n � 1. When decision j
n

at

line element n is chosen, T
n

is calculated based on the corresponding element of the flow matrix and

T
n�1

. The reward/penalty for satisfying the goals specified for line element n�1 is obtained by first

computing r
n�1

according to Equation (1), then checking to see if r
n�1

2 Rk

n�1

, where k 2 K
n�1

denotes goal k defined at line element n� 1. If so, the decision garners a reward of vk
n�1

, otherwise

it incurs a penalty of pk
n�1

. Summing over all k 2 K
n�1

then gives the aggregate reward/penalty

at line element n� 1. (Note that we can calculate the reward/penalty at line element n only after

we have made a decision for line element n+ 1. This is because the contents of line element n are

not known until the decision at line element n+1 is made (see Equation (1)). Recall that we define

a dummy line element, N + 1, to control the contents of line element N .)

When we reach line element N + 1, the beginning of the line, we set T
s

= T
N

, and the over-

time/lost production time cost can be computed accordingly.

Formally, the DP formulation is as follows:

• State (n, j, T) of the DP:

10

– n is the stage of the DP, representing the ID of the current line element,

– j is the decision at line element n� 1; it serves as the lower bound on j
n

,

– T is the maximum of shutdown times of line elements from 1 through n� 1.

In the initial stage n = 1, there is only one state, namely (n, T) = (1, 0).

• Feasible decisions at state (n, j, T):

j
n

2

8
>><

>>:

J, n = 1

{j, j + 1, . . . , j +m
n�1

}, n > 1.

(6)

• State transition functions are as described above.

• Reward function at state (n, j, T) with decision j
n

:

V (1, 0) = 0, and V (n, j; j
n

) =
X

k2Kn�1

h
Ik
n�1

vk
n�1

� (1� Ik
n�1

)pk
n�1

i
, 2  n  N + 1, (7)

where

r
n�1

= (j + 1, . . . , j
n

) and Ik
n�1

=

8
>><

>>:

1, r
n�1

2 Rk

n�1

0, o/w.

, 8 k 2 K
n�1

Note that a reward/penalty is assessed at stage n for meeting the end-state goals at line

element n� 1, as discussed above.

• Terminal cost:

L(T) = p
o

(T � T
d

)+ + p
l

(T
d

� T)+, (8)

where T is the shutdown time of the line. The terminal cost represents the cost due to

overtime or lost production time.

• Functional equation at state (n, j, T): let f(n, j, T) be the maximum value one can attain by

acting optimally from line element n to N + 1, if the current state is (n, j, T). Then

for n = 1:

f(1, 0) = max
j12J

{f(2, j
1

, e
j1,1)}, (9)

for 2  n  N :

f(n, j, T) = max
jn2{j,j+1,...,j+mn�1}

{V (n, j; j
n

) + f(n+ 1, j
n

,max{T, e
jn,n})}, (10)

11

for n = N + 1:

f(N + 1, j, T) = max
jN+12{j,j+1,...,j+mN}

{V (N + 1, j; j
N+1

)� L(T)}. (11)

Note that when computing f(n, j, T) using Equation (10), any j
n

that would lead to next

state with undefined functional equation will be pruned from consideration.

• The optimal value of the end-state problem is given by f(1, 0).

3.3.1 Pruning DP States: Dealing with Initial Content, T
max

, and Pre-Existing Shut-

downs

In the DP model described in the previous section, we implicitly assumed that the production line

is started empty, with job 1 about to enter the line. However, in practice jobs can be positioned

at line elements at the beginning of the production run, and/or, as is often the case, the manager

may begin planning shutdown activities only, say, an hour prior to the desired shutdown time. We

can incorporate this variation by pruning appropriate states from the DP.

Suppose the system is initialized at time 0, which can represent either the beginning of the

production run or the time during production at which the end-state planning problem is being

considered, and we are given the initial content of the line, indicating the position of each job. Let

n(k) be the ID of the line element where job k is located at initialization (if job k has not yet

entered the system, let n(k) = N + 1). Since job k starts at line element n(k), none of the line

elements upstream — with ID greater than n(k) — can use job k as their shutdown decision. As

a result, all states (n, j, T) with n > n(k) and j  k are pruned from the DP.

Besides pruning DP states, we also need to update the flow matrix to reflect the starting

positions of these jobs. Obviously, if job k starts at n(k), it cannot visit any of the upstream line

elements; therefore, for each job k with n(k) 6= N + 1 (jobs with n(k) = N + 1 have not entered

the production line yet), the first condition defined in section 3.2 should be refined as:

e
k,n

�

8
>>>>>><

>>>>>>:

�M, n > n(k)

t
k,n

, n = n(k)

e
k,n+1

+ t
k,n

, o/w

,

12

where �M is any su�ciently negative number used to nullify the first of the three terms in (4) for

n(k)’s upstream line elements.

We can use a similar approach to ensure that the shutdown time resulting from the decision

(j
1

, . . . , j
N

, j
N+1

) does not exceed T
max

by pruning all DP states (n, j, T) with T exceeding T
max

.

