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Abstract

In this paper we propose the problem of finding the cyclic sequence which best represents
a set of cyclic sequences. Given a set of elements and a precedence cost matrix we look
for the cyclic sequence of the elements which is at minimum distance from all the ranks
when the permutation metric distance is the Kendall Tau distance. In other words, the
problem consists of finding a robust cyclic rank with respect to a set of elements. This
problem originates from the Rank Aggregation Problem for combining different linear ranks
of elements. Later we define a probability measure based on dissimilarity between cyclic
sequences based on the Kendall Tau distance. Next, we also introduce the problem of
finding the cyclic sequence with minimum expected cost with respect to that probability
measure. Finally, we establish certain relationships among some classical problems and the
new problems that we have proposed.

Keywords: Linear Ordering Problem, Rank Aggregation Problem.

1 Introduction

There is a vast number of combinatorial problems which look for the best permutation of a set
of elements assuming a certain criterion. If the optimal permutation is the one which minimizes
the cost of the path induced by the permutation we have the Linear Ordering Problem (LOP)
([8], [10]) and when the optimal permutation is the closest to a given set of permutations and
the distances among permutations are measured with the Kendall Tau distance, the problem
results in the Rank Aggregation Problem (RAP) (see [1], [4], [5] and [11] for a description and
evolution of the RAP and its applications). These two problems are closely related and it can
be shown that the RAP reduces to the LOP under a suitable transformation. In this paper we
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123 132 213 231 312 321

123 0 1 1 2 2 3
132 1 0 2 3 1 2
213 1 2 0 1 3 2
231 2 3 1 0 2 1
312 2 1 3 2 0 1
321 3 2 2 1 1 0

Table 1: Kendall Tau distance matrix, ∆6×6.

propose to afford these problems when the set of elements must be ranked in a cyclic way: for
instance when the elements are slices in a pie chart or nodes in a routing problem. The reader
may observe that the above problem is related to the so-called Target Visitation Problem (TVP)
([6] and [7]). Later, we will show the relationships between them.

In this paper we introduce the Cyclic Rank Aggregation Problem (CRAP) and a variant of
it, that we call the Permutated Asymmetric Traveling Salesman Problem (ρATSP). The Cyclic
Rank Aggregation Problem consists in finding the cyclic sequence which is at minimum distance
from a given set of cyclic sequences by measuring distances with the Kendall Tau metric. The
Permutated Asymmetric Traveling Salesman Problem consists in finding the cyclic sequence
with smaller expected cost. The applications of the Target Visitation Problem, as for example
environment assessment, combat search, rescue and disaster relief ([6]) and applications to the
delivery of emergency supplies ([3]) can also be shown as examples of application of the Cyclic
Rank Aggregation Problem and of the Permutated Asymmetric Traveling Salesman Problem.
This paper also shows that an optimal solution of the ρATSP is an optimal solution of CRAP
but in reverse order.

The main contribution of this paper is a compact formulation for the Cyclic Rank Aggre-
gation Problem and the proof of equivalence of the Cyclic Rank Aggregation Problem and the
Linear Ordering Problem. The paper is organized as follows. In Sections 2 and 3 we introduce
the CRAP and the ρATSP respectively and we propose compact formulations for them. Section
5 is devoted to establish the relationships among the LOP, RAP, CRAP and ρATSP.

2 The Cyclic Rank Aggregation problem

Let G = (V,A) be a complete directed graph with arc weight cij for each pair i, j ∈ V and
V = {1, . . . , n}. Let S be the full set of permutations in V and σi a permutation. We can define
the distance d(σ1, σ2) like the number or pairwise disagreements between the two permutations
σ1 and σ2. This distance is known as Kendall tau distance.

Definition 1
The Kendall Tau distance between two permutations σ1 and σ2 is given by:

d(σ1, σ2) = |{(i, j) : i < j, ((σ1(i) < σ1(j) ∧ σ2(i) > σ2(j)) ∨ (σ1(i) > σ1(j) ∧ σ2(i) < σ2(j)))}|
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where, σ1(i) and σ2(i) are the position of the element i in σ1 and σ2 respectively.

