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We study whether it is possible to obtain an induced structure on a slant submanifold of a metric

f -manifold. Moreover, we give conditions for any isometric immersion between two metricf -

manifolds to be slant and we prove a characterization theorem when the submanifold has the

smallest possible dimension to be proper slant.
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1. INTRODUCTION

Slant immersions in complex geometry were defined by Chen as a natural generalization of both

holomorphic and totally real immersions [5, 6]. Recently, Lotta has introduced the notion of slant

immersion in contact geometry [9] which also generalizes invariant and anti-invariant immersions.

In this context, slant submanifolds of Sasakian manifolds have been studied in [2].

Moreover, for more general metricf -manifolds, that is, for Riemannian manifolds endowed

with an f -structure in the sense of Yano [11], compatible with the Riemannian metric, it is also
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possible to define slant immersions [4] and some interesting examples of such slant submanifolds

are given in [4, 7]. A general view about slant immersions can be found in [3].

On the other hand, it is well known that any holomorphic submanifold (resp., any invariant sub-

manifold tangent to the structure vector field) of a Kaehlerian (resp., a Sasakian) manifold inherits

the structure from the ambient space. The same result can be proved for invariant submanifolds tan-

gent to the structure vector fields ofS-manifolds, which are a particular case of metricf -manifolds.

They were introduced by Blair [1] as the analogue of Kaehler manifolds in the almost complex case

and of Sasakian manifolds in the almost contact case. Since those invariant submanifolds are slant

ones, it is interesting to study the possibility of obtaining an induced structure on slant submanifolds

of metricf -manifolds and this is the purpose of present paper.

To that end, we begin by reviewing, in Section 2, formulas and definitions for later use. In

Section 3, we prove that a slant submanifold of anS-manifold inherits the ambientS-structure if

and only if it is an invariant submanifold. Moreover, in the case of dimension2 + s, which is

the smallest possible dimension for the existence of proper slant submanifolds (neither invariant

nor anti-invariant slant submanifolds), we show that the submanifold also needs to be invariant

for having an induced metricf -contact structure. The used tools allow us to prove that any slant

isometric immersions from a(2 + s)-dimensional metricf -contact manifold in another metricf -

contact manifold with compatible structure vector fields is invariant.

Finally, in Section 4, we study the conditions for an isometric immersion between two general

metricf -manifold with compatible structure vector fields to be slant and we prove a characterization

theorem when the submanifold has the possible smallest dimension2 + s.

2. SLANT SUBMANIFOLDS OF METRIC f -MANIFOLDS

A Riemannian manifold̃M is said to be a metricf -manifold if there exist oñM anf -structuref ,

that is, a tensor fieldf of type (1,1) satisfyingf3 + f = 0 (see [11]) ands global vector fields

ξ1, . . . , ξs (called structure vector fields) such that, ifη1, . . . , ηs are the dual 1-forms ofξ1, . . . , ξs,

then

fξα = 0; ηα ◦ f = 0; f2 = −I +
s∑

α=1

ηα ⊗ ξα;

g(X, Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ), (2.1)

for any X,Y ∈ X (M̃) andα = 1, . . . , s, whereg is denoting the Riemannian metric. Observe

that, in the above conditions

g(X, fY ) = −g(fX, Y ) (2.2)
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and so, we can consider the 2-formF defined byF (X, Y ) = g(X, fY ), for anyX, Y ∈ X (M̃),
called the fundamental 2-form. Then,̃M is said to be a metricf -contact manifold (or to have a

metric f -contact structure) ifF = dηα, for any α = 1, . . . , s. Whens = 1, metric f -contact

manifolds correspond to metric contact manifolds.

On the other hand, thef -structuref is normal if

[f, f ] + 2
s∑

α=1

ξα ⊗ dηα = 0,

where[f, f ] is the Nijenhuis tensor off . Thus,M̃ is said to be anS-manifold if thef -structure is

normal and

η1 ∧ · · · ∧ ηs ∧ (dηα)n 6= 0, F = dηa,

for anyα = 1, . . . , s. In this case, the structure vector fields are Killing vector fields. Obviously,

S-manifolds are metricf -contact manifolds. Whens = 1, S-manifolds are Sasakian manifolds.