Furthermore, for every remaining state, if any feasible decision j
n

would lead to a next state with

T exceeding T
max

, j
n

has to be removed.

Finally, if some line elements are already shut down, we should limit the feasible decision sets

for these line elements to be singletons containing only the given shutdown decisions. For every

remaining state, if any decision j
n

would lead to a next state with undefined functional equation,

j
n

has to be removed from the feasible set.

3.3.2 Computational Complexity of the DP

Here we compute an upper bound on the computational e↵ort required to solve the above dynamic

programing model by the standard backward induction algorithm. We assume that the values of

t
j,n

’s and T
max

are integers (i.e., they are measured in whole seconds), and thus the values of T

that need to be considered as part of state descriptions are also integers.

Assume that no state pruning is performed and the size of the state space is (N · J · T
max

).

In almost all cases, the end-state planning is not performed until the final hour; this implies that

reasonable upper bounds can be defined for J and T
max

. If the values of J and T
max

are fixed to

their respective upper bounds, the computational e↵ort is linear in the number of line elements N .

To get a rough idea of the empirical performance of our DP solver, we use the execution time

of the numerical example presented in Section 5 as a benchmark. In this scenario, J = 200,

T
max

= 4800 (seconds), and N = 66. On the server equipped with a 3.16GHZ Intel Xeon CPU,

it takes only 1.3 seconds on average to solve the resulting instance of the dynamic programming

model. Since the computational e↵ort is linear in N , even for production line that has ten times

more line elements, we expect be able to obtain optimal solutions within tens of seconds.

13

4 Handling Uncertainty: Event-Triggered Re-optimization

4.1 An Intractably Large MDP Formulation

The DP model described in section 3.3 is extremely e�cient. Even for instances of realistic sizes,

optimal solutions can be found within seconds. Unfortunately, due to its deterministic nature, if the

identified solution is implemented in an uncertain environment its performance will deteriorate. The

fulfillment of the end-state goals will be largely una↵ected by the uncertainty in the production

line. However, the production line shutdown time could be delayed notably due to unexpected

breakdowns and repairs, and such delays could incur significant increases in overtime costs (and,

if production time exceeds T
max

, a↵ect fulfillment of the end-state goals as well). Such surge in

overtime costs is the major reason for deterioration of solution performance.

A traditional approach to handling uncertainties in a sequential decision problem is to model

it as a Markov decision process (MDP). To achieve this we would need to identify states of the

system that exhibit the Markov property (i.e., the computation of the optimal action for a particular

state requires no information on how that state is reached). To properly handle uncertainties in

the end-state planning problem, such state should at least contain three pieces of information: 1)

the condition of each line element, e.g, “up”, “down”, or “stopped”; 2) the content of each line

element and its corresponding remaining cycle time; and 3) current time. This state definition

overlaps with the DP state defined earlier in section 3.3, but is significantly larger. To illustrate

just how intractably large such a state space is, we consider the same numerical instance mentioned

in section 3.3.2: a production line with 66 line elements, 200 jobs, 4800 time periods (each time

period is 1 second). For simplicity, we assume the cycle time to be 60 seconds for each and every

line element. The size of the state space based on this moderate example is:

4800 · 366 · 6066 > 10152 states,

and we have not even incorporated the contents of the line elements yet. The sheer size of such a

state space will make any straightforward implementation e↵ort infeasible.

To develop an approximate solution method for the end-state planning problem with uncer-

tainty, we first make the following observations: 1) Uncertainties of the production line will not

a↵ect the fulfillment of the end-state goals (unless production time exceeds T
max

), but will delay

14

the shutdown time, leading to increase in penalty for overtime. 2) If a line manager monitors the

status of the production line, and can make adjustments to the shutdown schedule, the manager

would give up some end-state goals if their rewards compensate for the induced overtime cost.

From the above two observations, we conclude that, if real-time status of the production line (e.g.,

breakdowns and repairs) can be observed, the shutdown policy could be updated to react to the

consequences of these events. Using this approach a manager can prevent excessive overtime in

situations when attainment of some end-state goals becomes unprofitable as a result of unforeseen

delays on the production line.

To incorporate real-time production line information, one could periodically take a “snapshot”

of the line and update and re-solve the DP. However, to ensure su�cient resolution in capturing the

occurrences of unforeseen events, the frequency of such updates must be fairly high, and this might

lead to redundant computations. We thus propose an event-triggered re-optimization procedure

that will only update and re-solve the DP when specific significant disruptive events occur on the

production line. In particular, we should only focus on events that would a↵ect the DP. These

events and the re-optimization procedure are described in the next subsection.

4.2 An Event-Triggered Re-Optimization Procedure

As noted in the previous subsection, only events that could potentially change the DP should be

considered in our re-optimization procedure. One such event is a breakdown of a line element.