The Kendall Tau distance is a permutations metric that counts the number of pairwise
disagreements between two ranking lists. The larger the distance is, the more different the
permutations are. For instance, if we had four elements, the distance to the permutation 1234
from 1243, 1342 and 1432 will be 1, 2 and 3 respectively. Kendall Tau distances between all the
permutations of four elements are shown in Table 1. In the following, we call ∆n×n = (δij) the
Kendall distance matrix for n elements.

We can define a cyclic ordering of a finite set V to be a permutation σ ∈ S with exactly
one orbit. Cyclic orderings split the set of linear orderings S into a set of equivalence classes.
Similar to Definition 1, we can define the Kendall Tau distance between two cyclic sequences as
the Kendall Tau distance between the representative cyclic sequences of each equivalent class.
We denote by R the set of equivalence class induced by S, when S is the set of all permutations
in V (any ρ ∈ R represents a hamiltonian tour in V ). We denote by C(r) the aggregation
weights of the cyclic sequence r ∈ R and we denote by ρ ∈ R one element of R.

We define the Cyclic Rank Aggregation problem as the problem to find the cyclic sequence
closest to all cyclic sequences in the complete directed graph G = (V,A) :

(CRAP) argmin
ρ

∑
r∈R C(r)d(ρ, r). (1)

In order to exactly solve the CRAP we propose a compact formulation. We define a family
of binary variables, called z-family:

zij =

{
1 if j is visited before i
0 otherwise

for all i, j ∈ V i ̸= j.
If V = {1, 2, 3, 4}, the cyclic sequences 1234 and 1342 will be associated to the solutions

zij =


− 0 0 0
1 − 0 0
1 1 − 0
1 1 1 −

 and zij =


− 0 0 0
1 − 1 1
1 0 − 0
1 0 1 −

 .

respectively.
The first contribution of this paper gives an explicit expression for the objective function of

CRAP. Later, we shall substantially simplify it by using properties of the z-variables.
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Proposition 1
The objective function of CRAP is

∑
i,j∈V−{1}:i̸=j

cij

(n− 2)!zij +
∑

k,t∈V−{i,j,1}:k<t

(n− 2)!

2
(zkt + ztk)+

∑
k∈V :k ̸=i,j,1

(n− 2)!

2
(zki + zik + zjk + zkj)

+

∑
j∈V−{1}

c1j

(n− 2)!
∑

k∈V−{1,j}

zjk +
∑

k,t∈V−{j,1}:k<t

(n− 2)!

2
(zkt + ztk)

+

∑
j∈V−{1}

cj1

(n− 2)!
∑

k∈V−{1,j}

zkj +
∑

k,t∈V−{j,1}:k<t

(n− 2)!

2
(zkt + ztk)

 (2)

The idea of the proof is to compute the number of times that each cost cij appears in the
objective function. For instance, consider a problem with n = 5 in which the cheapest cyclic
sequence is 12345. Cost c53 appears in permutations 12453, 12534, 14253, 14532, 15324 and
15342 which have disorders 2, 2, 3, 5, 4, 5. Thus, the coefficient of c53 in the objective function
is 21 (2+2+3+5+4+5). And also 21 = 6z53+3(z32+ z42+ z52+ z43+ z54), i.e., six times we add
the disorder of visiting node 5 before node 3, three times we add the disorder of visiting node 3
before node 2 and so on.
Proof of Proposition 1. The proof consists in computing the number of times that each
cost cij appears in the objective function. Since all the cyclic sequences start at node 1, we
distinguish between cij with i, j ∈ V \ {1}, i ̸= j and c1j or cj1. We say that an ordered set of
two nodes {i, j} incurs in disorder if j is visited before i in the solution.

We distinguish three cases:

• i, j ∈ V \ {1}, i ̸= j. cij is added to the objective function when the arc (i, j) be-
longs to the cyclic sequence and either {i, j} incurs itself in disorder or any of the sets
{k, i}, {i, k}, {k, j}, {j, k} for k ∈ V − {1, i, j} or {k, t}, {t, k} for k, t ∈ V − {1, i, j}, k ̸= t
incur in disorder. Therefore, we need to compute: (i) the number of permutations to which
the arc (i, j) belongs to; (ii) how many permutations among them visit k before and after
i and before and after j for all k ∈ V −{1, i, j}; (iii) how many permutations among them
visit k before t and viceversa with k, t ∈ V − {1, i, j}, k ̸= t.

