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 Depending on soil and fire characteristics, soil water repellency (SWR) may be induced, enhanced or destroyed by 
burning. The spatial pattern of SWR may be extremely heterogeneous as a consequence of the temperature peaks, the 
variation of fire temperature, the distribution of fuel, or the amount and type of ashes. In this research, we have 
studied the effect of stone cover and position on the intensity and spatial distribution of fire-induced SWR after low-, 
moderate- and high-severity fire. Generally, SWR increased with fire severity, but stones did induce some differences 
and increased the heterogeneity of the spatial distribution of fire-induced SWR. In low-stone-cover areas, SWR from 
soil surfaces below stones increased respect to non-covered soil surfaces. In areas under high stone cover, SWR 
increased from non-covered soil surfaces to soil surfaces below stones after low-severity fire. In moderate- and high-
severity burnt soils under high stone cover, SWR was more severe than in non-covered soil surface, but no significant 
differences were observed. 
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1 INTRODUCTION 

Wildfires may induce or enhance soil water repellency 

(SWR) in burnt areas (DeBano, 2000; Doerr et al., 2000). 

Burning induces the condensation of hydrophobic organic 

substances on the surface of soil particles (DeBano 2000). 

The intensity of SWR depends mostly on temperature 

peaks, the amount and  type of burnt litter, moisture 

content and other soil properties (Doerr et al., 2000). 

Spatial and temporal variations of SWR are due to 

variation of fire temperature, fuel distribution, or the 

amount and type of ashes produced during burning (Bodí 

et al., 2011; DeBano, 2000; Shakesby and Doerr, 2006). 

Stones may influence soil physical properties, run-off and 

infiltration rates (Poesen & Lavee, 1994; Poesen et al., 

1997). Also, it has been demonstrated that stones resting 

on the soil surface contribute to increase soil thermal 

conductivity and heat storage capacity (Poesen & Lavee, 

1994). But up to date, no studies have considered the 

effect of stones on the development and spatial 

distribution of SWR. The aim of this research is to study 

the effect of stones on the spatial distribution of SWR after 

a wildfire in a burnt area from southern Spain. 
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weight and sieved (2 mm) to eliminate coarse soil 

particles. Soil acidity (pH) was measured in aqueous soil 

extract in de-ionized water (1:2.5 soil:water). Soil organic 

carbon content was determined by the Walkley-Black 

method (Walkley & Black, 1934). Soil texture was 

determined by densimetry according to USDA (2004). 

Finally, soils were classified according to IUSS Working 

Group WRB (2006). 

2.3 ASSESSMENT OF FIRE SEVERITY 

Fire severity was assessed in agreement with Keeley 

(2009). The burnt area was divided in different zones 

according to fire severity: unburned (control areas not 

affected by fire), low, moderate and high fire severity. 

Description of fire severity classes is shown in Table 1. 

Areas showing homogeneous fire severity were divided in 

subareas with low rock fragment cover (<20%) and high 

rock fragment cover (>60%). The minimum size of the 

selected subareas was 10 m2 and the minimum distance 

between adjacent areas was 4 m. For SWR and infiltration 

rate measurements, experimental points were selected 

below rock fragments (area included in the vertical 

projection of a rock fragment) and between rock 

fragments (in the middle point between two rock 

fragments). 

2.4 DATA ANALYSIS 

Data analysis included correlations, regression and 

ANOVA. Assumptions of normality for WDPT data were 

tested using the Shapiro-Wilk test. The distribution of 

WDPT data did not satisfy assumption of normality, and 

alternative non-parametric tests were used: Kruskall-Wallis 

ANOVA and Mann-Whitney U test. When Kruskall-Wallis or 

ANOVA null hypotheses were rejected, post-hoc pair-wise 

comparisons were performed to investigate differences 

between pairs of means (Bonferroni test). All 

computations were performed using Statgraphics 

Centurion version 16 (StatPoint Technologies, 1982-2011). 

3 RESULTS AND DISCUSSION 

3.1 SOIL PROPERTIES 

Soils were classified as Lithic Leptosols (IUSS Working 

Group WRB, 2006). Soil characteristics are shown in Table 

2. On average, soil depth was 9.2 ± 0.8 cm, and maximum 

depth did not exceeded 10 cm. Mean soil pH was 5.7 ± 0.5 

(with pH values ranging between strong to slightly acid).  

 

 

Figure 1. Study area. 

 

2 METHODS 

2.1 STUDY AREA AND EXPERIMENTAL DESIGN 

During summer of 2011, an arson fire affected about 9000 

m
2
 in a forest area near Calañas (Huelva, SW Spain; Figure 

1). Vegetation in this area is formed by Mediterranean 

shrubland and woodlands (mainly Pinus pinea and 

Eucalyptus globulus). 

For this experiment, the burnt area was divided in 

different zones according to fire severity: unburnt (control 

adjacent areas not affected by fire), low (LFS), moderate 

(MFS) and high fire severity (HFS). Areas showing 

homogeneous fire severity were divided in subareas with 

low and high stone cover (<20% and >60%, respectively) 

with minimum size 10 m
2
 and 4 m minimum distance 

between adjacent areas. SWR was assessed by the water 

drop penetration time (WDPT; Doerr, 1998) in the area 

included in the vertical projection of a stone (under stone, 

US) and in the middle point between two nearby stones 

(between stones, BS) during the first 7 days immediately 

following burning.  

