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Abstract—Unprecedented pace of urbanization and rising
income levels have fueled the growth of car ownership in
almost all newly formed megacities. Such growth has congested
the limited road space and significantly affected the quality
of life in these megacities. Convincing residents to give up
their cars and use public transport is the most effective way
in reducing congestion; however, even with sufficient public
transport capacity, the lack of last-mile (from the transport
hub to the destination) travel services is the major deterrent for
the adoption of public transport. Due to the dynamic nature of
such travel demands, fixed-size fleets will not be a cost-effective
approach in addressing last-mile demands. Instead, we propose
a dynamic, incentive-based mechanism that enables taxi ride-
sharing for satisfying last-mile travel demands. On the demand
side, travelers would register their last-mile travel demands in
real-time, and they are expected to receive ride arrangements
before they reach the hub; on the supply side, depending on
the real-time demands, proper incentives will be computed
and provided to taxi drivers willing to commit to the last-
mile service. Multiple travelers will be clustered into groups
according to their destinations, and travelers belonging to the
same group will be assigned to a taxi, while each of them paying
fares considering their destinations and also their orders in
reaching destinations. In this paper, we provide mathematical
formulations for demand clustering and fare distribution. If the
model returns a solution, it is guaranteed to be implementable.
For cases where it is not possible to satisfy all demands despite
having enough capacity, we propose a two-phase approach that
identifies the maximal subset of riders that can be feasibly
served. Finally, we use a series of numerical examples to
demonstrate the effectiveness of our approach.

Keywords-urban transportation, ride sharing mechanism

I. INTRODUCTION

In the past few decades we have witnessed unprecedented

pace of urbanization across the globe. The massive scale

of urbanization, rises of income levels, and increasingly

affordable cars, have jointly contributed to growing trends

of household automobile ownership. And in many newly

formed mega-cities, this has created unbearable congestions.

To fight these increasingly unmanageable urban congestions,

urban planners are quickly expanding public transport net-

work, and are looking for ways to convince people to give up

their cars and use public transport instead. For many urban

dwellers, one major deterrence in utilizing public transport

for their daily commutes is the need for the last-mile (LM)

transport, which refers to the travel from the station to the

final destination.

A straightforward idea to satisfy the LM demands is

to establish a service fleet for each major transport hub.

However, due to the fact that the demands for the LM trans-

portation are irregular and distributed (both spatially and

temporally), having a fixed-size service fleet is infeasible,

for the following intuitive reasons:

1) Demands are highly irregular and uncertain. There-

fore, to ensure that the fleet can cope with peaks in

demands, the fleet has to run with spare capacity that

would be underutilized most of times.

2) To ensure reasonable quality of service, the routes of

the fleet have to sufficiently cover most of the service

area (the travel time from any point in the area to the

closest stop should be within certain minutes) with

reasonable service intervals (this constrains longest

waiting time). The fleet can operate statically with

fixed routes, or it can operate dynamically with routes

depending on customers on board; however, in either

case, significant slacks have to be introduced in the

fleet so as to handle the spatial and temporal demand

uncertainties.

Because of the above two issues, operating fixed-size fleets

is cost-ineffective for most occasions except for the very

limited cases where demands are are consistently high.

A powerful idea in addressing unpredictable travel de-

mands is sharing, or resource pooling. For example, in

many European countries, the bike sharing and car sharing

schemes have been suggested as a way to bridge the gaps

of public transport. In these instances, resources (bikes and

cars) are pooled at fixed locations, and travelers will grab

resources when necessary to complete their travels. In this

case, resources are pooled and resource utilizations are

independent. On the contrary, resources may be independent

while the utilizations are pooled. Ride sharing (car-pooling

or taxi-pooling) is a typical such case.

In this paper, we propose a formal framework for orga-

nizing the last-mile service that is based on non-dedicated

fleets (e.g., taxis). In particular, for a single-hub, single-batch

scenario with known demands, we specify the conditions
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under which all riders and drivers would voluntarily stay

with the service.

II. RELATED WORKS

The problem of organizing last-mile service has been

studied in the literature under various names. The most well-

known one is what researchers called the dial-a-ride problem

(DARP). DARP is a well-studied hard optimization problem

with many variants, and many solution approaches have been

proposed in the past (see [1] for a typical exact solution

approach for solving DARP; for comprehensive survey, see

[2]). Another similar problem is studied in the context of

ride sharing, in which passengers and drivers are matched

in real time. A simulation study in the city of Atlanta has

been recently reported to have good results [3]. The problem

of dynamic pickup and delivery is also closely related to our

model [4].

Although part of our problem is similar to the DARP and

the ride-sharing problem, there are a number of fundamental

differences between our model and the models proposed in

the literature. First, the last-mile services are mostly orga-

nized at transport hubs, with demands coming in batches.