– The arc (i, j) belongs to {n−2}! permutations starting at 1: there are n−2 positions
for i if it must be followed by j. Once i and j are assigned the other n− 3 positions
can be sorted anyhow, thus {n − 2} × {n − 3}! = {n − 2}!. The first addend of the
coefficient of cij is (n− 2)!zij .

– By symmetry, in half of the {n−2}! permutations having arc (i, j) k is visited before
t and in half of the permutations t is visited after k for k, t ∈ V −{1, i, j}, k ̸= t. The
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second addend of the coefficient of cij is∑
k,t∈V−{i,j,1}:k<t

(n− 2)!

2
(zkt + ztk)

– By symmetry, in half of the {n−2}! permutations having arc (i, j), k is visited before
i and in half of the permutations k is visited after i for k ∈ V −{1, i, j}. Analogously,
for the number of times that k is visited before and after j. The third addend of the
coefficient of cij is ∑

k∈V :k ̸=i,j,1

(n− 2)!

2
(zki + zik + zjk + zkj).

• j ∈ V \ {1}. c1j is added to the objective function when the arc (1, j) belongs to the cyclic
sequence and any of the sets {j, k} for k ∈ V − {1, j} or {k, t}, {t, k} for k, t ∈ V − {1, j},
k ̸= t incur in disorder. It is similar to the case for cij with i > 1 but with two differences:
(i) Since 1 is always the first node, the set {1, j} never incurs itself in disorder; (ii) the
number of permutations among those with the arc (1, j) such that k ∈ V −{1, j} is visited
before j is zero. Therefore, we need to compute the number of permutations to which
the arc (1, j) belongs and how many among them visit k before t and viceversa with
k, t ∈ V − {1, i, j}, k ̸= t. It is easy to observe that the number of permutations with the
arc (1, j) is (n− 2)! and that half of them visit k before t.

• cj1 for j > 1. Analogous to the previous case. □

Applying Proposition 1, we can formulate the CRAP as:

(CRAP) min (2)

s.t. zij + zji = 1 ∀i, j ∈ V : i < j (3)

zij − zik − zkj ≤ 0 ∀i, j, k ∈ V : i ̸= j, j ̸= k, i ̸= k (4)

zj1 = 1 ∀j ∈ V − {1} (5)

zij ∈ {0, 1} ∀i, j ∈ V : i ̸= j (6)

Constraint (3) translates the fact that any element i is ranked before or after j but both
cases cannot occur simultaneously. It implies that both values zji = 0 and zij = 1 represent
that element j is ranked before element i. Constraint (4) describes the transitive relationship
between the position of three elements in the permutation. The message is that if j goes after
k and k goes after i, (i.e., zik = zkj = 0 or zki = zjk = 1) then j must go after i, i.e., zji = 1
and zij = 0. Any solution of the system (3), (4),(6) is a permutation of the elements of V : all
the nodes are relative sorted and transitivity holds. Indeed, the set of constraints (3), (4),(6) is
the set of constraints for the LOP. (5) forces node 1 to be the first node of any cyclic sequence.
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Since any solution of the CRAP will hold (3), we can simplify the objective function. In
particular, it is reduced to the following expression:

(n− 2)!

 ∑
i,j∈V−{1}:i̸=j

cij

zij +
∑

k,t∈V−{i,j,1}:k<t

0.5 +
∑

k∈V :k ̸=i,j,1

1

+

∑
j∈V−{1}

c1j

 ∑
k∈V−{1,j}

zjk +
∑

k,t∈V−{j,1}:k<t

0.5

+

∑
j∈V−{1}

cj1

 ∑
k∈V−{1,j}

zkj +
∑

k,t∈V−{j,1}:k<t

0.5


Ignoring the factor (n − 2)! and the constant, those cyclic sequences which minimize the

above expression are the same cyclic sequences which minimize∑
i∈V−{1}

∑
j∈V−{1}:j ̸=i

(cij + c1i + cj1)zij . (7)

Therefore, it is sufficient to consider the objective function given in (7) to obtain the optimal
solution of the CRAP.

