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Since bootstrap samples are simple random samples with replacement from the original sample, the
information content of some bootstrap samples can be very low. To avoid this fact, some authors
have proposed several variants of the classical bootstrap. In this paper we consider two of them: the
sequential or Poisson bootstrap and the reduced bootstrap. Both of them, like ordinary bootstrap,
can yield second order accurate distribution estimators, that is, the three bootstrap procedures are
asymptotically equivalent. The question that naturally arises is which of them should be used in a
practical situation, in other words, which of them should be used for finite sample sizes. To try to
answer this question, we have carried out a simulation study. Although no method was found to
exhibit best performance in all the considered situations, some recommendations are given.
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performance.

1 Introduction

The bootstrap, introduced by Efron [1], is a powerful tool for nonparametric es-
timation of sampling distributions and standard errors. It may be described as
follows. Let X = (X1, X2, . . . , Xn) be a random sample from an unknown dis-
tribution F , and let Tn = Tn(X; F ) be a statistic of interest. Let Fn be the em-
pirical distribution function of X1, X2, . . . , Xn and let X∗ = (X∗

1 , X∗
2 , . . . , X∗

n)
be a random sample drawn from Fn. X∗ is called a bootstrap sample. The
bootstrap method estimates the distribution of Tn through the conditional
distribution of T ∗n = Tn(X∗; Fn), given X1, X2, . . . , Xn.

Bootstrap samples are simple random samples of size n selected with replace-
ment from the original sample. Thus, all bootstrap samples are not equally
informative, when the information content of X∗ is measured through the
number of distinct original observations in it, νn. As Rao et al. [2] assert, this

∗Corresponding author. E-mail: rafaelp@us.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132456298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 R. Pino Mej́ıas et al.

variability is neither necessary nor desirable. To avoid it, these authors have
introduced a sequential sampling method that keeps constant the information
content of bootstrap samples, the sequential or Poisson bootstrap (originally,
they named it sequential bootstrap; the name Poisson bootstrap was given
latter by Babu et al. [3]). It consists of sampling sequentially (with replace-
ment from the original sample) until m distinct original observations appear.
To keep the information constant, this method introduces another source of
variability: the size of the sequential bootstrap samples.

To reduce the variability of νn, keeping the size of bootstrap samples fixed,
Jiménez-Gamero et al. [4] have introduced a modified bootstrap that consists
of only considering those bootstrap samples satisfying k1 ≤ νn ≤ k2, for some
1 ≤ k1 ≤ k2 ≤ n. They call it the reduced bootstrap, since it only uses a
portion of the set of all possible bootstrap samples. The method is an extension
of the one introduced by Muñoz-Garćıa et al. [5], that takes k2 = n. Note that
ordinary bootstrap is a particular case of reduced bootstrap with k1 = 1 and
k2 = n.

Another method to reduce the variability of νn, keeping the size of boot-
strap samples fixed, can be found in Stromberg [6]. In order to reduce the
breakdown point of the bootstrap variance estimator, which is 1/n regardless
of the breakdown point of the estimator due to the fact that P (νn = n) > 0,
Stromberg [6] proposed to use a ”limited replacement bootstrap”, in which
all bootstrap samples selecting the same element more than m∗ times are
excluded, that is, it only considers those bootstrap samples with Ni ≤ m∗,
1 ≤ i ≤ n, where Ni = card{j : X∗

j = Xi}, 1 ≤ i ≤ n. As before, note that
ordinary bootstrap is a particular case of limited replacement bootstrap with
m∗ = n.

Singh [7] has shown that the bootstrap estimator of the distribution of the
sample mean is consistent and that it can be more accurate than the ap-
proximation given by the central limit theorem when higher-order population
moments exist. Babu and Singh [8] have extended these results to functions
of multivariate means and their studentized versions. Babu et al. [3] have
shown that they are also true for the sequential bootstrap when m = E(νn).
Jiménez-Gamero et al. [9] have also proven them for the reduced bootstrap,
for certain choices of k1 and k2. Therefore, the results in Babu et al. [3] and
Jiménez-Gamero et al. [9] reveal that the usual bootstrap high variability of
νn is not necessary. To our knowledge there is no similar result for the limited
replacement bootstrap of Stromberg [6] so, from now on we will not consider
this method.