Additionally, inaccurate estimates of line element repair time should also be monitored, since they

a↵ect the e↵ective cycle time, which we define as the sum of the actual cycle (i.e., processing) time

and the repair time for the corresponding line element. Inaccurate repair time estimates can be

detected under two circumstances: overestimation and underestimation. The formal definitions

and the necessary follow-up steps for the above three events are as follows:

Breakdown This event occurs when a line element breaks down. When a line element breaks

down, its repair time is estimated and used in the estimate of the e↵ective cycle time. I.e., if

the line element n is processing job j at the time of its breakdown, its e↵ective cycle time for

job j is calculated as (t
j,n

+ r̂
j,n

), where r̂
j,n

is an estimate of the repair time. The breakdown

event and the above mentioned statistics can be captured and measured by most Computer

15

Integrated Manufacturing (CIM) systems (e.g., see Davies (2006)).

Underestimation of repair time This event is detected if a faulty line element is still under

repair after its estimated repair time lapses. If this line element n was processing job j at

the time of its breakdown, a new value of the repair time estimate r̂
j,n

will be generated and

used to replace the previous estimate in the calculation of the e↵ective cycle time for job j.

Overestimation of repair time This event is detected if a faulty line element is repaired earlier

than estimated. If the repaired line element n was processing job j at the time of breakdown,

its e↵ective cycle time for job j should be updated to (t
j,n

+ r
j,n

), where r
j,n

is the actual

observed repair time, which replaces the latest estimate r̂
j,n

.

We can now formally describe the event-triggered re-optimization procedure. At the beginning

of the planning horizon (t = 0), an initial shutdown plan is generated by solving the DP with

default cycle times (these cycle times can take into account expected breakdowns and associated

repair times). This initial plan is taken to be the incumbent shutdown plan. The line manager

will execute the incumbent shutdown plan until one of the three aforementioned disruptive events

is detected at one of the line elements. As soon as an event occurs, the manager should update the

e↵ective cycle time at the corresponding line element and re-optimize. (Note that all previously shut

down line elements should remain shut down during this re-optimization, which can be achieved

by applying steps described in Section 3.3.1.) This new shutdown plan will become the incumbent

plan, which the manager will implement until the next event occurs, or the line is shut down.

Although line managers are being assigned the duties of monitoring events, executing re-

optimization, and implementing the incumbent plan in the above description, all three tasks could

be automated if the plant is equipped with su�ciently capable CIM system. The critical capabili-

ties required for such automation are the data link for real-time production line statues update (for

event monitoring) and the programmable controller that can be controlled remotely (for executing

shutdown command). Both functionalities are available in most modern CIM systems, including

the one installed at our partner’s plant

Despite its simplicity, this event-triggered re-optimization approach is very e↵ective; as we will

demonstrate in the next section using real-world-inspired numerical cases, in many instances, it

can discover shutdown policies that are as good as the ones obtained with perfect hindsight.

16

5 Computational Experiments

A hypothetical yet realistic end-state scenario from an assembly plant of a major automotive

manufacturer is presented in this section. The line configuration and parameters such as cycle times

and capacities in this scenario reflect those observed on a production line in this plant, and the

build schedule is randomly generated according to the proportion of job types produced there. The

end-state requirements are constructed based upon discussions with plant personnel about typical

situations that they experience. To preserve the confidentiality of the plant operations, the values

of parameters v
n

, p
n

, p
o

and p
l

used in the scenario are rescaled and made unitless. However, these

values are chosen in an e↵ort to preserve the relative proportions among corresponding parameters.

In discussions with plant personnel, the cost of overtime was fairly easy to assess; estimates

of the cost of lost production time were also reasonably easy to ascertain. On the other hand,

production line managers have not had experience explicitly considering and quantifying values

of satisfying goals. Thus, although there is usually an understanding of which shutdown goals

have higher priority than others, it is di�cult to associate specific numerical values and penalties

with the goals at hand. To estimate the reward and penalty associated with a particular goal,

one may consider: 1) the cost of labor and materials required to perform the maintenance task

at hand, 2) the labor and material cost of “manually” attaining the desired end-state to perform

the task (e.g., manually o↵-loading jobs from a line element that is supposed to be empty), 3) the

likelihood and cost of correcting quality problems or breakdowns resulting from a task left undone

due to an unmet end-state goal, etc, and 4) the likelihood and cost of delaying the launch of a

new product resulting from late installation or calibration of production equipment. At present,

most of these estimates are di�cult to obtain since, in practice, managers use rules of thumb that

aim to satisfy production targets (i.e., stopping on time), and decisions on which tasks to perform

and thus which end-state goals to meet are made based upon experience. In the scenario described

in this section, we assigned values and penalties to end-state goals that are fairly low relative

to the cost of overtime and lost production time. Despite this, these computational examples

demonstrate that significant improvement in goal attainment can be achieved with minimal sacrifice

of production time. (Moreover, in our experiments the performance of our procedure did not prove

to be particularly sensitive to small changes in these parameter values.) It is our hope that having

17

access to a decision support tool such as this model will encourage a more detailed assessment of

benefits and costs associated with meeting end-state goals and performing maintenance tasks.