In order to recover the optimal value of the CRAP, (1), the constant and the factor should
also be computed:

2
∑

s∈R C(s)

(n− 1)!
− 2

(n− 2)(n− 1)2

2v∗ +

((
n− 3

2

)
+ 2(n− 3)

) ∑
i,j∈V−{1}:i ̸=j

cij +

(
n− 2

2

) ∑
j∈V−{1}

(cj1 + c1j)

 (8)

where v∗ is the optimal value of

(CRAP∗) max
∑

i∈V−{1}

∑
j∈V−{1}:j ̸=i

(cij + c1i + cj1)zij

s.t. zij + zji = 1 ∀i, j ∈ V : i < j

zij − zik − zkj ≤ 0 ∀i, j, k ∈ V : i ̸= j, j ̸= k, i ̸= k

zj1 = 1 ∀j ∈ V − {1}
zij ∈ {0, 1} ∀i, j ∈ V : i ̸= j

Even if CRAP∗ is strongly similar to LOP, the credit of this paper is to prove that the
optimal value of a problem which uses the Kendall Tau distances for aggregating cyclic ranks is
exactly given by (8). Moreover, since solving the CRAP∗ implies solving the LOP, the CRAP
is NP-hard.
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3 The Permutated Asymmetric Traveling Salesman Problem

Let us consider consider the situation in which the optimal tour given when solving the
asymmetric TSP needs to be modified because of unexpected events. We allow the ATSP to
admit a source of uncertainty and we wish to hedge against it assuming a robust alternative
criterion. If our aim is that tours with large disagreements have fewer probabilities of occurrence
than tours with small disagreements we can define the probability that the tour occurs as

p(ρ, r) =
B(n− 1)− d(ρ, r)

A(n− 1)
∀ρ, r ∈ R

where A(n) is the total number of disagreements in all the permutations of n and B(n) is the
maximum number of disagreements that may occur from any permutation pair of n elements
and both values are known to be

A(n) = n!n(n− 1)/4, B(n) = n(n− 1)/2.

All the probabilities are non negative because B(n) is the maximum number of possible
disagreements, and the addition of any row of the probability matrix is 1:∑

r∈R
p(ρ, r) =

∑
r∈R

B(n− 1)

A(n− 1)
−

∑
r∈R

d(ρ, r)

A(n− 1)
= (n− 1)!

B(n− 1)

A(n− 1)
− 1 = 1

In our example, probabilities are those in Table 2, which follow from applying formula
(3− δij)/9 to disagreements in Table 1.

1234 1243 1324 1342 1423 1432

ρ1 =1234 3/9 2/9 2/9 1/9 1/9 0
ρ2 =1243 2/9 3/9 1/9 0 2/9 1/9
ρ3 =1324 2/9 1/9 3/9 2/9 0 1/9
ρ4 =1342 1/9 0 2/9 3/9 1/9 2/9
ρ5 =1423 1/9 2/9 0 1/9 3/9 2/9
ρ6 =1432 0 1/9 1/9 2/9 2/9 3/9

Table 2: Probability matrix; Columns are the potential tours and rows are all the possible
permutations.

Now, we can define the Permutated Asymmetric Salesman Problems as the problem to find
the optimal tour ρ in R for the problem

(ρATSP) argmin
ρ

∑
r∈R C(r)p(ρ, r). (9)

According to the definition of the probabilities, ρATSP is equivalent to CRAP, changing
maximization by minimization in the definition of the problems.
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0 1 3 1
2 0 2 3
1 1 0 1
1 3 1 0

 Route 1234 1243 1324 1342 1423 1432

C(·) 5 6 8 9 7 5

Cw(·) 6.56 6.11 7 7.22 6.33 6.78

Table 3: Left: Asymmetric cost matrix. Right: Route costs and expected tour costs

(CRAPmax) argmax
ρ

∑
r∈R C(r)d(ρ, r) (10)

In fact, if we denote by v∗(ρATSP ) the optimal objective value of ρATSP, v∗(ρATSP ) =
2
∑

r∈R C(r)/(n− 1)!− v∗(CRAPmax)/A(n− 1).
Table 3 shows the objective value of the ATSP and of the ρATSP for all the possible

tours for the given cost matrix. In our example, v∗(ρATSP ) = 6.11,
∑

r∈R C(r) = 40 and
v∗(CRAPmax) = 65.

It is easy to see that the tour in the reverse direction to an optimal tour for CRAP is an
optimal tour for CRAPmax. Given a tour r ∈ R and the tour in the reverse direction r̄ it is
always satisfied that

δrs + δr̄s = B(n− 1).