In summary, the above cited results tell us that we have three methods
to consistently estimate the distribution function of statistics in an important
class (the functions of multivariate means and their studentized versions), that
is, all of them behave similarly for large samples. The question that naturally
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arises is which of them should be used in a practical situation, that is, for
finite sample sizes. In order to try to answer this question, we have carried out
a simulation study. Although it is not exhaustive (it is impossible to simulate
all cases), we can conclude some general recommendations from the obtained
results.

The paper is organized as follows. In Section 2 we briefly review the methods
to be compared. In Section 3 we describe the simulations and display the
obtained results. Section 4 concludes giving some practical recommendations
in the light of the obtained results.

2 The methods

In this Section we first study the variability reduction properties of the consid-
ered methods, and then we review some properties of the corresponding distri-
bution estimators. Here we only review the second order correctness properties
because they just make the considered distribution estimators to have an edge
over the approximation by the limiting normal distribution.

2.1 Variability reduction properties

As in the Introduction, let νn denote the number of distinct observations in a
bootstrap sample. Then under ordinary bootstrap,

E(νn) = n

[
1−

(
1− 1

n

)n]
' 0.632n,

var(νn) = n

(
1− 1

n

)n

+ n(n− 1)
(

1− 2
n

)n

− n2

(
1− 1

n

)2n

' 0.233n,

To reduce the variability of νn, the sequential bootstrap draws observations
from the original sample with replacement until there are m ' E(νn) dis-
tinct observations in the bootstrap sample. This way, the number of distinct
observations is no longer a random variable. Nevertheless, the method yields
bootstrap samples with random size N . The expectation and the variance of
N are (see Rao et al. [2])

E(N) = n

(
1
n

+
1

n− 1
+ ... +

1
n−m + 1

)
= n + O(1),
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var(N) =
m∑

j=1

n(j − 1)
(n− j + 1)2

= n(e− 1) + O(1).

Next result gives the expectation and the variance of νn for the reduced
bootstrap (see Appendix C for a proof).

Proposition 2.1 Let X∗ be a bootstrap sample, νn = νn(X∗) and let k1, k2

be two positive integers with 1 ≤ k1 ≤ k2 ≤ n. Then,

E (νn | k1 ≤ νn ≤ k2) = k2 − (k2 − k1)
(

1− 1
k2

)n−k1

and

var (νn | k1 ≤ νn ≤ k2) = (k2 − k1)(k2 − k1 − 1)
(

1− 2
k2

)n−k1

+

+(k2 − k1)
(

1− 1
k2

)n−k1

− (k2 − k1)2
(

1− 1
k2

)2(n−k1)

.

(1)

From (1) we have that if k1 = k1(n) and k2 = k2(n) are such that (n−k1)/k2

converges to a real limit l 6= 0, as n → ∞, then var (νn | k1 ≤ νn ≤ k2) =
O(k2 − k1). Hence, as var(νn) ' 0.233n, if k2 − k1 = o(n), the variability
of νn in the reduced bootstrap will be less than in the usual bootstrap. If
(n − k1)/k2 → ∞, as n → ∞, this implies that k2 = o(n). As it is shown in
Jiménez-Gamero et al. [9], in this case the reduced bootstrap is not consistent
and thus this choice of k1 and k2 is not advisable. A similar situation occurs
when (n − k1)/k2 → 0, as n → ∞. Hence, for adequate choices of k1 and k2,
the reduced bootstrap variability of νn is less than that of ordinary bootstrap.

2.2 Second order accuracy of the distribution estimators

Let X1, X2, ..., Xn be i.i.d. random variables having common distribution func-
tion F , mean µ and variance σ2. Let

X̄n =
1
n

n∑

j=1

Xj , s2
n =

1
n

n∑

j=1

(Xj − X̄n)2 and X̄∗
n =

1
n

n∑

j=1

X∗
j .

Throughout this paper P∗ will denote the bootstrap conditional probability
law, given X1, X2, . . . , Xn.
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If E|X1|3 < ∞ and F satisfies Cramér’s condition, Theorem 1.D in Singh [7]
shows that

sup
x

n1/2
∣∣∣P∗

{
n1/2(X̄∗

n − X̄n)/sn ≤ x
}
−

−P
{

n1/2(X̄n − µ)/σ ≤ x
}∣∣∣ = o(1).