The rest of this section is organized as follows. We first introduce the background and description

of a typical shutdown scenario. Subsequently, we define the rule-of-thumb shutdown policy as a

comparison baseline and solve the end-state planning problem in a deterministic setting, pointing

out operational insights one could obtain with our model. Finally, we make the scenario stochastic

by introducing probabilistic breakdowns and repairs. The stochastic version of the problem is

solved by the event-triggered re-optimization procedure described in Section 4, and its e↵ectiveness

is measured by comparing its performance to the performance of a shutdown schedule determined

with perfect hindsight.

5.1 Background and Description of a Typical Scenario

Since automotive manufacturing is extremely capital intensive and plants typically produce several

di↵erent models of vehicles, new models are typically launched concurrently with existing produc-

tion. This requires a complex and choreographed installation of new equipment, re-calibration of

new and old equipment, and confirmation that changes do not impair existing production. The

following scenario description is representative of a realistic scenario occurring in practice.

In this scenario, a plant is just starting to produce a small number of prototype builds of a new

model. We refer to the current models as job types #1, #2, and #3, and to the new model as job

type #4. Currently, these four job types constitute 30%, 35%, 20%, and 15%, respectively, of the

plant production, and the build schedule during a typical shift would consist of a sequence of jobs

of the four types in proportions roughly equal to the above percentages, in no particular order.

When launching a new vehicle, the most significant changes occur in the body shop area of

the plant, so this scenario focuses on two zones of a body shop — engine compartment (EC) and

underbody (UB) — depicted schematically in Figure 2. In Figure 2, the larger squares labeled

with identification numbers represent stations (each with capacity 1), while the smaller rounded

squares labeled with capacities represent bu↵ers. As stated previously, the line segment used for

these experiments is based upon an actual production line, using the line configuration, cycle times,

and capacities of that line segment. Together these two zones will be treated as a serial production

line.

18

Part of the 8−job virtual element

10 80 11020 50 130 2 160 1 180 2102 2

240

3 260 1132011380390400 350360 340

1 2 2 1

300

Start Area

Underbody Zone

Transfer to

Engine Compartment Zone

Part of the 8−job virtual element

10 6040 11 30 70 80 3 120 1 1 160 1 180

2

21022012401 26023101 1350360 340370380 330

140

280

En
d

A
re

a

Start Area

Underbody Zone

Figure 2: Schematic graph for the engine compartment and underbody zones.

We define eight high-level objectives we would like to achieve during a downtime period and

describe end-state goals based on each of these objectives. The goals are designated to be of high,

medium, or low priority, based on the emphasis the management wants to put on the objectives

they accomplish.

1. The EC and UB zones are experiencing downtime as a result of changes to support the

new model and are bottlenecking production. Therefore it is desirable to keep these areas

operating as much as possible by filling every station and bu↵er position with a vehicle of

some sort. Since each extra job present impacts throughput only slightly, the goals thus

defined are of low priority.

2. EC stations 20, 50, 80, 130, 180, and 260 should be empty to allow verification that material

can be loaded into them from newly modified conveyor systems. Although a problem left

undetected could be costly, the tests can be delayed; alternatively, jobs could be manually

o✏oaded during the downtime using forklifts, clearing the stations for verification. Therefore,

each of these goals is of medium priority (note that these goals directly conflict with those

defined by the first objective above).

3. EC station 160 should have a job of type 4 in it to allow for training of the welding robot

to follow a new weld path. This is a high priority goal since this test is critical to launch

timing. The bu↵ers immediately before and after this job should be empty to allow engineers

leeway to stop the line to better examine issues as this validation build progresses through

the system. These latter goals are of low priority, since the only impact of not achieving them

is lower throughput.

19

4. EC station 300 and 320 were re-calibrated yesterday to better process the new model. Un-

fortunately, there is worry that this may have caused problems for model type 2. These two

stations and their immediately preceding bu↵ers should contain models of type 2 to allow

for testing. These goals are of high priority since it is unacceptable to produce low quality

current vehicles and it is very di�cult to test the calibration in any other way. The next

four line elements after these stations should be empty to allow for jobs to be moved through

stations 300 and 320. These latter goals are of medium priority, since jobs could be manually

o✏oaded.

5. New equipment is being installed for UB station 350. To ensure adequate working space, the

area from station 330 to 370 inclusive must be emptied. These are medium priority goals

since jobs could be manually o✏oaded.

6. The eight-job area in the connecting part of the EC and UB zones from the bu↵er prior to

EC station 380 up to UB station 40 should contain jobs of various types for testing of the

new equipment. Sequences where four distinct job types follow four distinct job types are

highly preferred, since they would provide the best opportunity to evaluate how the equipment

adjusts from producing one type of vehicle to another. Slightly less preferable are sequences

where each job type still appears twice among the eight jobs (e.g., 1-2-1-2-3-4-3-4). Less

preferable still are sequences where each job type appears at least once among the eight jobs

(e.g., 1-2-3-4-3-3-3-3). To capture these considerations, we associate three goals with this

area: a high priority goal, met by the most desirable job sequences only, a medium-priority

goal, which would also be met by the less desirable sequences, and a low priority goal, which

met by any 8-job sequence containing at least one job of each of the four types.