By exploiting this features, we can significantly improve the

efficiency of the resulting optimization model. Second, we

have put major emphases on designing proper incentives for

both drivers and riders. As the last-mile service has to be

constructed and used voluntarily on both supply and demand

sides, the incentive design is thus extremely important to

make service sustainable.

III. ORGANIZING THE LAST-MILE SERVICE

The last-mile (LM) service can be organized under a wide

variety of circumstances. In this paper, we assume that there

is a single hub, and all demands are with identical departure

time from the hub. The destinations of all demands are also

assumed to be known and within certain radius from the

hub.

Hub

S1: Submit demands

S2: Demand clustering

S3: Determine service order and 
individual payments.

p1
p2

p3
p4

p7 p6p8
p5

Figure 1. Organizing the last-mile service.

A typical cycle of the LM service can be seen in Figure 1.

There are three important steps in organizing the LM service:

1) LM service is organized at a particular major hub

where regular train or metro services will be bringing

in potential riders at short intervals. For riders who

plan to arrive at the hub and utilize the LM service,

they have to submit their intents some minutes before

their arrivals. It’s assumed that all riders will depart

immediately for the LM service when they reach the

hub, and they will provide the exact coordinates of

their destinations.

2) After receiving all destinations at the cut-off time, the

central controller should optimally assign all riders to

appropriate clusters, where each cluster is to be served

by a participating driver.

3) The order of service and the payment to be made by

each rider will be decided as we finalize the cluster

assignment.

Based on above descriptions, there are two critical problems

that need to be repeatedly solved:

1) Demand clustering: In which demands are clustered

into groups to be served by different vehicles.

2) Service sequencing and pricing: In which the service

order and the associated price for riders in every

cluster is determined.

These two problems are closely connected since the planned

route and the prices associated with a cluster are highly

dependent on the assigned riders. In the following section,

we will formally define the clustering model and the service

sequencing and pricing model, highlighting how we can

explicitly connect these two models.

IV. THE MODEL

The classical DARP is formulated as a mixed integer pro-

gram (MIP) [1]. Our model is based on the MIP formulation

of the classical DARP, but with significant modifications.

Our changes are made in order to address the two major

differences between the DARP and the LMP: 1) because

all riders depart from the same hub all at the same time,

we manage to drop the cluster index from all decision

variables, and 2) the LM service is based on voluntary

participation from both drivers and riders, we thus have to

include additional constraints to ensure that the assignment

we suggest is dominant choice for all participants. The first

change allows us to shrink the solution space roughly by a

factor of K (the size of the service fleet), and the second

change makes the solution space more constraints, thus our

LMP formulation ends up much more compact.

A. Notations and Decision Variables

Let n denotes the number of destinations. Let G = (N,A)
be the complete directed graph storing distances between

all pairs of destinations (including the hub), where N =
{0, 1, . . . , n} represents all drop-off points, and 0 represents

the hub node. Let K denote the set of all vehicles. Let Q
be the capacity of all vehicles. For arc (i, j) ∈ A, let dij be

the distance required to traverse it.

Define binary variable xij to be 1 if any vehicle travels on

arc (i, j), and 0 otherwise (this is where the cluster index
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is dropped, as a result, the number of binary variables is

dropped to n2 from Kn2). Bi is the travel distance for rider

i to reach destination. ai is the the order of service for rider

i in the cluster she is assigned to. pi is defined to be the

price paid by rider i. Finally, let α be the worst-case ratio

between real travel distance and direct travel distance; by

definition, we can view α as the proxy for the worst-case

quality of service (QoS).

B. The Clustering Constraints

The constraints in our LMP can be classified into two

major groups. The first group is related to the proper forming

of a cluster. The second group is related to the assurance that

the obtained assignment will be the dominant choice for all

participants.

For a cluster assignment to be valid, the following con-

straints have to be satisfied:

∑

i∈N

∑

j∈N

xij = min{|N |, |K| ·Q}, (1)

∑

i∈N

xij ≤ 1, ∀j ∈ N, (2)

∑

j∈N

xij ≤ 1, ∀i ∈ N, (3)

∑

j∈N

xij ≤
∑

h∈N

xhi, ∀i ∈ N, (4)

∑

j∈N

x0j = |K|, (5)

a0 = 0, (6)

aj ≥ ai + 1−M(1− xij), ∀i, j ∈ N, (7)

aj ≤ ai + 1 +M(1− xij), ∀i, j ∈ N, (8)

ai ≤ Q, ∀i ∈ N, (9)

Bj ≥ Bi + dij −M (1− xij) , ∀i, j ∈ N, (10)

Bj ≤ Bi + dij +M (1− xij) , ∀i, j ∈ N, (11)

