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Abstract—The myth that financial trading is an art has been
mostly destroyed in the recent decade due to the proliferation of
algorithmic trading. In equity markets, algorithmic trading has
already bypass human traders in terms of traded volume. This
trend seems to be irreversible, and other asset classes are also
quickly becoming dominated by the machine traders. However,
for asset that requires deeper understanding of physicality, like
the trading of commodities, human traders still have significant
edge over machines. The primary advantage of human traders
in such market is the qualitative expert knowledge that requires
traders to consider not just the financial information, but also a
wide variety of physical constraints and information. However,
due to rapid technology changes and the “invasion” of cash-
rich hedge funds, even this traditionally human-centric asset
class is crying for help in handling increasingly complicated
and volatile environment. In this paper, we propose an adaptive
trading support framework that allows us to quantify expert’s
knowledge to help human traders. Our method is based
on a two-state switching Kalman filter, which updates its
state estimation continuously with real-time information. We
demonstrate the effectiveness of our approach in palm oil
trading, which is becoming more and more complicated in
recent years due to its new usage in producing biofuel. We show
that the two-state switching Kalman filter tuned with expert
domain knowledge can effectively reduce prediction errors
when compared against traditional single-state econometric
models. With a simple back test, we also demonstrate that
even a slight decrease in the prediction errors can lead to
significant improvement in the trading performance of a naive
trading algorithm.

Keywords-autonomous trading, commodity trading, switch-
ing Kalman filter

I. INTRODUCTION

The technology advancements in finance over the past
decade have fueled significant growth in algorithmic trading
(AT) across all asset classes and markets. According to the
recent report from the Aite Group, AT has already accounted
for more than 60% of all trading activities in equity, and
for futures and options, the fraction of AT activities are set
to climb over 50% in coming years. The US market is a
clear leader in the adoption of AT technology, however, other
major markets in the Europe and Asia are quickly catching
up as well.

The AT technology can be applied in many different
aspects of the financial trading, for example, it’s already

used widely in market-making, trade execution, arbitrage,
and speculation. In all these applications, the AT imple-
mentations are made possible by increasingly accessible
high-quality sources of real-time information. Initially only
streams of price quotes on the traded entity were made
available, now AT technology developers are able to utilize
significant depth of the orderbook, price streams from other
markets, other asset classes, and even automatically mining
streamed news events.

The primary strength of the AT technologies is certainly
the speed, both in terms of data processing and execution,
however, this does not necessarily mean that human traders
will be pushed to extinction anytime soon. Human traders,
even without lightening-fast speed advantage, still have an
edge over AT bots in areas where qualitative reasoning plays
more important role. A good example is in the trading
of commodities, where the understanding of physical real-
world considerations is critical.

The trading of commodities is special since most com-
modities have real-world uses (except a few exceptions such
as precious metals) and thus the price levels are heavily
affected by both the supplies and demands. Because of such
physical connections, the prices of important commodities
are usually quite stable in the long run when compared
to other financial instruments (but can be quite volatile
in the short run due to unexpected disruptions in either
supplies or demands). Such physical connections use to be
the primary reason why it takes years to train a competent
trader who specializes in just one commodity (unlike equity
or foreign exchange traders who can easily switch between
targeted markets, it’s rare for commodity traders to switch
to a new commodity). Unfortunately, two recent trends have
made even experienced commodity traders confused and
seeking help at times. First, commodities are increasingly
being considered as a promising asset case, and the share
of pure speculators has grown significantly, thus making
the once-stable commodity prices becoming more volatile.
Second, technology advances have created new bondings
between commodities or other asset classes that do not
exist previously. For example, the use of crops in producing
bio-fuel has created strong linkage between crude oil and
agriculture commodities (e.g., sugar, corn, soybeans, palm



oil). The fact that such relationship might depend on arbi-
trary numbers of external factors (e.g., the price levels of
involved commodities or even weather) further complicates
the analysis. It is our intention to propose and implement
methodologies that would help human commodity traders
making right decisions in face of complicated and constantly
changing environment.