Interesting examples ofS-manifolds withs ≥ 2 can be found in [1, 8].

It is known that the Riemannian connection∇̃ of anS-manifold satisfies [1].

∇̃Xξα = −fX, (2.3)

and

(∇̃Xf)Y =
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f2X), (2.4)

for anyX, Y ∈ X (M̃) and anyα = 1, . . . , s.

Now, letM be a Riemannian manifold isometrically immersed in a metricf -manifoldM̃ and

let g denote the induced metric tensor onM too. LetT⊥M be the set of vector fields oñM which

are normal toM , that is,X (M̃) = X (M)⊕ T ⊥M.

If ∇ denotes the Riemannian connection ofM , the well known Gauss formula is given by

∇̃XY = ∇XY + σ(X, Y ), (2.5)

for anyX, Y ∈ X (M), whereσ is representing the second fundamental form of the immersion and

so,σ(X,Y ) ∈ T⊥M . The curvature tensor fields, denoted byR̃ andR, associated with̃∇ and∇,

respectively, are related by the following Gauss equation:

R̃(X, Y ; Z,W ) = R(X,Y ; Z, W ) + g(σ(X, Z), σ(Y,W ))

−g(σ(X, W ), σ(Y,Z)), X, Y, Z,W ∈ X (M). (2.6)
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Next, for anyX ∈ X (M) we can write

fX = TX + NX, (2.7)

whereTX andNX are the tangential and normal components offX, respectively. The submani-

fold M is said to be invariant ifN is identically zero, that is, iffX ∈ X (M), for anyX ∈ X (M).
On the other hand,M is said to be an anti-invariant submanifold ifT is identically zero, that is, if

fX ∈ T⊥M , for anyX ∈ X (M). The covariant derivative ofT is given by

(∇XT )Y = ∇XTY − T∇XY,

for any X, Y ∈ X (M). We have the following specific result for invariant submanifolds ofS-

manifolds:

Lemma2.1 — Let M̃ be anS-manifold andM be an invariant submanifold tangent to the

structure vector fields. Then,

(∇XT )Y =
s∑

α=1

(g(TX, TY )ξα + ηα(Y )T 2X), (2.8)

for anyX, Y ∈ X (M) and anyα = 1, . . . , s,

PROOF: SinceM is an invariant submanifold, we haveTX = fX, for anyX ∈ X (M). Then,

by using (2.5),

(∇XT )Y = ∇XfY − f∇XY = (∇̃Xf)Y − σ(X, fY ) + fσ(X, Y ),

for anyX, Y ∈ X (M). Now, from (2.2), we get

g(fσ(X, Y ), Z) = −g(σ(X, Y ), fZ) = 0,

for anyZ ∈ X (M), becauseM in an invariant submanifold and so,fσ(X, Y ) ∈ T⊥M . Taking

into account that(∇XT )Y is also a tangent vector field, from (2.4) we obtain (2.8). 2

From now on, we suppose that all the structure vector fields are tangent to the submanifold

and we denote byM the distribution ofX (M) spanned by the structure vector fields and byL
the orthogonal complementary distribution toM in X (M). Then, we have the orthogonal direct

decompositionX (M) = L⊕M. Moreover, ifM̃ is anS-manifold, by using (2.3), (2.5) and (2.7)

it is easy to show that

σ(X, ξα) = −NX, (2.9)

for anyX ∈ X (M) andα = 1, . . . , s. Consequentlyσ(ξα, ξβ) = 0, for anyα, β = 1, . . . , s.

The submanifoldM is said to be a slant submanifold if, given any pointx ∈ M and any

nonzero vectorX ∈ Lx, the angle betweenfX andTxM is a constantθ ∈ [0, π/2], called the
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slant angle ofM in M̃ , which is independent on the choice of the pointx and the vectorX. Note

that this definition generalizes that one given by Chen [6] for complex geometry and that one given

by Lotta [9] for contact geometry. Moreover, invariant and anti-invariant submanifolds tangent to

the structure vector fields are slant submanifolds with slant angleθ = 0 andθ = π/2, respectively.

