
Building a basic membrane computer

Alejandro Millan, Julian Viejo, Juan Quiros,
Manuel J. Bellido, David Guerrero, and Enrique Ostua

Grupo ID2 – Universidad de Sevilla (Spain)
Email: amillan@us.es, julian@dte.us.es, jquiros@dte.us.es,

bellido@dte.us.es, guerre@dte.us.es, ostua@dte.us.es

www.dte.us.es/id2

Summary. In this work, we present the building of two well-known membrane com-
puters (squares generator and divisor test). Although they are very basic machines they
present problems common to every P system (competition, parallel execution of rules,
membrane dissolution, etc.) that have to be solved in order to get real emulations for
them. The presented designs mimic the systems operation in a realistic way, by achieving
both maximum parallelism and non-determinism, and demonstrating for the first time
that a membrane computer can actually be built in silico. Our architectures fully emu-
late the membranes behaviour yielding to a performance of one transition per clock cycle,
supposing a real physical realization of the mentioned machines.

Key words: membrane computing, P system, digital circuit design, parallel computing,
reconfigurable hardware, FPGA.

1 Introduction

Membrane computing was introduced in 2000 by Gheorghe Păun [12]. This topic
is based on living cells and the first models are defined as an hierarchical structure
of compartments (membranes), which contains objects (chemicals), which evolve
according to applicability rules (chemical reactions). However, membrane com-
puting has a very important problem: implementation. This kind of computing
is extremely powerful but is a machine-oriented solution so current efforts in this
way have been focused on improve the simulation of such system on both software
and hardware platforms.

Several works exist on membrane computing from the hardware point of view.
All of them have been focused on FPGA designing, trying to mimic the internal
structure of P systems, in one way or another, into an electronic device.

Firstly, in [13], authors present a development in which the membranes of the
system evolve in a parallel way although, internally, rules in each membrane are
executed sequentially. Also, the general functioning of the system is deterministic:
rules are applied by following a pre-established order.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132456286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


270 Millan et al.

Secondly, in [1], after some works on this topic [5, 6], authors achieve an archi-
tecture based on grouping rules into macro-rules and generating a new power set of
macro-rules (each macro-rule is conformed by one or more of the original rules). In
this way, they calculate this power set by including all the possible combinations
of the original rules and, following a non-deterministic process, the architecture
chooses one macro-rule and apply it in a maximal way. This process continues se-
quentially until none macro-rule can be applied. So, they achieve a certain degree
of parallelism between the execution of the original rules.

Thirdly, in [10, 11], after a considerable amount of works [7, 8, 9], authors finally
present two architectures that simulate P systems: the first one is focused on rules
and the second one is focused on membranes. This second architecture mimics
very well the structure of P systems but it suffers from important limitations: it
allows systems in which competing rules (rules that consume the same objects)
are prioritized what yields to deterministic systems only. Also, object selection is
done sequentially so parallelism is set aside in this way.

Fourthly, in [15, 14], a very important advance on the topic is presented. These
works cover the emulation of P systems on reconfigurable hardware, observing
both parallelism (in terms of competing rules and object selection) and non-
determinism. Authors present a development capable of automatically generate
the hardware equivalent to a given P system that can compute each of its transi-
tions in constant time (5 clock cycles). The problem with this approach is that the
architecture supports min1 transition mode only (rules can be applied one time
maximum [3]).

In conclusion, although several authors have performed relevant efforts on the
topic of electronic realization of P systems, until now, nobody has achieved an
structure that mimics the fully parallel and non-deterministic behaviour of such
machines.

Exactly in this aspect, our current work tries to contribute something relevant.
We have adopted a very different point of view: membrane computing is a machine-
oriented computational model so we think it is impossible to design a machine (or
architecture) that solves all the problems. In the same way that we need to develop
new algorithms to solve new problems in an algorithm-oriented computational
model, we think it is necessary to design a new specific machine for each P system
when needed. At least, while being important to observe the inherent features of
this kind of systems: i.e. non-determinism and maximal parallelism. So, following
this idea, we have started our work by trying to build the very first membrane
computers we all know (Fig. 1 and Fig. 2: the ones presented in the foundational
paper [12]).

The rest of the paper is organized as follows: in Sect. 2, we explain in detail the
developed architectures and the designs employed to exactly emulate maximum
parallelism and non-determinism of the chosen P systems, in Sect. 3, we present
the operation results obtained by the built emulators, and finally in Sec. 4, we
finish with the main conclusion of this work.