(2)

This implies that the ordinary bootstrap approximation to P{n1/2(X̄n −
µ)/σ ≤ x} is better than the normal approximation, which has an error of
order O(n−1/2). Theorem 3.1 in Babu et al. [3] gives the analogue of the above
result for the Poisson bootstrap, with m = E(νn). Corollary 1 in Jiménez-
Gamero et al. [9] states conditions on k1 and k2 (1 ≤ k1 ≤ k2 ≤ n) for (2)
to hold for the reduced bootstrap distribution estimator. These conditions are
the following:

Condition C.1.a Φ(w2)−Φ(w1) ≥ α, ∀n ≥ n0, for some n0 ∈ N and some
fixed constant α > 0 and w1 + w2 = o(1) or w1 → −∞ and w2 → +∞,

Condition C.2.a w1, w2 → 0,
where w1 = (k1−1−np)n−1/2σ0

−1, w2 = (k2−np)n−1/2σ0
−1, σ0

2 = pq−q2, p =
1− e−1, q = 1− p and Φ denotes the standard normal cumulative distribution
function. Since P (νn ≤ k) = Φ(w) + o(1) with w = (k − np)/

√
nσ0 (Johnson

and Kotz [10, p. 318]), if k1 and k2 are such that some of the above conditions
hold, then the proportion of bootstrap samples not to be considered because
they have a small number of different elements (νn < k1) is (almost) the same
as the proportion of bootstrap samples not to be considered because they have
a big number of different elements (νn > k2).

The above results can be extended to the multivariate case and to statis-
tics which can be expressed as smooth functions of multivariate means. Let
X1, X2, ..., Xn be n i.i.d. d-dimensional random vectors with common distri-
bution function F , mean µ and variance matrix Σ, where d is a fixed positive
integer. Let X̄n be the sample mean and let Σn be the sample variance matrix.
Let H be a real valued Borel measurable function on Rd. If H is differentiable
at y, we denote by h(y) the vector of first order partial derivatives of H at
y. Let τ2 = h(µ)′Σh(µ) and τ2

n = h(X̄n)′Σnh(X̄n), where the prime denotes
transpose.

If E‖X1‖3 < ∞, F satisfies Cramér’s condition, H is three times continu-
ously differentiable in a neighborhood of µ, h(µ) 6= 0 and τ > 0, Corollary 2
in Babu and Singh [8] shows that

sup
x

n1/2
∣∣∣P∗

[
n1/2

{
H(X̄∗

n)−H(X̄n)
}

/τn ≤ x
]
−

−P
[
n1/2

{
H(X̄n)−H(µ)

}
/τ ≤ x

]∣∣∣ = o(1).
(3)
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Theorem 4.1 in Babu et al. [3] and Theorem 4(b) in Jiménez-Gamero et al.
[9] give the analogues of the above result for the Poisson bootstrap (with
m = E(νn)) and the reduced bootstrap (with k1 and k2 satisfying conditions
C.1.a and C.2.a), respectively.

A class of statistics frequently used as pivots or approximate pivots is the
studentized version of the above considered statistics. The result in (3) is
also true for this class of statistics. Let τ∗2n = h(X̄∗

n)′Σ∗nh(X̄∗
n), where Σ∗n

is the sample variance matrix of the bootstrap sample. For a d-dimensional
random vector X ′ = (X(1), X(2), ..., X(d)), let W be the d(d + 3)/2-vector ob-
tained from X by adjoining it the products X(i)X(j), 1 ≤ i ≤ j ≤ d, that is,
W ′ = (X(1), X(2), ..., X(d), X

2
(1), X(1)X(2), ..., X(1)X(d), X

2
(2), X(2)X(3), ..., X2

(d)).
If E‖W1‖3 < ∞, F satisfies Cramér’s condition, H is three times continuously
differentiable in a neighborhood of µ, h(µ) 6= 0 and τ > 0, then Theorem 4 in
Babu and Singh [8] shows that

sup
x

n−1/2
∣∣∣P∗

[
n1/2

{
H(X̄∗

n)−H(X̄n)
}

/τ∗n ≤ x
]
−

−P
[
n1/2

{
H(X̄n)−H(µ)

}
/τn ≤ x

]∣∣∣ = o(1).
(4)

Theorem 4.3 in Babu et al. [3] and Theorem 5(b) in Jiménez-Gamero et al.
[9] give the analogues of the result in (4) for the Poisson bootstrap (with
m = E(νn)) and the reduced bootstrap (with k1 and k2 satisfying conditions
C.1.a and C.2.a), respectively.