In this paper, we present what we believe is the first
attempt in building a platform for supporting commodity
trading operations that is capable of capturing expert knowl-
edge on context switch. To concretely present our idea, we
will investigate the substitution effects between crude oil and
palm oil (one important agriculture commodity that can be
used for producing bio-diesel) [1]. Such substitution effects
could occur when the cost of using the primary commodity
(crude oil) rises significantly higher then its comparable al-
ternative, the secondary commodity (the bio-diesel produced
from palm oil). Such a disparity could cause the secondary
commodity price to have a provisional dependency with
the primary commodity. As markets become increasingly
connected and interdependent, the spilling effect of a sin-
gle commodity price surge on its comparable substitute is
increasingly more pronounced and frequent. In most cases,
such effects are usually transient as the alternatives may not
have the required volume to sustain the required demand.
In our implementation, we identify and define two major
market states (high and low) based on whether the crude oil
price is high enough to trigger the substitution effects. For
each of the two scenarios, a price prediction model is built,
and we use the switching Kalman filter to detect the context
and return a proper price prediction that takes into account
how confident we are in being in one of the contexts. We
demonstrate the effectiveness of our approach by using a
simple back-testing trading system.

II. BACKGROUND AND MODEL SKETCHES

The price correlations between crude oil and major agri-
culture commodities used to be marginal, with crude oil
prices contributing only to factors such as transportation or
production. However, in the recent decade, crude oil prices
are becoming more and more correlated to a number of
agriculture commodities; in particular, the consistent spike in
prices for both crude oil and agriculture commodities from
2007 to 2008 has lead experts and academics to rethink
the probable impact of biofuel on such previously unseen
correlations (for example, see Figure 1 for the palm oil
and crude oil correlations in two different decades). After
many debates and studies, it’s becoming a consensus that
the biofuel subsidies introduced at the beginning of 2000 in
both the US and the EU (two most important oil consuming
regions) to encourage the use of biofuel indeed contributed
significantly to such new phenomenon (interested readers
can refer to one of the earliest reports that spark the
debate [2]).
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(a) Monthly prices from 1990 to 2000.
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(b) Monthly prices from 2001 to 2010.

Figure 1. The correlation of palm oil and crude oil prices in two different
periods with distinctive patterns of correlations.

As discussed in the previous section, the reason why such
new correlation emerges is the use of agriculture crops in
producing biofuel. A number of crops have been used for
producing biofuel around the world, and we choose palm
oil in our research for the following reasons: 1) oil palm
is perennial, thus making the supply of palm oil much
more stable when compared to other annual plants (e.g.,
production of a particular crop can change significantly if
farmers choose to plant other type of crop); 2) the global
oil palm plantation is concentrated in only two countries,
Malaysia and Indonesia, making it much easier for us to
estimate global supply level.

The correlation between the crude oil price and the palm
oil price is due to what commodity researchers called the
substitution effect. The substitution effect occurs when a
secondary commodity can be used in replacing primary
commodity (in our case, the crude oil is the primary, while
the palm oil is the secondary). The substitution is not always
feasible, and its feasibility is determined by the utility ratio,
Up/Us, in which Up and Us refer to the utilities of using
the primary and the secondary commodities at their current
price levels respectively. If the ratio is greater (less) than the
equilibrium, users have little incentive to use the secondary
(primary) commodity, thus the prices of the primary and
the secondary commodities should be decoupled. However,



when the ratio is sufficiently close to the equilibrium, the
prices of both the primary and the secondary commodities
will be closely correlated due to the substitution effect.

The consequence of having substitution effect is that there
will be at least two different market structures, one for the
close-to-equilibrium utility ratio, and the other one for the
out-of-equilibrium utility ratio. What’s complicated here is
that the so-called equilibrium state is usually not defined on
a single price point, but over a price range, and the changes
of the market structure will not be discrete, but continuous
and gradual over time instead.