Bi ≤ α · d0i, ∀i, j ∈ N, (12)

Bi ≥ 0, ∀j ∈ N, (13)

xij ∈ {0, 1}, ∀i, j ∈ N, (14)

α ≥ 1. (15)

We use (1) to ensure that we always serve as many riders

as possible. (2) and (3) ensure that there will be at most

one vehicle going in to and out of a node (in other words, a

rider can only be assigned to one cluster). (4) is for flow

conservation: the outgoing flow cannot exceed incoming

flow. (5) ensures that there can be exactly |K| departures

from the hub (we assume that the fleet size is never larger

than the number of requests). The value of ai (service order

for rider i) is characterized by constraints (6) – (9). (6) sets

the order of the hub to 0. For (7) and (8), they are equivalent

to the non-linear constraint (M is a large constant):

aj = xij(ai + 1),

which ensures that the service order of j should be one

greater than i only if a travel is made from i to j (i.e., xij =
1); the constraints are non-binding if xij = 0. (9) enforces

capacity limit on all vehicles. The value of Bi (the real

distance traveled by rider i) is characterized by constraints

(10) and (11), which are again equivalent to the following

non-linear constraint (M is a large constant):

Bj = xij(Bi + dij),

which ensures that j’s traveled distance is exactly dij farther

if the vehicle serves i before serving j (xij = 1); the

constraints are non-binding if xij = 0. The worst-case QoS,

α, is determined by (12). The domains of all related decision

variables are specified by (13) – (15).

C. The Rationality Constraint and the Objective Function

As argued earlier, an important property of the LM service

is that we need voluntary participations from both the drivers

and the riders. It is thus very important to ensure that the

suggested assignment and service orders are aligned with all

participants’ utility functions.

∑

i∈N

pi = δ
∑

i∈N

∑

j∈N

xijdij , (16)

δ d0i ≥ pi +Δi(ti − si), ∀i ∈ N. (17)

The first constraint, (16), ensures that the total price paid by

all riders (left-hand side) will be enough to pay all drivers

(right-hand side). The δ in the RHS is the paid rate per

unit of distance traveled. In our formulation, we assume a

simple linear function to transform distance traveled into

revenue, but it will be straightforward to incorporate more

complicated revenue function. The second constraint, (17),

ensures that it’s individually rational to participate in the

LM service for each and every rider. The LHS is the cost

for traveling alone in taxi; the RHS is the actual cost paid

plus time penalty resulting from ride sharing. The parameter

Δi is a rider-specific parameter to convert additional travel

distance into monetary penalty.

Finally, the objective function is written such that the

total cost paid by all riders is minimized (including both

the monetary payments and time penalties):

min
∑

i∈N

(pi +Δi(Bi − d0i)) (18)

The MIP formulation of the LMP can be defined to have

(18) as the objective function, and (1) – (17) as constraints.

We will refer to this formulation as Problem A for the rest

of the paper.
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V. ENSURING IMPLEMENTABILITY

When we solve Problem A and obtain an assignment

plan, we will have the following information for each and

every rider: 1) the assigned cluster (driver), 2) the order

of the service, 3) the arrival time at the destination, and

4) the payment. Naturally, we would want to ensure that

the generated plan can be implemented; in other words, all

drivers should be content with the income earned (by serving

assigned clients), and all riders should be satisfied with the

resulting travel times and payments. Defined formally, an

implementable plan must meet the following criterion:

• Budget balance. Payments from riders should provide

drivers with sufficient monetary incentives to stay with

the LM service. This holds by construction due to (16).

• Individual rationality. All riders should prefer using

the LM service than traveling alone. This holds by

construction due to (17).

From the above criterion, Problem A, if feasible, generates

assignment plan that is guaranteed to be implementable.

The demand pattern illustrated in Figure 2 is an example

where no implementable sharing plan exists. No matter

how small the Δi value is (unit penalty for extra travel

time), riders still cannot feasibly travel in group, since

payments affordable for riders are not enough to pay drivers

collectively.

1.5-1.5 -1 -0.5 0 0.5 1

1.5

-1.5

-1

-0.5

0

0.5

1

���

����	
�

����	
�

����	


����	
�

Figure 2. An example with four riders, but can only be feasibly served
with four drivers.

VI. HANDLING INFEASIBLE SET OF RIDERS

As noted previously, Problem A might contain no feasible

solution even when we have enough capacity in the fleet (an

example of this is already illustrated in Figure 2). However,

not able to feasibly solve Problem A doesn’t mean that

a feasible LM service cannot be formed; a feasible LM

assignment can still be formed if a proper subset of the

riders can be dropped. Again, by using the same example

in Figure 2 (let’s assume one driver is available), we can

see that a feasible assignment can still be formed if we drop

riders 2, 3, and 4 and only serve rider 1 (the solution, which

can be easily obtained in this example, can only be found

by re-solving the Problem A in general).

