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We study whether it is possible to obtain an induced structure on a slant submanifold of a metric
f-manifold. Moreover, we give conditions for any isometric immersion between two mnyetric
manifolds to be slant and we prove a characterization theorem when the submanifold has the
smallest possible dimension to be proper slant.
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1. INTRODUCTION

Slant immersions in complex geometry were defined by Chen as a natural generalization of both
holomorphic and totally real immersions [5, 6]. Recently, Lotta has introduced the notion of slant
immersion in contact geometry [9] which also generalizes invariant and anti-invariant immersions.
In this context, slant submanifolds of Sasakian manifolds have been studied in [2].

Moreover, for more general metrit-manifolds, that is, for Riemannian manifolds endowed
with an f-structure in the sense of Yano [11], compatible with the Riemannian metric, it is also
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possible to define slant immersions [4] and some interesting examples of such slant submanifolds
are given in [4, 7]. A general view about slant immersions can be found in [3].

On the other hand, it is well known that any holomorphic submanifold (resp., any invariant sub-
manifold tangent to the structure vector field) of a Kaehlerian (resp., a Sasakian) manifold inherits
the structure from the ambient space. The same result can be proved for invariant submanifolds tan-
gent to the structure vector fields 8fmanifolds, which are a particular case of meffimanifolds.

They were introduced by Blair [1] as the analogue of Kaehler manifolds in the almost complex case
and of Sasakian manifolds in the almost contact case. Since those invariant submanifolds are slant
ones, itis interesting to study the possibility of obtaining an induced structure on slant submanifolds
of metric f-manifolds and this is the purpose of present paper.

To that end, we begin by reviewing, in Section 2, formulas and definitions for later use. In
Section 3, we prove that a slant submanifold ofS&manifold inherits the ambiergi-structure if
and only if it is an invariant submanifold. Moreover, in the case of dimen8ians, which is
the smallest possible dimension for the existence of proper slant submanifolds (neither invariant
nor anti-invariant slant submanifolds), we show that the submanifold also needs to be invariant
for having an induced metri¢-contact structure. The used tools allow us to prove that any slant
isometric immersions from & + s)-dimensional metri¢f-contact manifold in another metrijt
contact manifold with compatible structure vector fields is invariant.

Finally, in Section 4, we study the conditions for an isometric immersion between two general
metric f-manifold with compatible structure vector fields to be slant and we prove a characterization
theorem when the submanifold has the possible smallest dimehsion

2. SLANT SUBMANIFOLDS OF METRIC f-MANIFOLDS

A Riemannian manifoldV/ is said to be a metri¢-manifold if there exist onV/ an f-structuref,
that is, a tensor field of type (1,1) satisfyingf® + f = 0 (see [11]) ands global vector fields
&1, ..., & (called structure vector fields) such thatyif . . . , s are the dual 1-forms ofy, . .., &,
then

JEa =05 ngo f=0; f2:_1+277a®€a;

a=1
9(X,Y) = g(fX, [Y) + > na(X)na(Y), (2.1)
a=1
forany X,Y € X(/W) anda = 1,...,s, whereg is denoting the Riemannian metric. Observe

that, in the above conditions
9(X, fY)=—g(fX,Y) (2.2)
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and so, we can consider the 2-fofdefined byF(X,Y) = ¢g(X, fY), forany X, Y € X (M),
called the fundamental 2-form. Thef/ is said to be a metri¢-contact manifold (or to have a
metric f-contact structure) i = dn,, for anya = 1,...,s. Whens = 1, metric f-contact
manifolds correspond to metric contact manifolds.

On the other hand, thg-structuref is normal if

[faf]+225a®d77a:0,

a=1

where(f, f] is the Nijenhuis tensor of. Thus, M is said to be arf-manifold if the f-structure is
normal and

771/\/\773/\((17704)”750, F:dn(h

foranya = 1,...,s. In this case, the structure vector fields are Killing vector fields. Obviously,
S-manifolds are metrigf-contact manifolds. Wherm = 1, S-manifolds are Sasakian manifolds.
Interesting examples d¢f-manifolds withs > 2 can be found in [1, 8].

It is known that the Riemannian connecti®iof an S-manifold satisfies [1].

Vxéa = —fX, (2.3)
and
(VXHY =D (g(fX, fY)éa +na(Y)F?X), (2.4)
a=1

foranyX,Y € X(M)andanya =1,...,s.