Defined formally, the research question we would like to
address can be answered in three phases. The first phase
is to identify market states and derive models that can be
used for decision support in that market state. The second
phase is to infer the current market state by continuously
receiving updates from external information sources (these
information sources may include different price streams or
even news events). The third phase is to generate predictions
based on our beliefs on the market states.

For the first phase, we propose two market states: 1)
close to equilibrium, and 2) out of equilibrium. The training
dataset is preprocessed and divided into two chunks, fitting
the description of these two market states. Respective econo-
metric models are then created based on the training dataset.
For the second phase, we construct a switching Kalman filter
with two market states, and use it to infer the likelihood that
we will be in any of the market state. Finally, by combining
the beliefs and the prediction outputs from the two models,
the final prediction will be delivered.

In the next section, we introduce related literature on palm
oil pricing and switching Kalman filter.

III. RELATED LITERATURE

A. Palm Oil Pricing Models

Commodity pricing model are largely based on economet-
ric methods [3]. Recent works by [4] and [5], uses structural
econometrics models and VAR models to analyze the struc-
tural relationship between palm oil and crude oil prices.
Their focus were on the evaluation of possible reasons
behind the increase in palm oil prices and the identification
of palm oil demand drivers. The models developed were
largely meant for short to long term trend predictions and
the analysis of structural relationships among the identified
price drivers.

In [5], the main objective of the study was to analyze the
important factors contributing to the growth of Malaysian
palm oil industry in particularly, biodiesel demand. Using
a market model with annual data from 1976 to 2008, a
system of eight structural equations considering, palm oil
production, import/export, domestic demand, world supply
were formulated for the analysis. Results from that study
suggest that biodiesel demand does have a positive impact

on the Malaysian palm oil domestic price. Thus, significant
growth in biodiesel demand will affect palm oil price.

In [4], monthly price data of crude oil, palm oil, and
soybean oil from January 1982 through February 2011 were
used in their analysis. Results from this study indicates that
crude oil prices are negatively correlated with palm oil prices
in the long run and palm oil prices do not appear to respond
to short-run fluctuation in crude oil prices. These results is
reflective of a structural model using pricing dynamics dated
from January 1982.

However, if we compare the monthly palm oil and crude
oil prices in the periods from 1990 to 2000 (Figure 1(a)) and
2001 to 2010 (Figure 1(b)) respectively, we can observed a
marked difference in the correlation between prices in the
2 periods. For the period prior to the year 2000, palm oil
is weakly negatively correlated with crude oil but for the
period after the year 2000, the prices of both commodity
exhibited strong correlation. Such observations, could sug-
gest that palm oil price and crude oil price dependency may
be transient and triggered only when certain equilibrium
conditions were disrupted.

In our study, we assume that such commodity substitution
relations could induce transient effects in the pricing of the
affected commodities. Hence, our goal in this paper is not to
provide statistical evidence of structural relationship between
crude and palm oil prices but to explore the feasibility
of utilizing such substitution relations among commodity
to develop a more robust pricing model for daily price
forecasting.

B. Kalman Filter

The Kalman filter [6], [7] provides an efficient means to
recursively estimate the state of a process by minimizing the
mean of square error. The process is represented as a state-
space model. The true value of the variable xt is hidden
and modeled as a Gaussian random variable. The random
variable yt is the noisy observation of xt. Transition from
one state in time t to the next time step t + 1 is modeled
as follows, where w ∈ N [0, Q] and v ∈ N [0, R] are the
Gaussian noise in the xt and yt respectively.

xt = A xt−1 + wt, (1)
yt = H xt + vt. (2)

With the observed values of yt, the Kalman filter can
compute the value of xt, given the observation till time t.
This is known as filtering. The true state of xt is filtered
using observations of y1 till yt. The Kalman filter can also
perform prediction by computing the probability of xt+k

given observations up till yt.

C. Switching Kalman Filters

Switching Kalman filter (SKF) [8], also known as
Markov-switching model [9], has wide applications in many



fields such as motion tracking [10], [11], voice recogni-
tion [12] and econometric time series analysis [9]. It allows
the use of a weighted combination of more than one linear
models or switching between the models across time. Hence,
it is often applied in problems where the dynamics of the
variable changes and cannot be represented by a single linear
model. Through SKF, inference of the state of the variable
at each point in time can be made and thus provides a piece-
wise linear prediction of the variable.