A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.

Observe that, for invariant submanifolds,T = f onTM and, so

T 2 = −I +
s∑

α=1

ηα ⊗ ξα, (2.10)

while, for anti-invariant submanifolds,T 2 = 0. In fact, we have the following general result whose

proof can be obtained by following the same steps as in the cases = 1 (see [2]):

Theorem2.1 — Let M be a submanifold of a metricf -manifoldM̃ , tangent to the structure

vector fields. Then, M is a slant submanifold if and only if there exists a constantλ ∈ [0, 1] such

that:

T 2 = −λI + λ
s∑

α=1

ηα ⊗ ξα = λf2.

Furthermore, in such case, ifθ is the slant angle ofM , it satisfies thatλ = cos2 θ.

Using (2.1), (2.7) and Theorem 2.1, a direct computation gives:

Corollary 2.1 — LetM be a slant submanifold of a metricf -manifoldM̃ , with slant angleθ.

Then, for anyX,Y ∈ X (M), we have:

g(TX, TY ) = cos2 θ(g(X,Y )−
s∑

α=1

ηα(X)ηα(Y )),

g(NX, NY ) = sin2 θ(g(X, Y )−
s∑

α=1

ηα(X)ηα(Y )).

3. STRUCTURE ON A SLANT SUBMANIFOLD

Let M be an invariant submanifold of a metricf -manifoldM̃ , tangent to the structure vector fields.

Then, from (2.10), we see that such submanifold is a metricf -manifold too, with thef -structureT

(induced onM by f ). In this section, we want to study if it is possible to obtain an induced structure

on non-invariant slant (isometrically immersed) submanifolds of a metricf -manifold. This problem

is suggested by the similar situation on slant submanifolds in complex geometry [5, 6].

First, we are going to prove that there always exists an inducedf -structure on any non-anti-

invariant slant submanifold.
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Proposition3.1 — LetM be a non-anti-invariant slant submanifold of a metricf -manifoldM̃ .

Then,f = (sec θ)T is anf -structure onM . With thisf -structure,M becomes a metricf -manifold

too, with structure vector fieldsξ1, . . . , ξs

PROOF : By virtue of Theorem 2.1, it is easy to show that

f
2
X = sec2 θT 2X = −X +

∑
α

ηα(X)ξα,

and by using Corollary 2.1,

g(fX, fY ) = sec2 θg(TX, TY ) = g(X,Y )−
∑
α

ηα(X)ηα(Y ),

for anyX, Y ∈ X (M). 2

In particular, ifθ = 0, the induced structure on the invariant submanifoldM is the usual one,

given byf = T .

On the other hand, if̃M is a metricf -contact manifold (that is, if the fundamental 2-form of

M̃ verifies thatF=dηα, for anyα) andM is a proper slant submanifold, then the structure induced

by f does not verify the same property, because, denoting byF the fundamental 2-form ofM with

such induced structure,

F (X, Y ) = g(X, fY ) = sec θg(X, TY ) = sec θF (X,Y ) = sec θdηα(X, Y ),

for anyX, Y ∈ X (M) andα = 1, . . . , s.

Consequently, with this induced structure, we have that a slant submanifold of a metricf -contact

manifold is also a metricf -contact manifold if and only if it is an invariant submanifold. Moreover,

we can prove the following proposition:

Proposition3.2 — LetM̃ be anS-manifold andM be an invariant submanifold tangent to the

structure vector fields. Then, thef -structure onM defined byf = T is anS-structure onM .