Now, let M be a Riemannian manifold isometrically immersed in a mgtr'manifold]\? and
let g denote the induced metric tensor bhtoo. LetT M be the set of vector fields ol which

are normal taV/, that is, X (M) = X (M) & T+ M.
If V denotes the Riemannian connectiom\éf the well known Gauss formula is given by
VxY =VxY +0(X,Y), (2.5)

forany X,Y € X (M), whereo is representing the second fundamental form of the immersion and
s0,0(X,Y) € T1M. The curvature tensor fields, denoted Byand R, associated with/ andV,
respectively, are related by the following Gauss equation:

R(X,Y;Z,W)=R(X,Y;Z,W) + g(c(X, Z),c(Y,WV))

—g(o(X,W),0(Y,2)), X, Y, Z, W € X(M). (2.6)
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Next, for anyX € X (M) we can write
fX=TX+NX, (2.7)

whereT' X and N X are the tangential and normal componentg &f, respectively. The submani-
fold M is said to be invariant ifV is identically zero, that is, if X € X (M), forany X € X'(M).
On the other hand)/ is said to be an anti-invariant submanifoldZifis identically zero, that is, if
fX e T+M, foranyX € X(M). The covariant derivative ¢f is given by

(VxT)Y = VxTY — TVyY,

forany X, Y € X(M). We have the following specific result for invariant submanifoldsSef
manifolds:

Lemma2.1 — Let M be anS-manifold and} be an invariant submanifold tangent to the
structure vector fields. Then,

(VxT)Y = Z(Q(TXv TY)&O( + na(Y)T2X)ﬂ (2.8)

a=1
foranyX,Y € X(M)andanya =1,...,s,
PROOF: SinceM is an invariant submanifold, we ha¥eX = fX, foranyX € X (M). Then,
by using (2.5),
(VXT)Y = VxfY — fVxY = (Vx[)Y —o(X, fY) + fo(X,Y),
forany X,Y € X(M). Now, from (2.2), we get
9(fo(X,Y),Z) = —g(o(X,Y), fZ) = 0,

for any Z € X (M), because\/ in an invariant submanifold and s¢g(X,Y) € T+ M. Taking
into account thatV xT")Y is also a tangent vector field, from (2.4) we obtain (2.8). O

From now on, we suppose that all the structure vector fields are tangent to the submanifold
and we denote byM the distribution ofX'(M) spanned by the structure vector fields andby
the orthogonal complementary distributionAd in X (M). Then, we have the orthogonal direct
decompositiot’ (M) = £ & M. Moreover, if)/ is anS-manifold, by using (2.3), (2.5) and (2.7)
it is easy to show that
o0(X,&) = —NX, (2.9)

foranyX € X(M)anda =1,...,s. Consequently(&,,£3) =0, foranya, 3 =1,...,s.

The submanifold)M is said to be a slant submanifold if, given any paintc A and any
nonzero vectotX € L., the angle betweeriX and7, M is a constant € [0,7/2], called the
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slant angle of\/ in M, which is independent on the choice of the pairdnd the vectorX. Note

that this definition generalizes that one given by Chen [6] for complex geometry and that one given
by Lotta [9] for contact geometry. Moreover, invariant and anti-invariant submanifolds tangent to
the structure vector fields are slant submanifolds with slant aheglé) andf = /2, respectively.

A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.
Observe that, for invariant submanifolds—= f onT M and, so

T2 =T+ 1 ® &, (2.10)

a=1
while, for anti-invariant submanifoldg;? = 0. In fact, we have the following general result whose

proof can be obtained by following the same steps as in thescase (see [2]):

Theorem?2.1— Let M be a submanifold of a metri¢-manifold M, tangent to the structure
vector fields. ThenM is a slant submanifold if and only if there exists a constart [0, 1] such
that

T2 = =M+ X)) na®& =A%

a=1
Furthermore, in such case, & is the slant angle of\/, it satisfies that\ = cos? 6.
Using (2.1), (2.7) and Theorem 2.1, a direct computation gives:
Corollary 2.1 — Let M be a slant submanifold of a metrjemanifold A, with slant angle.