St St+1

Xt Xt+1

Yt Yt+1

...

...

...

...

Figure 2. DBN representation of a switching Kalman filter [8].

A dynamic Bayesian network (DBN) representation of a
SKF is shown in Figure 2. The values of the variable X and
the values of the switch variable S are hidden or unknown.

A common technique used in estimating the switch vari-
able S in each time step is the generalized pseudo Bayesian
algorithm (GPB) [9]. It computes the hidden state value of
in each state that are in t − k timesteps. For each state,
the probability that the t − k values were generated by the
respective state is also computed and is referred to as the
weight.

The value of k determines the order of the GPB algorithm.
For example, if k = 2, xij is the expected value of x if the
state at time t − 1 is i and the state at t is j. Let V ij be
the covariance and W ij be the probability that yt−1 was
generated by state i and yt was generated by state j.

The means and covariances are then “collapsed” two time
steps ago as follows [8], [11]:

(xi, V j) = Collapse(xij , V ij ,W ij),

xj =
∑
i

W ijxij ,

V j =
∑
i

W ij
(
V ij + (xij − xj)(xij − xj)′

)
.

IV. ADAPTIVE COMMODITY PRICING

A. Equilibrium Utility Ratio

We first derive the equilibrium utility ratio of the com-
modities based on their substitution relationship. In this
study, the utility is defined as the energy gained per gallon
of fuel, in this case biodiesel versus gasoline. Let Pt and
Ct be the per metric ton of palm oil and crude oil prices

at time t respectively. The cost function of converting palm
oil to biodiesel is estimated as Equation (3). Due to a lack
of historical biodiesel price data, the equation is based on
the production cost assessments in [13]. In this estimate, we
assume that the feedstock, i.e. palm oil, is the only variable
cost and all other cost are fix.

The cost function of converting crude oil to gasoline are
estimated as Equation (4). This is estimated by regressing
historical prices of gasoline and crude oil.

PBiodiesel(t) = Pt + 261.65, (3)
PGasoline(t) = 1.27Ct + 22.58. (4)

Given that 0.9 gallon of biodiesel has the energy equivalence
of 1 gallon of gasoline [14] and producers receive a tax credit
of $1.00 per gallon of biodiesel [15], i.e., $358.29 per metric
ton; the utility function for palm oil, UP is defined as :

UP =
1

0.9(PBiodiesel − 358.29)
. (5)

As there is no subsidy for gasoline, the utility function for
crude oil, UC is defined:

UC =
1

PGasoline
. (6)

When Up = Uc, the following utility equilibrium should
exist.

UC

UP
= 1. (7)

Using Equations (3), (4), and (7), the equilibrium utility
ratio can be derived as follows:

E = 0.9

(
Pt + 261.65− 358.29

1.27Ct + 22.58

)
= 1. (8)

When E < 1, biodiesel would be a more cost effective
alternative compared to gasoline and hence trigger the sub-
stitution effect. Conversely, when E > 1, the substitution
effect will be diminished and decouples the price depen-
dency between the primary commodities crude oil and palm
oil.

B. Estimate State Processes

Using historical daily price data of palm oil and crude
oil from January 2006 till December 2007, we derive the
log return, i.e, rt = ln(St/St−1) for each price series. This
is to transform the price series to a weakly stationary time
series. Let rp and rc be the daily log returns of palm oil
and crude oil respectively.