PROOF : As we have noticed above, it is easy to show thatF (X,Y ) = F (X, Y )= d ηα(X, Y ),
for any X, Y ∈ X (M) andα = 1, . . . , s, whereF is denoting the fundamental 2-form onM

associated with thef -structuref . Furthermore, thisf -structure is also normal because by using

(2.8) we obtain that

[T, T ](X,Y ) = (∇TXT )Y − (∇TY T )Y + T (∇Y T )X − T (∇XT )Y

= −2
s∑

α=1

g(X, TY )ξα = −2
s∑

α=1

F (X, Y )ξα = −2
s∑

α=1

dηα(X,Y )ξα,

for anyX, Y ∈ X (M). So,M is anS-manifold too. 2
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We can now wonder if it is possible to obtain anS-structure on the submanifold from another

way, by choosing the appropriate conditions. However, we have the following necessary intrinsic

condition for slant immersions inS-manifolds:

Proposition3.3 — LetM be aθ-slant submanifold of anS-manifoldM̃ . Then, for anyx ∈ M ,

the sectional curvature of any 2-plane ofTxM containing one and only one of the structure vector

fields equals tocos2 θ.

PROOF : Let X ∈ X (M) be a unit vector field such that{Xx, (ξα)x} is an orthonormal basis

of a 2-plane ofTxM . Then, sinceR̃(X, ξα; ξα, X) = 1 (see [1]), from Gauss equation (2.6) and

from (2.9), we get that

R(X, ξα; ξα, X) = 1− g(σ(X, ξα), σ(X, ξα)) = 1− g(NX, NX)

and, from Corollary 2.1, we complete the proof. 2

Thus, we can prove the following proposition.

Proposition3.4 — A slant submanifoldM of anS-manifoldM̃ is anS-manifold if and only if

it is an invariant submanifold.

PROOF : The direct implication is an easy consequence of the above proposition and the men-

tioned result of [1] which establishes that the sectional curvature of any 2-plane of anS-manifold

containing one and only one of the structure vector fields equals to 1. For the converse, we only

have to consider Proposition 3.2. 2

Hence, it is not possible to have an inducedS-structure on a non-invariant slant submanifold of

anS-manifold. Nevertheless, we can still wonder if it would be possible to induce a metricf -contact

structure. The answer will be negative again with respect to the case of the smallest dimension for

non-anti-invariant slant immersions and we shall use a different method. Let

ϕ : (M, f, ξ1, . . . , ξs, η1, . . . , ηs, g) ↪→ (M̃, f, ξ1, . . . , ξs, η1, . . . , ηs, g)

be an immersion between two metricf -manifolds. We suppose thatg = ϕ∗g (or, in other words,

thatϕ is an isometric immersion) and, moreover, that

ϕ∗xMx = M̃ϕ(x), (3.1)

for anyx ∈ M , where, as above,M andM̃ are denoting the distributions spanned by the structure

vector fields inX (M) andX (M̃), respectively. In particular, we have thatξα ∈ X (M), for any

α = 1, . . . , s. Now, letϕ∗F be the 2-form onM given by

ϕ∗F (X,Y ) = F (ϕ∗X, ϕ∗Y ) = g(ϕ∗X, fϕ∗Y ),

for anyX, Y ∈ X (M). From now on, we are going to identifyX andϕ∗X, for anyX ∈ X (M).
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Next, we consider thatϕ is a slant immersion with slant angleθ. Since it is easy to check that

any (1 + s)-dimensional submanifold of a metricf -manifold tangent to the structure vector fields

is an anti-invariant submanifold, we study the case ofdim(M) = 2 + s. Then, we can obtain a

relationship betweenF andϕ∗F :

Proposition3.5 — In the above conditions,ϕ∗F = ±(cos θ)F .

PROOF: We can suppose thatϕ is a non-anti-invariant immersion because, if it is anti-invariant,

the result is obvious sinceϕ∗F = 0.