In Table 1 we can observe that δ1234,s+δ1432,s = 3 for all s ∈ {1234, 1243, 1324, 1342, 1423, 1432},
analogously δ1243,s+δ1342,s = 3 and δ1324,s+δ1423,s = 3 for all s ∈ {1234, 1243, 1324, 1342, 1423, 1432}.
Thus, the opposite tour to an optimal tour for CRAPmax is an optimal tour for CRAP and vicev-
ersa. Moreover, v∗(CRAP )/A(n− 1) = v∗(ρATSP ).

On the other hand, we would like to emphasize that optimal solutions to the ATSP are not
related with optimal solutions to ρATSP (see Table 4 where v∗(ATSP ) = 5 and v∗(ρATSP ) =
6.11). If we compute the objective value of ρATSP for the optimal value of the ATSP it might
strongly differ from the optimal value of ρATSP. In order to illustrate this fact, we have solved
some of the ATSP instances in TSPLIB ([9]) and the results are shown in Table 4: v(ATSP) is
the objective value in ρATSP for the optimal solution of the ATSP and %diff stands for

%diff = 100(v(ATSP)− v∗(σATSP))/v∗(σATSP).

For the 22 instances presented in the table, the percentage of difference goes from 0% to
9.82% (the 0% corresponds to a special case in which both solutions, the one for the σATSP
and the one for the ATSP coincide). The average difference for the ftv instances is around 6%
and for all the instances presented in the table it is of a 4.8%. These differences indicate that
the solutions provided by the ATSP model are not adequate as solutions to the ρATSP.

4 Relationships among the different problems

In this section we prove that we can obtain the optimal solution of the CRAP from the
optimal solution of the LOP or from the optimal solution of the ρATSP and viceversa. Since
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Instance |V | %Diff

ftv33 34 7.36
ftv35 36 6.50
ftv38 39 6.17
ftv44 45 5.94
ftv47 48 9.82
ftv55 56 6.39
ftv64 65 3.87
ftv70 71 4.55
ftv90 91 5.17
ftv100 101 4.61
ftv110 111 4.21
ftv120 121 4.00
ftv130 131 6.08
ftv140 141 5.93
ftv150 151 5.75
ftv160 161 6.41
ftv170 171 5.84
br17 17 0.00
ft53 53 8.41
ft70 70 3.24
p43 43 0.11
ry48p 48 1.30

Table 4: Percentage of deviation for the 22 ATSP instances in the TSPLIB. [9]

LOP and RAP were also proved to be equivalents in [2], we state that LOP, RAP, CRAP and
ρATSP are equivalent.

Theorem 1
LOP, CRAP and ρATSP are equivalent.

Proof of Theorem 1. Let L = (V,A) be a completed directed graph with arc weight wij for
each pair i, j ∈ V. Let xij a binary variable which takes the value of 1 iff i goes before j for all
i, j ∈ V. The canonical IP formulation of the LOP is:

(LOP) max
∑

(i,j)∈A

wijxij

s.t. xij + xji = 1 ∀i, j ∈ V : i < j

xij − xik − xkj ≤ 0 ∀i, j, k ∈ V : i ̸= j, j ̸= k, i ̸= k

xij ∈ {0, 1} ∀i, j ∈ V : i ̸= j

• LOP and CRAP are equivalents: Each instance of the LOP can be transformed to an
instance of the CRAP∗ adding an additional null row and null column to the matrix of
distances, and each instance of the CRAP∗ , is by definition an instance of the LOP when
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the arcs weight have been transformed, wij = cij + c1i + cj1 for i, j ̸= 0, and wij = 0
otherwise.

• CRAP and ρATSP are equivalent. From the discussion in Section 3, the optimal solution
of ρATSP is the same cyclic sequence as the optimal solution of CRAP but in the opposite
direction.

□

Theorem 1 implies that the CRAP and the ρATSP inherit all the properties of the LOP. For
instance that for symmetric weight matrices all the solutions are optimal, among many others.

Since RAP is equivalent to LOP (see [2]), the following Corollary holds.

Corollary 1
LOP, RAP, CRAP and ρATSP are equivalents.

From Corollary 1 it follows that we have introduced two new applications of the LOP devoted
to aggregation of preferences and robustness of cyclic sequences.
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