State 1: ARMA(2,2) model where returns are dependent
only on the individual commodity.

rp(t) =α1rp(t− 1) + α2rp(t− 2) + α3εt−1 + α4εt−2 + εt

rc(t) =β1rc(t− 1) + β2rc(t− 2) + β3εt−1 + β4εt−2 + εt



State 2: VAR(2) model where returns are dependent on both
palm oil and crude oil prices.

rp(t) =γ1rp(t− 1) + γ2rp(t− 2) + γ3rc(t− 1) +

γ4rc(t− 2) + εt

rc(t) =θ1rp(t− 1) + θ2rp(t− 2) + θ3rc(t− 1) +

θ4rc(t− 2) + εt

C. Prediction

With the estimated models for each state, the time series
models are first mapped to the following state-space models
in Equations (1) and (2) using the Hamilton form [16]. r̂p(t)
and r̂c(t) refers to the estimated values, while rp(t) and rc(t)
are the observed values.

xt =


r̂p(t)
r̂c(t)

r̂p(t− 1)
r̂c(t− 1)
r̂p(t− 2)
r̂c(t− 2)

 yt =


rp(t)
rc(t)

rp(t− 1)
rc(t− 1)
rp(t− 2)
rc(t− 2)


State 1: ARMA (2,2) model:

A1 =


α1 0 α2 0 0 0
0 β1 1 0 β2 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


H1 =

[
1 0 α3 0 α4 0
0 1 0 β3 0 β4

]

State 2: VAR(2) model:

A2 =


γ1 γ3 γ2 γ4 0 0
θ1 θ3 θ2 θ4 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


H2 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
With the estimated state models, the covariance matrix,

Q for each state is derived using past data and it takes the
following form, where var(Pi), var(Ci) are the variance
measured using model i of palm oil and crude oil prices
respectively. The R matrix in both states are null matrices
since the observations in this case are the actual price values
that we need to predict. Thus, there are no observation noise
introduced in the models.

Qi =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




var(Pi)
var(Ci)
var(Pi)
var(Ci)
var(Pi)
var(Ci)


As the states are hidden, the prior π and transitions matrix
Z are assumed to be uniform and initialized as:

π =
[
0.5 0.5

]
Z =

[
0.5 0.5
0.5 0.5

]
The probabilities of each state at time t are computed

using the SKF. The prediction for rp(t + 1) and rc(t + 1)
are then made with using the state model with the highest
probability.

D. Adaptive Transition Matrix
In this implementation, we attempt to infuse knowledge

of the substitution relationship into the SKF through the
use of an adaptive transition matrix. We assume that the
consumption agents have a natural preference for states that
maximize their utility.

Hence, when the equilibrium ratio, E < 1, the agents
have an increased propensity to switch from the primary
commodity to the secondary commodity. In this case, the
probability of switching to state 2 would increase. Using the
logistic function, we model this propensity, ρ as follows:

ρ = 1/(1 + eln(E))

With the defined propensity measure, we derive the follow-
ing adaptive transition matrix that is used when E < 1.

Z =

[
1− ρ ρ
1− ρ ρ

]
When E >= 1, the transition matrix remains as a uniform
matrix.

V. RESULTS AND DISCUSSION

A. State Parameters
Using historical daily prices from January, 2006 till

December, 2007, the following parameters were estimated
using ordinary least square regression. We specifically use
data from 2006 to estimate the VAR(2) model and data
from 2007 to estimate the ARMA(2,2) models. This is
because, as shown in Figure 1(b), the crude oil and palm
oil prices were converging in 2006 and diverging in 2007.
By using the respective periods, we can capture a better
estimation of the models.

State 1 parameters:

α1 = −0.349194
α2 = 0.531266
α3 = 0.590707
α4 = −0.307434

β1 = 1.157400
β2 = −0.925547
β3 = −1.159660
β4 = 0.991747



var(P1) = 0.000182601 var(C1) = 0.00028459

State 2 parameters:

γ1 = 0.253540
γ2 = 0.035551
γ3 = 0.079044
γ4 = −0.041150

θ1 = −0.208392
θ2 = 0.028889
θ3 = 0.300596
θ4 = −0.057395

var(P2) = 0.000104 var(C2) = 0.000293

B. Experimental Results

Using the state models derived in the previous sections,
we ran an 1-step forecast for palm oil daily prices from
January 1, 2008 till December 31, 2011 with the following
models:

• ARMA(2,2): Autoregressive moving average model
(for State 1).