So, lete1 be a unit local vector field tangent toM and perpendicular to the structure vector fields

and definee2 = (sec θ)Te1. By Corollary 2.1, we get that{e1, e2, ξ1, . . . , ξs} is a local orthonormal

basis ofX (M). Then,fe1 = g(fe1, e2)e2 and, consequently,g(fe1, fe1) = g2(fe1, e2). Now,

sinceg(fe1, fe1) = 1, we have:

fe1 = ±e2; fe2 = ∓e1. (3.2)

Let X, Y be any two tangent vector fields toM . We can write them with respect to the above

local orthonormal basis as follows:

X = X1e1 + X2e2 +
∑
α

ηα(X)ξα; Y = Y 1e1 + Y 2e2 +
∑
α

ηα(Y )ξα.

From (3.2), we obtain that:

F (X,Y ) = g(X, fY ) = ∓X1Y 2 ±X2Y 1. (3.3)

On the other hand,

ϕ∗F (X, Y ) = F (ϕ∗X, ϕ∗Y ) = g(X, fY ) = g(X, TY ) = − cos θX1Y 2 + cos θX2Y 1, (3.4)

sinceTY = − cos θY 2e1 + cos θY 1e2. Thus, from (3.3) and (3.4), we complete the proof. 2

Now, by using Proposition 3.5, we can prove the following theorem:

Theorem3.1— Let ϕ : M ↪→ M̃ be a slant immersion from a metricf -contact manifold

(M, f, ξ1, . . . , ξs, η1, . . . , ηs, ϕ
∗g),

with dimension2 + s in another metricf -contact manifold

(M̃, f, ξ1, . . . , ξs, η1, . . . , ηs, g)

such thatϕ∗ξα = ξα, for anyα = 1, . . . , s. Then, ϕ is an invariant immersion.
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PROOF: Denote byθ the slant angle of the immersionϕ. Observe that the conditionϕ∗ξα = ξα,

for anyα = 1, . . . , s, implies (3.1). Moreover, sinceϕ is an isometric immersion, such condition

also implies thatϕ∗ηα = ηα, for anyα. So,

d(ϕ∗ηα) = dηα = F , (3.5)

becauseM is a metricf -contact manifold. Then, from Proposition 3.5, as̃M is a metricf -contact

manifold too, we obtain:

d(ϕ∗ηα) = ϕ∗dηα = ϕ∗F = ±(cos θ)F . (3.6)

But, from (3.5) and (3.6), we deduce thatcos θ = 1, that is, the immersionϕ is invariant.

The following corollary gives an answer to our question for(2 + s)-dimensional slant subman-

ifolds.

Corollary 3.1 — LetM be a(2+s)-dimensional slant submanifold of anS-manifoldM̃ . Then,

the S-structure ofM̃ induces a metricf -contact structure onM if and only if M is an invariant

submanifold.

PROOF : The direct implication is obvious from Theorem 3.1 because anyS-manifold is a

metricf -contact manifold. The converse is already known. 2

Nevertheless, we can consider slant immersions between metricf -manifolds. In fact, it is

enough to choose a local orthonormal basis

{e1, e2, ξ1, . . . , ξs}

and definef such thatfe1 = e2 andfe2 = −e1 (in particular, thef -structure given in Proposition

3.1 verifies this property in the case of non-anti-invariant slant submanifolds) to obtain a metric

f -structure on a(2 + s)-dimensional slant submanifold.

4. CONDITIONS FOR AN IMMERSION BETWEEN METRIC f -MANIFOLDS TO BE SLANT

In this section we consider any isometric immersion

ϕ : (M, g) ↪→ (M̃, f, ξ1, . . . , ξs, η1, . . . , ηs, g)

from a Riemannian manifold into a metricf -manifold such that the structure vector fields are tan-

gent toM . Then, we have the following proposition.

Proposition4.1 — Under the above conditions, ifdim(M) = p and

{e1, . . . , ep−s, ξ1, . . . , ξs}
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is a local orthonormal basis ofX (M), then, the immersionϕ is slant if and only if there exists a

constantλ ∈ [0, 1] such that

p−s∑

i=1

g(fej , ei)g(fek, ei) = λδjk, (4.1)

for any j, k = 1, . . . , p − s. Furthermore, in this case,λ = cos2 θ, whereθ is denoting the slant

angle of the immersion.