7. UB stations 140, 180, 210, 220, 240, and 260 are slated for re-calibration this evening for jobs

of type 1 and 4. Having a job of either type 1 or type 4 in each such station is a medium

priority goal.

8. To enable precise measurements, UB stations 80 and 120 should be emptied. These are

medium priority goals. Verification of the resulting quality requires that the job immediately

preceding each of these stations be of type 4. These are medium priority goals.

We assume an early shutdown costs 10 units per minute due to lost production, while a late

shutdown costs 5 units per minute due to overtime expenses. These values can be computed based

20

upon the lost revenue due to an early shutdown or the extra expense of running overtime. We

classify goals into three categories, with high, medium, and low value goals, respectively, earning

20, 5, and 1 units if achieved, and costing 7, 3, and 1 units if not achieved. One can view high

value goals as those that will have the greatest impact on throughput and quality while low value

goals have far less of an e↵ect. As stated previously, these values are unitless, but represent the

relative proportions of the actual values.

We assume that the planning horizon for shutdown policy optimization is one hour before the

end of the shift, so the line is initially filled with jobs, and the desired shutdown time is T
d

= 3,600

seconds. This approximately coincides with the planning horizon of plant personnel. At most 20

minutes of overtime are allowed, so T
max

= 4,800 seconds.

Note that in item 6 we described goals associated with a set of line elements rather than a

single line element. To represent this type of goal without modifying the DP model, we define a

virtual line element that aggregates the area dealt with in item 6, beginning with the bu↵er prior

to EC station 380 up to UB station 40. This aggregate line element has capacity 8, the sum of the

capacities of the line elements it contains, and processing time equal to the sum of the processing

times of its contained line elements. Physical line elements included in this virtual line element also

have goals associated with each one of them. To reflect these goals, we need to modify the reward

function associated with the line element immediately preceding the virtual line element. To be

more specific, suppose the virtual line element has ID n, and recall that the decision made at line

element n + 1 determines the content of the virtual line element. For each feasible decision j
n+1

,

besides evaluating V (n + 1, j; j
n+1

) (as defined in Equation (7)), which looks at the goals defined

on the virtual line element, we must also consider values and penalties resulting from satisfaction

of goals associated with line elements within the virtual line element. This leads to an optimization

sub-problem that can be solved by a DP formulation similar to the overall DP.

With this information, we are ready to generate representative problem instances and compare

di↵erent solution approaches.

21

5.2 Experimental Results: Deterministic Case

5.2.1 Comparison of the Optimal Policy and a Rule-of-Thumb Policy

To generate a problem instance, we created a build schedule by sampling jobs at random in accor-

dance with the given percentages of the four job types. The resulting problem was solved by the DP

algorithm described in Section 3. The optimal policy found stops the production line at T
s

=3,705

seconds (105 seconds later than the desired time) and achieves 68 of the 92 goals defined. The value

of the optimal policy, i.e., the sum of rewards for goals achieved minus the sum of the penalties for

missed goals and minus any cost due to a shutdown time that deviates from the desired shutdown

time, was 197.25.

Recall that, for some of the line elements, multiple goals associated with each of them are in

conflict with one another; thus, no feasible shutdown policy would capture the rewards for all of

these goals. To get a sense of how much of the potential value was, in fact, achieved by the optimal

policy, we estimated the maximum achievable goal value for each line element by calculating the

value associated with each non-conflicting combination of goals. For example, if a line element has a

low priority goal specifying that the line element be empty at shutdown and a medium priority goal

specifying that the line element contain a job of type 3, the potential achievable value is estimated

as 4: a value of 5 if a job of type 3 is in the line element, minus a penalty of 1 for not satisfying

the low priority goal. Note that these potential values only provide an upper bound on the value

attainable by satisfying the goals, since they do not take into account possible conflicts among

goals associated with di↵erent line elements, nor the specifics of the build schedule. Figure 3a

shows these estimates of potential achievable values for each line element (gray bars), along with

the actual values achieved by the optimal policy (black bars). If only a black bar is shown, the

net value associated with that line element was in fact the maximum achievable. A visible gray

bar indicates that the optimal policy did not garner all of the estimated potential value, with the

di↵erence between the two bars indicating the di↵erence between the estimated potential and actual

value.

Figure 3b shows the shutdown time of each line element. Recall that the line’s shutdown time,

T
s

, is the maximum shutdown time over all the line elements. The figure demonstrates that, overall,

the line elements at the head of the line tend to shut down earlier than those at the tail, with the

22

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
−15

−10

−5

0

5

10

15

20

25

30

Line element ID

Va
lu

e
of

 g
oa

ls

Potential (estimate)
Actual

(a)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
2400

2600

2800

3000

3200

3400

3600

Line element ID

Sh
ut

do
w

n
tim

e
(s

ec
on

ds
)

(b)

Figure 3: (a) Estimate of potential achievable value, and value achieved by the optimal policy, for
each line element. (b) Shutdown time for each line element.

shutdown time of 3,705 seconds dictated by line elements 1 and 2.