As we said in the Introduction, Rao et al. [2] asserted that the variability of
νn is not desirable. An example of this fact emerges when one considers statis-
tics which are a studentized version of a smooth function of sample means, as
the ones involved in (4), since bootstrap samples with all their components
equal yield a degenerate value of the considered statistics. This undesirable
situation may be avoided by using the sequential bootstrap or the reduced
bootstrap with some k1 > 1.

3 Simulations

In Section 2 we have seen that the ordinary bootstrap, the sequential bootstrap
with m = E(νn) and the reduced bootstrap for adequate choices of k1 and k2

yield distribution estimators having all of them the same asymptotic accuracy.
To study and compare the finite sample performance of the corresponding esti-
mators we have carried out a simulation experiment. The considered methods
are displayed in Table 1, where [x] denotes the greatest integer less or equal
than x. The Appendices A and B describe the employed algorithms to gen-
erate reduced bootstrap samples and Poisson bootstrap samples, respectively.
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Table 1. Methods.
method description

1 ordinary bootstrap
2 reduced bootstrap with k1 = [np− 2

√
npq] + 1, k2 = [np + 2

√
npq]

3 reduced bootstrap with k1 = [np−√npq] + 1, k2 = [np +
√

npq]
4 reduced bootstrap with k1 = k2 = [np] + 1
5 sequential bootstrap with m = [np] + 1

To study the corresponding distribution estimators of the statistic

t1(X) =
√

n
X̄n − µ

sn
,

we have generated M = 1000 samples of size n = 10 from a standard normal
population, N(0,1). For each method in Table 1 and from each sample Xm,
1 ≤ m ≤ M , we have generated B = 1000 bootstrap samples, X∗m,1, ...,X∗m,B.
We have considered the following intervals

(−∞,−3), [−3,−2.9), [−2.9,−2.8), [−2.8,−2.7), ..., [2.9, 3), [3,∞) (5)

and, for each method, we have calculated f(I, m), the fraction of t1(X∗m,b),
1 ≤ b ≤ B, falling on interval I. As a global measure of the bias of each
distribution estimator we have considered

BS =
∑

I∈I
bias2(I),

where I is the set of the intervals in (5), bias(I) = 1
M

∑M
m=1 f(I,m)−f(I) and

f(I) gives the fraction of T (Xm), 1 ≤ m ≤ M , falling on the interval I; and
as a global measure of the mean squared error of each distribution estimator
we have considered

MS =
∑

I∈I
mse(I),

where mse(I) = 1
M

∑M
m=1 {f(I,m)− f(I)}2.

We have repeated the above experiment for n = 20, 50, 100, 200, 500, 1000
and also for the statistics

t(X) =
√

n
H(X̄n)−H(µ)
|h(X̄n)|sn

,

with H(x) = exp(x) (statistic t2) and H(x) = x2 (statistic t3). For statistic t3,
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Table 2. Results for statistic t1 with data from a N(0, 1) population.

sample size
method 10 20 50 100 200 500 1000
1 BS × 103 0.61 0.98 0.63 1.26 1.11 0.66 1.05

MS × 103 2.07 2.00 1.61 2.24 2.09 1.64 2.01
2 BS × 103 0.54 0.96 0.64 1.28 1.10 0.66 1.06

MS × 103 2.07 2.00 1.63 2.23 2.07 1.64 2.04
3 BS × 103 0.53 0.96 0.64 1.28 1.10 0.65 1.03

MS × 103 2.07 2.00 1.61 2.25 2.07 1.63 2.01
4 BS × 103 8.44 3.69 2.58 3.34 2.85 2.30 2.59

MS × 103 10.96 4.68 3.56 4.30 3.80 3.26 3.55
5 BS × 103 0.64 0.98 0.63 1.26 1.12 0.66 1.06

MS × 103 1.94 2.00 1.60 2.23 2.10 1.65 2.03

Table 3. Results for statistic t2 with data from a N(0, 1) population.

sample size
method 10 20 50 100 200 500 1000
1 BS × 103 1.00 0.92 0.99 0.92 0.99 1.26 0.53