PROOF : First, we suppose thatϕ is a slant immersion with slant angleθ. Thus, given any unit

tangent vector fieldX ∈ L, we have

p−s∑

i=1

g2(fX, ei) = cos2 θ, (4.2)

from which, writingX = ej , we deduce that:

p−s∑

i=1

g2(fej , ei) = cos2 θ. (4.3)

Consequently, we get (4.1) in the casej = k, with λ = cos2 θ. Next, letj 6= k and consider the

unit local vector field

X =
1√
2
(ej + ek),

which is perpendicular to the structure vector fields. By applying (4.2), we obtain:

cos2 θ =
1
2

p−s∑

i=1

g2(fej , ei) +
1
2

p−s∑

i=1

g2(fek, ei) +
p−s∑

i=1

g(fej , ei)g(fek, ei).

Next, from (4.3), we have (4.1) in the casej 6= k. Conversely, letX ∈ X (M) be any tangent

vector field toM . So, we can write:

X =
p−s∑

i=1

g(X, ei)ei +
s∑

α=1

ηα(X)ξα. (4.4)

Moreover:

T 2X =
p−s∑

i=1

g(T 2X, ei)ei. (4.5)

But, since

g(T 2X, ei) = g(X, T 2ei) =
p−s∑

j=1

g(X, ej)g(T 2ei, ej)
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and, from (4.1),

g(T 2ei, ej) = −g(Tei, T ej) = −
p−s∑

k=1

g(Tei, ek)g(Tej , ek) = −λδij ,

then

g(T 2X, ei) = −λg(X, ei). Thus, by using (4.4) and (4.5), we get

T 2X = −λ

(
X −

s∑

α=1

ηa(X)ξα

)

and, from Theorem 2.1, we obtain thatϕ is a slant immersion with slant anglecos−1
√

λ. 2

We remark that the Kaehlerian version of above proposition can be found in [10].

Now, we consider a metricf -structure onM ,

(M, f, ξ1, . . . , ξs, η1, . . . , ηs, g),

such thatϕ∗xMx = M̃ϕ(x), for anyx ∈ M . As above, letF andF be the fundamental 2-forms of

M andM̃ , respectively and, moreover, we consider onM the 2-formϕ∗F . Then, we can prove the

following theorem.

Theorem4.1 — Under the above conditions, if there exists a constantk ∈ [−1, 1] such that

ϕ∗F = kF , thenϕ is a slant immersion with slant anglecos−1 |k|.

PROOF : SinceM is a metricf -manifold, we can choose an orthonormal basis inM given

by B = {e1, . . . , em, fe1, . . . , fem, ξ1, . . . , ξs}, where we are puttingdim(M) = 2m + s. Let

X ∈ L ∩ B. Sinceϕ∗F = kF , we have that

g(fX, ei) = kg(fX, ei) = −kg(X, fei), (4.6)

meanwhile

g(fX, fei) = kg(fX, fei) = kg(X, ei), (4.7)

becauseηα(ei) = 0, for anyα = 1, . . . , s andi = 1, . . . , m. Hence, by using (4.6) and (4.7), we

obtain, for anyX, Y ∈ L ∩ B:

m∑

i=1

g(fX, ei)g(fY, ei) +
m∑

i=1

g(fX, fei)g(fY, fei)

= k2

(
m∑

i=1

g(X, fei)g(Y, fei) +
m∑

i=1

g(X, ei)g(Y, ei)

)
. (4.8)

Now, by checking (4.8) according to the possible choices ofX andY in L ∩ B, it is easy to

show, from Proposition 4.1, which holds withλ = k2, thatϕ is a slant immersion with slant angle

cos−1 |k|. 2
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Corollary 4.1 — If dim(M) = 2 + s, thenϕ is a slant immersion if and only if there exists

a constantk ∈ [−1, 1] such thatϕ∗F = kF . Furthermore, in this case,|k| = cos θ, whereθ is

denoting the slant angle of the immersion.

PROOF : It follows directly from Proposition 3.5 and Theorem 4.1. 2
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