To assess the benefits of the optimal shutdown policy, we set out to compare it to a representative

policy that is commonly adopted by managers. Typically, shutdown policies are determined by

managers of the production line, several minutes to an hour prior to the desired shutdown time.

Since human planners without access to an optimization model are unlikely to be able to quickly

evaluate the 92 goals specified in the scenario as well as the current state of the production line

and the build schedule to come up with an optimal shutdown plan, they typically rely on rule-of-

thumb (ROT) guidelines. For example, plant managers report that a common guideline (although

not used exclusively) can be roughly described as “shut the line down as close as possible to the

desired shutdown time, T
d

, while meeting as many goals as you can.” While this policy may sound

simple (if vague), it is di�cult, if not impossible, to mimic the decisions of an experienced manager

attempting to meet “as many goals as you can” without the aid of a formal algorithm. In practice,

it is fairly easy for a manager to ensure that the line is shut down at the desired time, but choices

made with respect to goal satisfaction are di�cult to formalize. Therefore, as a basis for comparison

with the optimal policy, we define a formal ROT policy which finds an optimal shutdown plan,

subject to the constraint that shutdown time T
s

is as close to T
d

as is feasible for the given flow

matrix. This formal ROT policy will have the same shutdown time as the real policy deployed by a

manager, but perform better in terms of goal satisfaction. Therefore, the value of the formal ROT

policy will provide an upper bound on the value of any real policy based on the above guideline.

23

The formal ROT policy can be computed using the existing DP solver by setting overtime and

lost production time costs to extremely high values. The resultant shutdown plan would meet goals

optimally subject to having T
s

as close to T
d

as possible, and its value can be computed by using

the goal values and penalties and the true penalties for shutdown time deviations.

When the formal ROT policy is applied to the sample scenario, we find that the line is shut

down at exactly 3,600 seconds. The number of goals satisfied is 64 (compared to 68 satisfied by

the optimal policy), and the overall value of the policy is 118 (which is roughly 40% lower than the

optimal value of 197.25). Recall that the formal ROT policy is likely to perform much better than

any real policy based on this guideline would, and thus the added value of the optimal strategy is

likely to be even higher compared to the state of practice.

5.2.2 Testing a Variety of Build Schedules

In the previous subsection we demonstrated the benefit of using an optimal policy compared to

an ROT policy on a particular problem instance. However, the structure and performance of any

shutdown policy depend on the build schedule defining the problem instance. To assess whether

the quality of the results we reported in the previous subsection is a↵ected by the build schedule,

we extended the experiments as follows: we took a sample of 100 build schedules, each generated

by sampling jobs at random in accordance with the given percentages of the four job types. For

each build schedule, we found the optimal shutdown policy and the formal ROT policy. In all

instances the shutdown time of ROT policies was exactly equal to the desired stopping time, while

the average of shutdown times dictated by optimal policies exceeded the desired time by 22 seconds.

Over the 100 build schedules, the average value of the optimal policies was 182.88, while the

average value of the formal ROT policies was 123.26. For each build schedule we computed the

percentage of value lost by using the formal ROT policy, as compared to the optimal policy. The

average of these percentages over the 100 build schedules was 32%. Once again, since the formal

ROT policy performs better than a real policy based on the ROT guidelines, the value lost in

practice by not using the optimal policies is likely to be even higher. These results suggest that the

ROT guideline used in practice, in e↵ect, gives too much weight to on-time shutdown compared to

goal satisfaction, which significantly lowers the overall value attained.

24

5.3 Experimental Results: Stochastic Case

In the experiments up to this point we assumed that the line elements were completely reliable, and

thus the flow matrix for a production run could be computed a priori based on the build schedule, the

line configuration and the cycle times of line elements. A real production line, however, experiences

breakdowns of line elements which then need to be repaired in order to resume production. We will

model the number of cycles between breakdowns for each line element as an exponential random

variable; once a breakdown at a line element has occurred, the time until it is repaired is also

modeled as an exponential random variable. These modeling choices, as well as the rates of all the

exponentials involved, were based on the data collected at the plant which served as a basis for the

example discussed in Section 5.1.

The experiment was conducted as follows. A build schedule was generated, and an initial flow

matrix was constructed based on the cycle times of the line elements ignoring the possibility of

breakdowns during production (i.e., exactly as in the previous experiments). An optimal shutdown

policy for this flow matrix was then found by solving the DP (we refer to the resulting policy as

the basic policy). To estimate the expected performance of the basic policy within a stochastic

environment, we generated 100 sampled scenarios of operations by sampling breakdown and repair

times according to the probability distributions derived from the real-world data. A sampled

scenario of operations is essentially a list of time-stamped breakdowns and repair completions (see

Figure 4). This information, together with the original cycle times, allows us to compute the

e↵ective cycle times and subsequently, a new flow matrix corresponding to the sampled scenario.