Building a basic membrane computer 271

Fig. 1. Computer 1: n2 generator (n >= 1).

Fig. 2. Computer 2: Divisor test (Does k divide n?).



272 Millan et al.

2 Design

With the exposed idea, we have developed architectures for the both mentioned
P systems. However, there are common aspects that are interesting to be exposed
firstly.

The main problem in the implementation of P systems is the application of
rules, moreover when they are competing for common objects. So, the basic struc-
ture we have employed is shown in Fig. 3. It does not represent a rule corresponding
to any of the chosen systems but illustrates how we have oriented the design of
rules. In this figure, a very simple rule is shown: the REG block stores the amount
of available f objects while the Logic block (associated to rule r1) calculates how
many times the rule has to be applied in order to consume all f objects. Finally,
there is a feedback operation in which the object amount is adjusted according to
rule applications. This construct allows the execution of the rule multiple times
in a single clock cycle. From this basic case, we are going to show how we have
addressed with competition in the chosen P systems.

r1 : f → ff

Fig. 3. Basic structure emulating object and rule.

Competition in Computer 1 (Fig. 1) comes from the two first rules in mem-
brane 3. They consume a same object a. In this case, object a maintains its amount
until the second rule is triggered (then membrane 3 is dissolved). So, in this sys-
tem, we have included a random number generator (based on an maximum-length
Galois linear-feedback shift register, LFSR [2, 4]) that ensures all possible execu-
tions are performed in a non-deterministic way. The LFSR determines the cycle
in which the second rule is applied. Note that, being a maximum-length LFSR,
it allows the system to go through all the possible executions without repeating
anyone. The hardware structure corresponding to these rules is shown in Fig. 4.

Competition in Computer 2 (Fig. 2) comes from the two first rules in mem-
brane 2. They consume a same object a and an specific object (c or c′ in each
case). In this membrane, it is necessary to distribute object a randomly between
the two rules, also taking into account the amount of objects c and c′ available in
the system. The hardware employed to mimic this behaviour is presented in Fig. 5
and it is based on the following algorithm:



Building a basic membrane computer 273

r1 : a→ ab′

r2 : a→ b′δ

Fig. 4. Structure resolving competition case in Computer 1.

r1 : ac→ c′

r2 : ac′ → c

Fig. 5. Structure resolving competition case in Computer 2.

1. Randomly let:
a = a1 + a2

2. Let:
λ1 = max{0; a1 − c}, λ2 = max{0; a2 − c′}
τ1 = min{c; a1 + λ2}, τ2 = min{c′; a2 + λ1}

3. Apply r1 × τ1 times and r2 × τ2 times.

It is important to denote that the algorithm describes only the idea under the
design but the hardware structure calculates τ1 and τ2 in a combinational way (i.e.
in a single clock cycle).



274 Millan et al.

The rest of rules on both machines have been designed following the structure
described in Fig. 3. They do not imply competition so they can be constructed in
a direct way.

Finally, the machines interfaces are shown in Fig. 6 and 7. In the case of
Computer 1, the Reset signal launch a new system computation (performing one
transition per Clock cycle). The Master Reset and Seed inputs are employed at
first only in order to initialize the LFSR by the user (the seed is obtained from the
time past since the circuit was powered on; by using a 50 MHz counter). Then,
the machine works continuously generating, in a non-deterministic way, all the
squares existing in its computing range. Each time a square is produced, its value
is presented through the Answer output bus and the Data Valid signal is activated
(yielding to a new Reset and a new execution).

In the case of Computer 2, the Clock, Reset, Master Reset, and Seed signals
work in a similar way to Computer 1. Also, Number n and Number k pass to the
system the test inputs. Once the numbers have been tested, Data Valid is activated
and the Answer signal indicates True or False as a response.

Fig. 6. Computer 1 interface.

Fig. 7. Computer 2 interface.