Then, for anyX,Y € X (M), we have:

g(TX,TY) = cos? 6(g Z Na(X

g(NX,NY) =sin®0(g Zna

3. STRUCTURE ON ASLANT SUBMANIFOLD

Let M be an invariant submanifold of a metrfemanifold M, tangent to the structure vector fields.
Then, from (2.10), we see that such submanifold is a métritanifold too, with thef-structurel’
(induced onM by f). In this section, we want to study if it is possible to obtain an induced structure
on non-invariant slant (isometrically immersed) submanifolds of a métnmanifold. This problem

is suggested by the similar situation on slant submanifolds in complex geometry [5, 6].

First, we are going to prove that there always exists an indyestucture on any non-anti-
invariant slant submanifold.
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Proposition3.1 — LetM be a non-anti-invariant slant submanifold of a mefimanifold M.
Then,f = (sec§)T is an f-structure onM . With this f-structure M becomes a metri¢-manifold
too, with structure vector fieldg, ..., &

PrROOF: By virtue of Theorem 2.1, it is easy to show that

f X =sec?0T?X = —X"‘Z% Vs

and by using Corollary 2.1,

g(FX, fY) =sec? 0g(TX,TY) = g(X,Y) Zna

foranyX,Y € X(M). O

In particular, if¢ = 0, the induced structure on the invariant submanifelds the usual one,
givenbyf =T.

On the other hand, i/ is a metricf-contact manifold (that is, if the fundamental 2-form of
M verifies thatF’=dn,,, for any«) and M is a proper slant submanifold, then the structure induced
by f does not verify the same property, because, denoting the fundamental 2-form af/ with
such induced structure,

F(X,Y)=g(X,fY) =secOg(X,TY) = secOF(X,Y) = secldn.(X,Y),
foranyX,Y €e X(M)anda=1,...,s

Consequently, with this induced structure, we have that a slant submanifold of a fretri¢act
manifold is also a metri¢-contact manifold if and only if it is an invariant submanifold. Moreover,
we can prove the following proposition:

Proposition3.2 — LetM be anS-manifold andM be an invariant submanifold tangent to the
structure vector fields. Then, thfestructure on\/ defined byf = T is anS-structure on\/.

PROOF: As we have noticed above, it is easy to show thak,Y) = F(X,Y)=d n,(X,Y),
forany X, Y € X(M) anda = 1,...,s, whereF is denoting the fundamental 2-form da
associated with the/-structuref. Furthermore, thisf-structure is also normal because by using
(2.8) we obtain that

[T, T(X,Y) = (VoxT)Y — (VoyT)Y + T(VyT)X — T(VxT)Y

:—QZg (X, TY)¢ :—2ZFX V)¢ :—2§:dna(X,Y)£a,

a=1 a=1

foranyX,Y € X(M). So,M is anS-manifold too. O
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We can now wonder if it is possible to obtain &rstructure on the submanifold from another
way, by choosing the appropriate conditions. However, we have the following necessary intrinsic
condition for slant immersions if-manifolds:

Proposition3.3 — Let M be af-slant submanifold of al-manifold M. Then, foranyr € M,
the sectional curvature of any 2-planegfi/ containing one and only one of the structure vector
fields equals t@os? 6.

PROOF: Let X € X (M) be a unit vector field such th&tX,, (£,).} is an orthonormal basis
of a 2-plane off, M. Then, sinceR(X, &y:&a, X) = 1 (see [1]), from Gauss equation (2.6) and
from (2.9), we get that

R(X,fa;fa,X) =1- Q(U(nga)ao'(X>§o¢)) =1- g(NX7 NX)
and, from Corollary 2.1, we complete the proof. O
Thus, we can prove the following proposition.

Proposition3.4 — A slant submanifold/ of an S-manifold M is anS-manifold if and only if
it is an invariant submanifold.