The performance of the basic policy in a particular sampled scenario can be evaluated using

the corresponding flow matrix. In most cases, the set of satisfied goals will remain the same for

di↵erent flow matrices, while the shutdown time will change. However in some cases line elements

will have to be shut down at T
max

rather than upon releasing the job specified by the policy.

As a point of comparison, we also solved the DP for each of the flow matrices corresponding

to each sampled scenario of operations. Such optimal policy with hindsight (OPH) provides

an upper bound on the value that can be attained by any policy in this stochastic setting, since

it assumes full hindsight, i.e., a priori knowledge of the timing of breakdowns and repair times of

line elements during the production process. For each sampled scenario, a ratio between the values

25

t6 : n2 repaired

t5 : n3 repaired

t4 : n3 breaks down while processing j3

t3 : n1 repaired

t2 : n2 breaks down while processing j2

t1 : n1 breaks down while processing j1

rj1,n1

rj3,n3

rj2,n2

......

Figure 4: An example of a sampled scenario of operations.

of the basic policy and the OPH was computed. The average of these ratios (over 100 sampled

scenarios) characterizes the performance of the basic policy for this build schedule.

The above experiment was repeated for 50 di↵erent build schedules. For the fifty build schedules

examined, the basic policy on average achieved 52.7% to 88.4% (with a mean of 72.3%) of the value

attained by the OPH. The formal ROT policy, if we grant it full hindsight on the same sampled

scenarios, on average achieved 74.4% to 89.0% (with a mean of 83.3%) of the value attained by

the OPH. As predicted, the performance of the basic policy deteriorates due to the fact that it

sometimes generates significant overtimes due to unexpected breakdowns and repairs.

Finally, we executed the event-triggered re-optimization (ER) procedure for each sampled sce-

nario. By simply updating the flow matrix and re-solving the DP when disruptive events occurred,

the performance of the shutdown policy improved significantly: it on average achieved 91.8% to

98.5% (with a mean of 95.6%) of the value attained by the OPH. Moreover, in 47.7% of the cases

(build schedule/sampled scenario combinations), the ER procedure produced a result that matched

the value of the OPH for that case. Performance of the three approaches is summarized in Table 1.

Table 1: Performance of the basic, formal Rule-of-Thumb, and event-triggered
re-optimization policies, (as percentage of value attained by the optimal policy
with hindsight), on 50 build schedules.

Avg. Std. Dev. Min. Max. Matches OPH1

Basic policy 72.3% 7.3% 52.7% 88.4% 1.9%
ROT w/ hindsight 83.3% 3.1% 74.4% 89.0% 3.8%

ER procedure 95.6% 1.7% 91.8% 98.5% 47.7%
1 Percentage of cases in which the policy attains the same value as OPH.

26

5.3.1 Why Does Re-Optimization Work?

The success of the event-triggered re-optimization procedure is due to its ability to dynamically

adjust the shutdown schedule in order to avoid exceedingly late shutdown times due to unexpected

breakdowns and long repairs. To illustrate this, we present a snapshot from a typical sampled

scenario of operations for one of the built schedules (see Table 2). This scenario contains 53

events (namely, 24 breakdowns, and 22 overestimations and 7 underestimations of repair times). In

Table 2, we present performance estimates of various policies calculated at three time points in this

scenario. In row 1 of the table, we report performance estimate of the basic policy as calculated in

the first step of the re-optimization procedure based on default cycle times at time t = 0. In rows

2 and 3 we report performance estimates of the basic policy and the event-based re-optimization

(ER) policy, respectively, as calculated immediately after Event 32. Finally, in rows 4 and 5 we

report the final performance characteristics of these two policies as calculated upon line shutdown.

(Rows 6 and 7 contain values of the two perfect hindsight policies — formal ROT and OPH —

considered in this paper.) Comparing values attained at shutdown to the initial estimate (row

1), we see that the basic policy su↵ered greatly due to unexpected breakdowns (a loss of almost

34%), while the ER procedure resulted in performance loss of only about 4%. Despite the fact

that the ER approach is reactive, in this scenario it performed as well as the optimal policy with

hindsight. By plotting estimates of shutdown time calculated after each event (see Figure 5), we

Table 2: Example: Evolution of performance estimates for a particular scenario of operations.

Value from Shutdown Value from Total
#

Goals Time Time Value
1 Basic policy (at t = 0) 164 3,582 -3 161

2 Basic policy (after Event 32) 164 4,292 -57.7 106.3
3 ER procedure (after Event 32) 156 3,606 -0.5 155.5

4 Basic policy (at shutdown) 164 4,292 -57.7 106.3
5 ER procedure (at shutdown) 156 3,625 -2.1 153.9
6 ROT w/ Hindsight 140 3,600 0 140
7 OPH 156 3,625 -2.1 153.9

can see that estimated performance of the basic policy deteriorated the most between Event 27

and Event 32 (the shutdown time was delayed by 16% in the span of these 6 events). Event 27

was a major breakdown at line element 10, lasting approximately 500 seconds, resulting in three

27

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

Event ID

E
st

.
sh

u
td

o
w

n
 t
im

e
 (

se
co

n
d
s)

BP
ER

Figure 5: Estimates of shutdown times under basic policy (BP) and event-based re-optimization
policy (ER), updated after each event

underestimations and one overestimation of its repair time. Event 32 was another major breakdown

at line element 12, lasting about 225 seconds. Although estimated performance of the ER policy

temporarily deteriorated during the same time period, the re-optimization procedure was able to

make the necessary adjustments to bring the shutdown time back, nearly matching its desired value.