Building a basic membrane computer 275

3 Results

Both machines have been tested in both software and hardware ways. On the one
hand, the software testing has been performed with Xilinx ISE v11.4. In Fig. 8
we present an operation detail of Computer 2 having k = 21 and n = 63. The
machine starts having 63 a objects and 21 c objects inside membrane 2. In the
first transition, rule r1 is applied 21 times, giving us a new configuration without
c objects and 42 a objects and 21 c′ objects. In the second transition, rule r2 is
applied 21 times, giving us a new configuration without c′ objects and 21 a objects
and 21 c objects. In the third transition, rule r1 is applied 21 times (again), giving
us a new configuration without a and c objects and 21 c′ objects. In the fourth
transition neither rules r1 nor r2 can be applied, so membrane 2 is dissolved (rule
r3), giving us a new configuration with 21 c′ objects and 1 d object inside mem-
brane 3. Finally, rule r4 can not be applied because the lack of c objects inside
the membrane, so system is halted. At this moment, DV (data valid) signal acti-
vates and the Answer output indicates True (k divides n). As we have mentioned
previously, each transition is processed in a single clock cycle.

Fig. 8. Simulation detail of Computer 2 testing if k = 21 divides n = 63.

On the other hand, the machines have been tested on hardware by program-
ming them into both Digilent Basys 2 training boards equipped with Spartan
3E-1200 FPGAs.

Operation of Computer 1 board (Fig. 9) is started by pressing the Master Re-
set button what feeds a random seed to the LFSR (also lightning on the Master



276 Millan et al.

Reset indicator). Then, the machine starts computing executions of the P system,
yielding the calculated answers to the 4-digit 7-segment display. These executions
are carried out in a non-deterministic order but they cover all the possible combi-
nations and generate all squares existing between 12 and 632. Once all squares are
shown, the machine halts and the Finish indicator is lighted on. For demonstration
purposes only, the board clock frequency has been reduced to a human-visible one
(ca. 25 Hz) and can be observed through the Clock indicator.

Fig. 9. Computer 1 training board emulator: Clock indicator (LD7), Finish indicator
(LD6), Master Reset indicator (LD0), Answer (7-segment display), and Master Reset
button (BTN0).

In a similar way, operation of Computer 2 board (Fig. 10) is also started by
pressing the Master Reset button what feeds a random seed to the LFSRs present
in the circuit. Then, the machine starts computing executions of the P system (each
time a execution finishes the Data Valid indicator is lighted on). The executions
are fed with random inputs and the machine shows them continuously on the 7-
segment display (Numbers n and k). In order to facilitate humans to understand
results, the board pauses execution when the division test is successful during



Building a basic membrane computer 277

enough time to read the display. Also for demonstration purposes only, the board
clock frequency has been reduced to a human-visible one (ca. 25 Hz) and can be
observed through the Clock indicator.

Fig. 10. Computer 2 training board emulator: Clock indicator (LD07), Data Valid in-
dicator (LD1), Master Reset indicator (LD0), Number n (first two digits of 7-segment
display), Number k (last two digits of 7-segment display), and Master Reset button
(BTN0).

The hardware details are presented in Table 1 and the device utilization is
shown for both cases in Table 2 and Table 3 respectively. As we can observe, both
computers consume a small portion of the available resources showing themselves
as a very efficient design also in terms of hardware needs. Also, it is noticeable
that register width has an important impact on resource utilization: 64-bit in the
case of Computer 1 what yields to a maximum amount of ca. 1019 objects of each
type (register values are of signed type). These register widths has been chosen
according to the 4-digit displays available on the training boards.



278 Millan et al.

Computer 1 Computer 2

Target Device xc3s1200e-4fg320
Clock Frequency 50 MHz
Performance 50 Mtransition/s
Register Width 64-bit 16-bit

Table 1. Hardware details.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 625 17344 3%
Number of 4 input LUTs 2434 17344 14%
Number of occupied Slices 1345 8672 15%
- Number of Slices containing only related logic 1345 1345 100%
- Number of Slices containing unrelated logic 0 1345 0%
Total Number of 4 input LUTs 2479 17344 14%
- Number used as logic 2434
- Number used as route-thru 45
Number of bonded IOBs 18 250 7%
- IOB Flip Flops 2
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 10 28 35%
Average Fanout of Non-Clock Nets 2.27

Table 2. Device utilization for Computer 1.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 269 17344 1%
Number of 4 input LUTs 842 17344 4%
Number of occupied Slices 503 8672 5%
- Number of Slices containing only related logic 503 503 100%
- Number of Slices containing unrelated logic 0 503 0%
Total Number of 4 input LUTs 958 17344 5%
- Number used as logic 842
- Number used as route-thru 116
Number of bonded IOBs 19 250 7%
- IOB Flip Flops 1
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 4 28 14%
Average Fanout of Non-Clock Nets 3.25

Table 3. Device utilization for Computer 2.