PrRoOOF: The direct implication is an easy consequence of the above proposition and the men-
tioned result of [1] which establishes that the sectional curvature of any 2-planeSsframnifold
containing one and only one of the structure vector fields equals to 1. For the converse, we only
have to consider Proposition 3.2. O

Hence, it is not possible to have an inducedtructure on a non-invariant slant submanifold of
anS-manifold. Nevertheless, we can still wonder if it would be possible to induce a nfetoatact
structure. The answer will be negative again with respect to the case of the smallest dimension for
non-anti-invariant slant immersions and we shall use a different method. Let

902(M777517"‘7gsuﬁl7"'7ﬁsug) — (M7f7£17"'75877717“'77787.9)

be an immersion between two metgiemanifolds. We suppose that= ¢*g (or, in other words,
thaty is an isometric immersion) and, moreover, that

PraMy = My, (3.2)

foranyx € M, where, as above\ andM are denoting the distributions spanned by the structure

vector fields inX' (M) and X' (M), respectively. In particular, we have th@at € X (M), for any
a=1,...,s. Now, letp*F' be the 2-form on\/ given by

P F(X,Y) = F(ou X, 0:Y) = g(0: X, foiY),

forany X,Y € X(M). From now on, we are going to identify andy, X, forany X € X'(M).



418 L.M. FERNMANDEZ, M.B. HANS-UBER

Next, we consider thap is a slant immersion with slant angle Since it is easy to check that
any (1 + s)-dimensional submanifold of a metrfcmanifold tangent to the structure vector fields
is an anti-invariant submanifold, we study the caséif()) = 2 + s. Then, we can obtain a
relationship betweef andy* F:

Proposition3.5 — In the above conditiong;* F' = +(cos 0) F.

PrROOF: We can suppose thatis a non-anti-invariant immersion because, if it is anti-invariant,
the result is obvious singg* F' = 0.

So, lete; be a unit local vector field tangent id and perpendicular to the structure vector fields
and definey = (sec)Te;. By Corollary 2.1, we get thdte;, e2, &1, . . ., &5} is alocal orthonormal
basis of X (M). Then, fe; = g(fe1,e2)es and, consequently;(fer, fer) = g*(fe1,e2). Now,
sinceg(fei, fe1) = 1, we have:

?61 = *teg; 762 = Feq. (32)

Let X, Y be any two tangent vector fields id. We can write them with respect to the above
local orthonormal basis as follows:

X=X'e1+ X%+ Y na(X)a; Y =Y'er + V%2 + > na(Y)éa-
(6

From (3.2), we obtain that:

F(X,Y)=g(X,fY)=FX'Y?+ X%y (3.3)

On the other hand,
O F(X,Y) = F(pu X, 0.Y) = g(X, fY) = g(X,TY) = —cos X 'V? 4 cos XY, (3.4)
sinceTY = — cos Y %e; + cos @Y 'ey. Thus, from (3.3) and (3.4), we complete the proof. O

Now, by using Proposition 3.5, we can prove the following theorem:

Theorem3.1— Lety : M — M be a slant immersion from a metrfccontact manifold
(M7?7217 A 7Es7ﬁ17 A 7ﬁ57 (p*g)7
with dimensior2 + s in another metricf-contact manifold

(M7f7€17"'75877717'"777879)

such thatp,.£,, = &,, foranya = 1,..., s. Then ¢ is an invariant immersion
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PrROOF: Denote by the slant angle of the immersign Observe that the conditian.£,, = &,,
foranya = 1,...,s, implies (3.1). Moreover, sincg is an isometric immersion, such condition
also implies thatp*n,, = 7, for anya. So,

d(¢*ne) = di, = F, (3.5)

becausé\/ is a metricf-contact manifold. Then, from Proposition 3.5, sis a metricf-contact
manifold too, we obtain:

d(¢*™ne) = ¢*dn, = ¢*F = £(cosO)F. (3.6)

But, from (3.5) and (3.6), we deduce that § = 1, that is, the immersiop is invariant.

The following corollary gives an answer to our question(®# s)-dimensional slant subman-
ifolds.

Corollary 3.1 — LetM be a(2+ s)-dimensional slant submanifold of ahmanifold M. Then,
the S-structure ofM induces a metrigf-contact structure o/ if and only if M is an invariant
submanifold.

PROOF : The direct implication is obvious from Theorem 3.1 because gmganifold is a
metric f-contact manifold. The converse is already known. O

Nevertheless, we can consider slant immersions between nfetanifolds. In fact, it is
enough to choose a local orthonormal basis

{617627§17 s 755}

and definef such thatfe; = e, and fes = —e; (in particular, thef-structure given in Proposition
3.1 verifies this property in the case of non-anti-invariant slant submanifolds) to obtain a metric
f-structure on 42 + s)-dimensional slant submanifold.