MS × 103 2.98 2.02 1.98 1.90 1.98 2.23 1.51
2 BS × 103 1.17 0.85 0.99 0.92 0.97 1.24 0.54

MS × 103 3.29 2.01 1.99 1.90 1.94 2.21 1.51
3 BS × 103 1.19 0.85 0.99 0.91 0.98 1.27 0.53

MS × 103 3.34 2.00 2.00 1.88 1.95 2.23 1.51
4 BS × 103 9.62 6.59 3.67 3.92 3.36 2.21 2.21

MS × 103 12.53 7.61 4.65 4.87 4.31 3.17 3.18
5 BS × 103 0.66 0.99 0.98 0.94 0.98 1.24 0.53

MS × 103 2.50 2.10 1.98 1.91 1.96 2.21 1.49

Table 4. Results for statistic t3 with data from a N(5, 1) population.

sample size
method 10 20 50 100 200 500 1000
1 BS × 103 1.02 0.63 1.45 0.69 0.86 0.84 0.92

MS × 103 2.52 1.66 2.42 1.65 1.83 1.82 1.89
2 BS × 103 1.19 0.65 1.42 0.70 0.84 0.82 0.90

MS × 103 2.76 1.68 2.40 1.67 1.83 1.79 1.88
3 BS × 103 1.17 0.65 1.45 0.71 0.86 0.84 0.89

MS × 103 2.73 1.69 2.41 1.68 1.84 1.82 1.86
4 BS × 103 6.39 3.40 3.70 2.30 2.79 2.18 2.15

MS × 103 8.93 4.38 4.67 3.27 3.75 3.14 3.11
5 BS × 103 0.96 0.62 1.45 0.69 0.83 0.82 0.89

MS × 103 2.27 1.65 2.42 1.66 1.79 1.80 1.87

to avoid h(µ) = 0, the data comes from a N(5, 1) population. The obtained
results are displayed in Tables 2, 3 and 4. Tables 5, 6 and 7 present the results
of a similar experiment with data from a mixture of two normal populations,
0.2N(0, 1) + 0.8N(5, 22).

All computations in this paper have been performed using programs written
in the R language (R Development Core Team [11]).
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Table 5. Results for statistic t1 with data from a 0.2N(0, 1) + 0.8N(5, 22) popula-

tion.
sample size

method 10 20 50 100 200 500 1000
1 BS × 103 1.05 0.83 0.99 1.18 0.65 1.06 1.24

MS × 103 2.51 1.83 1.96 2.16 1.62 2.02 2.21
2 BS × 103 0.91 0.86 0.92 1.17 0.66 1.02 1.22

MS × 103 2.46 1.87 1.90 2.14 1.64 1.98 2.19
3 BS × 103 0.93 0.86 0.93 1.16 0.67 1.03 1.24

MS × 103 2.47 1.87 1.92 2.12 1.63 2.01 2.21
4 BS × 103 8.95 3.22 3.80 3.47 2.05 3.12 3.10

MS × 103 11.71 4.21 4.78 4.43 3.02 4.09 4.05
5 BS × 103 1.06 0.82 0.98 1.20 0.64 1.02 1.25

MS × 103 2.34 1.83 1.94 2.18 1.61 2.00 2.22

Table 6. Results for statistic t2 with data from a 0.2N(0, 1) + 0.8N(5, 22) popula-

tion.
sample size

method 10 20 50 100 200 500 1000
1 BS × 103 0.67 0.92 0.72 0.99 1.00 1.11 0.74

MS × 103 2.75 2.17 1.73 1.97 1.98 2.07 1.71
2 BS × 103 0.75 1.02 0.80 1.08 1.00 1.09 0.72

MS × 103 3.04 2.31 1.82 2.06 1.95 2.05 1.69
3 BS × 103 0.78 0.98 0.82 1.07 1.00 1.10 0.73

MS × 103 3.00 2.28 1.83 2.04 1.97 2.06 1.71
4 BS × 103 16.18 6.77 3.54 3.15 3.44 3.38 2.24

MS × 103 19.51 7.89 4.54 4.11 4.39 4.36 3.21
5 BS × 103 0.95 0.90 0.72 0.98 1.02 1.09 0.73

MS × 103 2.88 2.14 1.74 1.97 1.98 2.06 1.71

Table 7. Results for statistic t3 with data from a 0.2N(0, 1) + 0.8N(5, 22) popula-