Building a basic membrane computer 279

4 Conclusion

In this work, we have shown that it is possible to fully emulate a P system without
loosing its intrinsic features of maximal parallelism and non-determinism. With
that aim, machines presented in the foundational paper of the discipline (square
generator and divisor test) have been built. Our designs mimic the internal struc-
ture of the P systems allowing the resulting hardware to perform as the theoretical
system should: processing one transition per clock cycle. The systems evolve in a
non-deterministic way and rules are applied in a maximal parallel derivation mode;
what, to the best of our knowledge, supposes the first real emulation of a P system
in-silico.

References

1. Alonso, S., Fernandez, L., Arroyo, F., Gil, J.: A Circuit Implementing Massive Par-
allelism in Transition P Systems. International Journal ”Information Technologies
and Knowledge”, vol. 2, pp. 35–42 (2008).

2. Bonde, V., Kale, A.: Design and Implementation of a Random Number Generator
on FPGA. International Journal of Science and Research, vol. 4, no. 5, pp. 203–208
(2015).

3. Freund, R., Ibarra, O., Paun, A., Sosik, P., Yen H.: Catalytic P Systems. In ”The
Oxford Handbook of Membrane Computing”, pp. 83–117, Oxford University Press
(2009). ISBN:9780199556670

4. George, M., Alfke, P.: Linear Feedback Shift Registers in Virtex Devices. Xilinx
Application Note, XAPP210 v1.3 (2007).

5. Martinez, V., Fernandez, L., Arroyo, F., Garcia, I.: A HW circuit for the application
of Active Rules in a Transition P System Region. Proc. 4th International Conference
Information Research and Applications, Varna (Bulgary), pp. 80–87 (2006). ISBN-10:
954-16-0036-0.

6. Martinez, V., Fernandez, L., Arroyo, F., Guiterrez, A.: HW Implementation of a
Bounded Algorithm for Application of Rules in a Transition P-System. Proc. 8th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, Timisoara (Romania), pp. 32-38 (2006).

7. Nguyen, V., Kearney, D., Gioiosa, G.: Balancing performance, flexibility and scalabil-
ity in a parallel computing platform for membrane computing applications. Lecture
Notes in Computer Science, vol. 4860, pp. 385–413 (2007). DOI:10.1007/978-3-540-
77312-2 24

8. Nguyen, V., Kearney, D., Gioiosa, G.: An implementation of membrane comput-
ing using reconfigurable hardware. Computing and Informatics, vol. 27, no. 3+, pp.
551569 (2008).

9. Nguyen, V., Kearney, D., Gioiosa, G.: An Algorithm for Non-deterministic Object
Distribution in P Systems and Its Implementation in Hardware. Lecture Notes in
Computer Science, vol. 5391, pp. 325–354 (2009). DOI:10.1007/978-3-540-95885-7 24

10. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and ele-
gant approach to hardware source code generation in Reconfig-P. The Jour-
nal of Logic and Algebraic Programming, vol. 79, no. 6, pp. 383-396 (2010).
DOI:10.1016/j.jlap.2010.03.013



280 Millan et al.

11. Nguyen, V., Kearney, D., Gioiosa, G.: A Region-Oriented Hardware Implementation
for Membrane Computing Applications. Lecture Notes in Computer Science, vol.
5957, pp. 385–409 (2010). DOI:10.1007/978-3-642-11467-0 27

12. Paun, G.: Computing with Membranes. Journal of Computer and System Sciences,
vol. 61, pp. 108–143 (2000). DOI:10.1006jcss.1999.1693

13. Petreska, B., Teuscher, C.: A Reconfigurable Hardware Membrane System. Lecture
Notes in Computer Science, vol. 2933, pp. 269–285 (2004). DOI:10.1007/978-3-540-
24619-0 20

14. Quiros, J., Millan, A., Viejo, J.: Implementacion sobre hardware reconfigurable de
una arquitectura no determinista, paralela y distribuida de alto rendimiento, basada
en modelos de computacion con membranas (Implementation on reconfigurable hard-
ware of a non-deterministic, parallel, and distributed high performance architecture
based on membrane computing models). PhD Thesis (2016).

15. Verlan, S., Quiros, J.: Fast Hardware Implementations of P Systems. Lecture Notes in
Computer Science, vol. 7762, pp. 404–423 (2013). DOI:10.1007/978-3-642-36751-9 27