• VAR(2): Multi-variate autoregressive model (for State
2).

• Uniform SKF: SKF with uniform transition matrix
• Adaptive SKF: SKF with adaptive transition matrix

For each of the models we compute the sum of squared
error at each time step t till the end of the forecast period
(December 31, 2011). As shown in Figure 3, the SKF models
predominately yield the lowest sum of squared errors when
compared with the single state autoregressive models (i.e.,
ARMA(2,2) and VAR(2)). This shows that the SKF based
models are more robust then the single state models. Table I
compares the results from the uniform and adaptive SKF
models. It can be seen that the adaptive SKF provides a
slightly better forecast then the uniform SKF.

Figure 3. Top chart: Daily spot price of palm oil and crude oil from
January 1, 2008 to December 31, 2011. Bottom two charts: Indicate which
model has the least MSE in each time period (the SKF in middle and
bottom charts refer to uniform and adaptive SKF respectively).

Table I
UNIFORM SKF VS ADAPTIVE SKF

SKF Type Root MSE Winning Percentage1

Uniform 3.7258 · 10−4 50.2
Adaptive 3.7184 · 10−4 52.4
1 Fraction of cases with lowest MSE.

C. Simple Back-Testing Results

In previous analysis, we already see that our proposed
SKF models indeed deliver better prediction performance in
terms of MSE. However, it’s not clear how much real-world
impact such difference would generate if the proposed model
is indeed implemented in a trading system. To quantify the
potential impact of a slightly better MSE, we setup a back-
testing environment to observe the actual profits and losses
for competing methods using historical palm oil and crude
price sequences from January 1, 2008 to Feburary 27, 2012.
The back-testing procedure is a commonly used method
in validating a proposed trading model by exposing it to
historical price streams, assuming that suggested trades from
the tested model do not affect the historical price streams.

Since our interest is in comparing different models for
commodity traders, we need to define a common trader
module that utilizes outputs from different models. For
simplicity, we define a rather simple trading algorithm as
follows:

1) Suppose we are currently in time t, use the specific
prediction model to generate a prediction for time t+1.

2) If forecasted return is positive (using price in time t
as basis), go long; otherwise, go short.

The profits and losses (PnL) of the same trading algorithm
equipped with different prediction model are quantified in
Table II. The advantage of both SKF models over single-
mode models is significant; the adaptive SKF does have
slight advantage over the uniform SKF, however, the dif-
ference is not significant (the difference is only %0.5). Do
note that the result reported in Table II is the snapshot at
the end of the back test. To understand how the PnL evolve
over the whole horizon, we can plot the PnL results over
all time periods. Since the adaptive SKF works best when
there are frequent changes in modes, we should observe the
most difference in performance when the market is highly
volatile. For both crude oil and palm oil, the markets are
the most volatile in the second half of 2008, at the height
of the recent financial crisis. To illustrate how adaptive SKF
model can cope with such highly volatile market condition,
we plot all four PnL curves on the same group from August
to December, 2008 in Figure 4.

Table II
PROFITS AND LOSSES FOR DIFFERENT MODELS.

ARMA VAR Uniform SKF Adaptive SKF
3225.76 8675.54 11880.28 12312.94
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VI. CONCLUSIONS AND FUTURE WORK

In this paper we have illustrated how an expert’s qualita-
tive insights can be incorporated quantitatively. In particular,
we show that an effective decision support system can be
built for palm oil traders. The built system is special in that it
incorporates exact information that an expert would monitor,
and the prediction module automatically updates itself to
provide a hybrid prediction based on the beliefs on which
state the world is in (for palm oil trading, there are two
states, indicating whether bio-fuel is economically viable).

Due to the nature of the commodity and the limitation
in available information, our state space is made to be very
simple (containing only two states). If we have necessary
information to expand the state space, the edge of our
approach might be even greater. However, we might quickly
run into the problem of exploding state space and we might
also face the problem of not having enough data to train all
derived models, whose number would grow combinatorially
in number of state variables. Such practical considerations
are not currently considered, and we look to develop our
methodology in this direction.
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