tion.
sample size

method 10 20 50 100 200 500 1000
1 BS × 103 1.03 0.60 0.96 0.79 1.08 1.37 0.80

MS × 103 2.87 1.71 1.96 1.76 2.03 2.35 1.75
2 BS × 103 1.07 0.61 0.98 0.79 1.07 1.34 0.81

MS × 103 3.03 1.74 1.97 1.76 2.04 2.32 1.77
3 BS × 103 1.07 0.62 0.97 0.78 1.07 1.33 0.81

MS × 103 3.03 1.73 1.96 1.74 2.05 2.30 1.77
4 BS × 103 11.66 4.19 3.51 3.34 3.05 4.01 3.07

MS × 103 14.65 5.19 4.48 4.30 4.01 4.97 4.03
5 BS × 103 1.44 0.55 0.97 0.81 1.05 1.36 0.81

MS × 103 3.11 1.65 1.97 1.79 2.01 2.34 1.78

4 Conclusions

Looking at Tables 2–7 we see that method 4 has the biggest bias for all the
considered cases. For the rest of the methods in Table 1, we observe that there
is no method behaving much better than the others for all statistics, all sample
sizes and all distributions. As expected, the differences in BS and MS decrease
as the sample size increases. Although the performance of methods 1, 2, 3, 5
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and 6 is very similar, some recommendations can be given: use sequential
bootstrap for small sample sizes and use methods 2 and 3 for larger samples.
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Appendix A: Algorithm 1

We have followed the next steps to generate reduced bootstrap samples:

1 Select a random sample of size k2 without replacement from {1, 2, ..., n},
say I1.

2 Select a random sample of size k1 without replacement from I1, say I2 =
{i1, i2, ..., ik1}.

3 Select a random sample of size n− k1 with replacement from I1, say I3 =
(j1, j2, ..., jn−k1).

4 Let (l1, l2, ..., ln) be an n-vector whose components are obtained by ran-
domly permuting the string (i1, i2, ..., ik1 , j1, j2, ..., jn−k1).

5 The n-vector (Xl1 , Xl2 , ..., Xln) is a bootstrap sample satisfying k1 ≤ νn ≤
k2.
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Appendix B: Algorithm 2

For the poisson bootstrap, next algorithm has been used:

1 Select a random sample of size m without replacement from {1, 2, ..., n},
say I = {i1, i2, ..., im}.

2 Generate a random sample of size m from a truncated Poisson with origin
equal to 1, say V = (V1, V2, ..., Vm).

3 The Poisson bootstrap sample is defined by selecting Vj times each position
of the original sample ij , appearing in the set I.

The random number generation for the truncated Poisson distribution
has been realized by the function rtrunpois available in the S-archive of
statsci.org (Smyth, [12]).

Appendix C: Proof of Proposition 2.1

Algorithm 1 in Appendix A is useful not only to get reduced bootstrap samples,
but to obtain the mean and the variance of νn, given that k1 ≤ νn ≤ k2.

Proof Let D be the number of components of vector I3 in I1 − I2 and νD =∑
j/j∈I1−I2

δ(Nj), where δ(u) = 1 if u > 0 and δ(u) = 0 otherwise, that is,
νD is the number of distinct elements in I3 not belonging to I2. We have
that D ∼ Bin

(
n− k1,

k2−k1
k2

)
and that the conditional distribution of the

vector (Nj)j∈I1−I2 , given that D = d, is M
(
d; 1

k2−k1
, 1

k2−k1
, ..., 1

k2−k1

)
. Hence

(Johnson and Kotz [10, p. 114]),

E(νD | D = d) = (k2 − k1)− (k2 − k1)
(

1− 1
k2 − k1

)d

and

var(νD | D = d) = (k2 − k1)(k2 − k1 − 1)
(

1− 2
k2 − k1

)d

+

+ (k2 − k1)
(

1− 1
k2 − k1

)d

− (k2 − k1)2
(

1− 1
k2 − k1

)2d

.

(C1)

Finally, the result follows from (C1) and

E (νn | k1 ≤ νn ≤ k2) = k1 + E(νD) = k1 + ED {E(νD | D)} ,
var (νn | k1 ≤ νn ≤ k2) = var(νD) = ED {var(νD | D)}+ varD {E(νD | D)} .

¤