To formalize the idea, we define a two-phase procedure

to select a proper set of riders to be eventually served. The

first phase serves the purpose of filtering riders, and it can be

achieved by solving a variant of the Problem A, which we

call it the Problem B. Problem B is only slightly different

from Problem. The set of constraints stays mostly the same,

except for Equation (1), which is modified to:
∑

i∈N

∑

j∈N

xij ≤ min{|N |, |K| ·Q}. (19)

The above modification allows us to serve below fleet

capacity or drop some riders. To ensure that Problem B still

tries to serve as many riders as possible, we also modify the

objective function to be:

max
∑

i,j

xij +
1∑
j d0j

(
∑

i,j∈N

xijd0j). (20)

The first part of the objective function is simply the number

of riders served. The second part of the objective function is

the average normalized direct distance of all served riders.

By combining these two components, our first priority is

serve as many riders as possible; when there are more than

one assignments that allow us to serve the same number

of riders, we would prefer serving riders with longer travel

requests.

With Problem B, the two-phase procedure can formally

be implemented as follows:

1) (Phase I) Solve Problem A, if the problem is feasible,

stop; otherwise, move the Step 2.

2) (Phase IIA) Solve Problem B, obtain the subset of

riders that are served in Problem B (to discover riders

that are chosen to be served in Problem B, simply find

all j such that xij = 1, ∀ i).
3) (Phase IIB) Configure Problem A to include only

riders that are served in Problem B. Re-solve Problem

A to obtain the assignment tuple.

VII. EXPERIMENTAL RESULTS

Table I
SUMMARY OF THE LM PLANNING RESULTS FOR DIFFERENT PROBLEM

SIZES (ALL Δi ARE SET TO 1).

Riders Drivers Time / Time using α Total Extra
DARP Model Distance Travel

8 4 0.37s / 43s 1.13 242.3 13.9
20 5 24.06s / 3m14s 1.79 467.0 188.6
24 6 1m24s / 1.75 522.6 210.4

no result after 3h
32 8 17m22 / 1.55 628.2 189.2

no result after 1d

Table I summarizes the performance statistics we obtain

under different problem sizes. The first thing to note is
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the significantly improved solution speed. For the largest

instance, our model (Problem A) returns solution within 17.5

minutes, while the classical DARP MIP model runs over

one day without terminating. For the largest instance, our

formulation is at least two orders of magnitude faster than

the classical DARP MIP model. Also note that all results

are obtained assuming that Δi = 1 for all i. By changing

Δi, we may obtain different results; most significantly, the

additional travel should reduce as a result.

Another interesting result is the dropping of riders using

the two-phase procedure. Use the case with 24 riders as

example: by setting Δi ≥ 3, we will begin to see riders being

dropped. The clustering results with Δi = 1 and Δi = 3
are illustrated in Figure 3. We can see significant difference

in additional travel distance.

Hub

(a) The case with Δi = 1.

Hub

Not Served

(b) The case with Δi = 3.

Figure 3. The clustering result with different Δi values.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that a LM service fleet can be

organized dynamically by tapping into spare capacity of a

taxi fleet. With the assumptions that demands are known

a priori and come in batches, we demonstrate that a LM

service can be organized for a single batch of demand

by solving a MIP model. The most important feature of

our model is the embedded implementability constraints,

which guarantees that the obtained solution will always be

implementable. For cases where feasible solution does not

exist, we devise a two-phase procedure where a promising

subset of riders can be chosen to be served.
Through a series of numerical examples, we show that

our approach can obtain solution at least two orders of

magnitude faster when compared against classical DARP

MIP model. We also demonstrate how we can control the

performance of overall fleet by adjusting Δi. The effective-

ness of our two-phase approach is also demonstrated.
There are two major areas that we would like to further

develop. First is the handling of more complicated demand

scenarios. Second is the analyses on behavioral and societal

impacts. For the first area, we are interested in addressing

multiple batches of demands, which can be assumed to

be known (pre-registered using the same technology) or

partially known (uncertain). Also, we would like to address

the issue of last-minute changes: e.g., handling re-clustering

to handle no-show or walk-in riders. Finally, we would

like to include not just LM, but also the first-mile (FM)

service, which goes in the reverse direction from an arbitrary

origin to a hub. For the second area, we will assess the

potential impacts of the LM service on other types of

transport service, e.g., the feeder bus or light-rail system

in the neighboring area. On behavioral issues, we would

like to address rider’s preference in demand clustering, e.g.,

riders might prefer not sharing rides with more than certain

number of people, or they may prefer to share the rides only

with certain gender or age groups.
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