From Figure 6a, we can see that this was achieved by shutting down line elements 1 through 32

earlier by approximately 6 to 12 jobs. Such adjustments resulted in lesser goal values (as shown in

Figure 6b), but avoided late shutdown times for line elements 1 through 32 (see Figure 6c).

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
45

50

55

60

65

70

75

80

85

90

95

Sh
ut

do
w

n
de

ci
si

on

BP
ER−32

(a) Shutdown decisions.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
−15

−10

−5

0

5

10

15

20

25

Va
lu

e
of

 g
oa

ls

BP
ER−32

(b) Value from goals.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
1000

1500

2000

2500

3000

3500

4000

4500

Sh
ut

do
w

n
tim

e
(s

ec
on

ds
)

BP−0
ER−32
BP−32

(c) Shutdown times.

Figure 6: In all three charts, line element IDs are plotted on the horizontal axis. BP and ER refer
to the “basic policy” and “event-triggered re-optimization policy,” respectively. BP-32 and ER-32
refer to performance estimates of these policies calculated immediately after Event 32.

28

6 Conclusions

We have shown that a dynamic programming model can be used in making complex decisions

involved in shutting down elements of a production line, considering end-state goal fulfillment and

costs of overtime and lost production time. Although this model is deterministic in nature, it can

be used within an even-triggered re-optimization procedure, producing superior numerical results

even in situations where line elements are subject to stochastic breakdowns and repairs. A software

implementation based in part on the work described in this paper was developed and is in the

process of being deployed as part of a pilot installation at an assembly plant belonging to a major

automotive manufacturer.

This work lays the foundation for additional future research. One of the most important areas of

future exploration is the consideration of non-serial production lines. A model that considers non-

serial production will be able to account for line configurations such as merging of sub-assemblies

into a main line and parallel production, and is the subject of our current research.

Yet another opportunity exists in a joint optimization of the shutdown policy and the build

schedule. Section 5 demonstrated that the build schedule can have an appreciable e↵ect on the

value of a shutdown policy. This result suggests that we may be able to modify the ordering of jobs

in concert with the development of the shutdown policy to improve the objective function value.

7 Acknowledgments

This work was supported in part by the National Science Foundation under Grants DMI-0422752

and DMI-0114368, and also by the General Motors Collaborative Research Laboratory in Advanced

Vehicle Manufacturing at the University of Michigan. The authors would like to thank Michael

Wellman for his detailed comments and suggestions.

References

Cheung, K.-Y. , Hui, C.-W. , Sakamoto, H. , Hirata, K. , and O’Young, L. (2004) Short-term

site-wide maintenance scheduling. Computers and Chemical Engineering 28, 91–102.

29

Cho, D. I. and Parlar, M. (1991) A survey of maintenance models for multi-unit systems. European

Journal of Operational Research 51, 1–23.

Davies, S. (2006) Listening to the factory. Computing and Control Engineering 17(6), 38–43.

Denardo, E. V. (1982) Dynamic Programming. Prentice-Hall.

Du↵uaa, S. O. , Raouf, A. , and Campbell, J. D. (1998) Planning and Control of Maintenance

Systems: Modeling and Analysis. John Wiley & Sons, Inc.

McCall, J. J. (1965) Maintenance policies for stochastically failing equipment: A survey. Manage-

ment Science 11(5), 493–524.

Nelson, N. C. (2007) Downtime procedures for a clinical information system: A critical issue.

Journal of Critical Care 22(1), 45–50.

Pierskalla, W. P. and Voelker, J. A. (1976) A survey of maintenance models: The control and

surveillance of deteriorating systems. Naval Research Logistics Quarterly 23, 353–388.

Samaranayake, P. , Lewis, G. , Woxvold, E. , and Toncich, D. (2002) Development of engineering

structures for scheduling and control of aircraft maintenance. International Journal of Operations

& Production Management 22(8), 843–867.

Sherif, Y. S. and Smith, M. L. (1981) Optimal maintenance models for systems subject to failure:

A review. Naval Research Logistics Quarterly 28, 47–74.

Valdez-Flores, C. and Feldman, R. M. (1989) A survey of preventive maintenance models for

stochastically deteriorating single-unit systems. Naval Research Logistics 36(4), 419–446.

30

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2013

	A Dynamic Programming Approach to Achieving an Optimal End State along a Serial Production Line
	Shih-Fen CHENG
	Blake E. Nicholson
	Marina A. Epelman
	Daniel J. Reaume
	Robert L. Smith
	Citation

	tmp.1360722009.pdf.0CGwi