4. CONDITIONS FOR ANIMMERSION BETWEENMETRIC f-MANIFOLDS TO BE SLANT

In this section we consider any isometric immersion

QO(M,E) — (M)fvfla--wgs’nla---vnsag)

from a Riemannian manifold into a metrfemanifold such that the structure vector fields are tan-
genttoM. Then, we have the following proposition.

Proposition4.1 — Under the above conditions dfm (M) = p and

{617' ")ep—&glu" . 768}
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is a local orthonormal basis 6f (M), then, the immersiop is slant if and only if there exists a
constant\ € [0, 1] such that

p—s

> a(fej,eg(fer,ei) = Aoj, (4.1)

i=1
foranyj,k = 1,...,p — s. Furthermore, in this case, = cos? 6, wheref is denoting the slant
angle of the immersion.

PROOF: First, we suppose that is a slant immersion with slant angle Thus, given any unit
tangent vector field € £, we have

p—s
ZgQ(fX, e;) = cos? 0, 4.2)

i=1
from which, writing X = e;, we deduce that:

p—Ss

zgg(fej, e;) = cos? 6. 4.3)

=1

Consequently, we get (4.1) in the cgse k, with A = cos? 6. Next, letj # k and consider the

unit local vector field
X = (e +ex)
= —(e; +eg),
Vol

which is perpendicular to the structure vector fields. By applying (4.2), we obtain:

1p—s 1 p—s p—s
cos? = 52 g*(fej ) + 3 > Pfere) + Y glfej e)g(fer,ei).
=1 =1 =1

Next, from (4.3), we have (4.1) in the caget k. Conversely, leX € X' (M) be any tangent
vector field toM. So, we can write:

p—s S
X =) "g(X,e)ei+ > na(X)a- (4.4)
i=1 a=1
Moreover:
p—s
T°X =) g(T*X, e;)e;. (4.5)
i=1
But, since
pP—s

g(T?X, &) = (X, T%e;) = > _ g(X,¢;)g(T%e;, ¢;)
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and, from (4.1),
9(T%ei,ej) = —g(Te;, Tej) = — Y g(Te;, ex)g(Tej, ex) = —Adyj,
1

S

£
Il

then
g(T?X,e;) = —Ag(X,e;). Thus, by using (4.4) and (4.5), we get

T2X =-A <X - ina(X)£a>
a=1

and, from Theorem 2.1, we obtain thais a slant immersion with slant angles—! NoY O
We remark that the Kaehlerian version of above proposition can be found in [10].
Now, we consider a metri¢-structure on\/,

(M7?7517"‘ 7Esaﬁ17‘ . '7ﬁ57§)7

such thatp,, M, = /\780(3;), for anyx € M. As above, lef’ andF be the fundamental 2-forms of
M and]\?, respectively and, moreover, we considerMdrthe 2-formy™* F. Then, we can prove the
following theorem.

Theorem4.1— Under the above conditions, if there exists a consfamt [—1, 1] such that
©*F = kF, theny is a slant immersion with slant angtes ! |k|.

PROOF: Since M is a metric f-manifold, we can choose an orthonormal basigiingiven
by B = {e1,...,em, fe1,--, fem, &, ..., &}, where we are puttingim (M) = 2m + s. Let
X € LN B. Sincep*F = kI, we have that

9(fX,e) =kg(fX,e;) = —kg(X, fe;), (4.6)

meanwhile

9(fX, fei) = kg(fX, fei) = kg(X, e;), 4.7)
becausej,(e;) = 0, foranya = 1,...,sand: = 1,...,m. Hence, by using (4.6) and (4.7), we
obtain, foranyX,Y € LN B:

m

i=1

=1

= k2 (Z g(X’ ?el)g(}/a ?ez) + Z g(X, ei)g(Yv 61)) . (48)
=1 i=1
Now, by checking (4.8) according to the possible choiceXdandY in £ N B, it is easy to
show, from Proposition 4.1, which holds with= %2, thaty is a slant immersion with slant angle
cos™ 1|kl O
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Corollary 4.1 — If dim(M) = 2 + s, theny is a slant immersion if and only if there exists
a constant € [—1,1] such thatp*F = kF. Furthermore, in this cas¢| = cos 6, where is
denoting the slant angle of the immersion.

ProOOF: It follows directly from Proposition 3.5 and Theorem 4.1. O
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