2.2 SOIL CHARACTERIZATION 

For soil characterization, four soil plots were selected in 

points from unburnt areas adjacent to the fire-affected 

surface, 20 m North, South, East and West. At each soil 

plot, four soil profiles were described and sampled for 

laboratory analysis in points 5 m North, South, East and 

West from the selected plot. Soil samples were 

transported in plastic bags to the laboratory. Samples were 

kept at laboratory room temperature (25 
o
C) to a constant 
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Table 1. Criteria for assessment of fire severity in the study area. 

Fire 
severity 

Description 

Unburned Not affected 
Low Burnt herbs; shrubs partly charred but not consumed and most branches intact after fire; < 50% canopy burned; occasional 

deposition of black ash; most soil organic layer unaffected 
Moderate Herbs completely consumed; stems thinner than 10 mm were not completely consumed; 50-80% canopy consumed; black and 

white ashes covering soil; organic layer deeply charred; white ashes covering part of the soil 
High Shrubs consumed and scorched trees; stems thinner than 10 mm were completely consumed (many shrubs were consumed 

completely except the base); white ash covering most of the soil surface; organic layer showing severe damages and litter 
consumed; mineral soil colour shows evidence of alteration 

  

cover in unburnt soils after LFS; but WDPT increased from 

low to high stone cover areas after MFS and HFS areas. 

This response may be explained by the heat flow dynamics 

between fire, stones and soil surface. Recently, García-

Moreno et al. (2013) observed that temperature peaks 

were reached some minutes later in stone-covered than in 

exposed soil surface. In this experiment, temperature in 

uncovered soil reached 300-350 
o
C, but temperature peaks 

were delayed and longer in time under stones, reaching 

350-400 
o
C. Heat transferred to the topsoil stones is stored 

and released much more slowly than in uncovered areas. 

Even after burning, stones may continue transmitting heat 

to the soil surface. In their experiment, García-Moreno et 

al. (2013) observed that SWR was enhanced in the topsoil 

(10 mm) in areas under stone cover 0%, and decreased 

with stone cover. This is not in agreement with our results, 

which show increased SWR in areas between and under 

stones after MFS and HFS. 

Mean WDPT values were much higher in US plots. It is 

suggested that prolonged heat transfer from stones to soil 

contributed to extend the period of residence for 

temperatures above the threshold for water repellency 

induction at the soil surface, hence increasing water 

repellency. In BS areas, weaker water repellency was 

reached. In these cases, temperatures at the soil surface 

may have been even higher, but peaks shorter in time 

were probably reached during LFS. After MFS and HFS, no 

significant differences were observed between WDPT from 

BS and US sites under high stone cover, probably as a 

consequence of proximity between stone-covered areas 

and high fire temperatures. Stones can induce a lateral 

heat flow (Poesen & Lavee, 1994), which reduced the 

intensity of temperature gradient between BS and US 

sites. Also, occasional amounts of ashes between nearby 

stones have been observed, as a result of prolonged 

combustion of litter and plant residues with low oxygen 

Table 2. Mean WDPT (s) ± standard deviation (SD) for each 
fire severity. P-value from Kruskal-Wallis test is 0.0000. 
Different letters represent significant differences at p < 0.05. 

Fire severity WDPT ± SD 

Unburned 2 ± 1 a 
Low 9 ± 9 a 
Moderate 44 ± 23 b 
High 232 ± 134 c 

 

Mean organic carbon content was 1.6 ± 0.6 %, but values 

ranged between 1.0 ± 0.0 and 2.2 ± 0.1%. Soil texture is 

loam, with mean sand content 50.2 ± 12.9% and clay 

content 17.3 ± 5.7%. Finally, mean soil water content was 

2.10 ± 0.17%, with mean values from different control 

locations ranging between 1.98 ± 0.09 and 2.18 ± 0.19. 

3.2 STONES AND SOIL WATER REPELLENCY 

Soil water repellency increased with fire severity (Table 3). 

DeBano (2000) reported that SWR increases with burning 

severity (although it is expected that water repellency 

would disappear after extreme severity fires if combustion 

of organic matter is complete). After fire, litter and aerial 

plant parts are partly or completely consumed, and the 

mineral soil surface may be partly or completely covered 

by ash, charred litter, plant residues (Doerr et al., 2000) 

and surface stones (García-Moreno et al., 2013). The 

results of WDPT assessment for different fire severity and 

stone cover classes are shown in Figure 2. Stones resting 

on the soil surface are responsible of a heterogeneous 

distribution of SWR after burning. Even after LFS and low 

stone cover (<20%), SWR was enhanced at surface under 

the vertical projection of stones (Table 4). In areas under 

stones, WDPT values between high and low stone cover 

areas under different fire severities did not vary 

significantly (Table 3). Between stones, no significant 

differences were observed between low and high stone 
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Figure 2. Number of WDPT data for different classes (<30, 30-60, 60-180 and 180-360 s), fire severity and stone cover 
class (low, <20%; high, >60%). 
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Table 3. Results of the Mann-Whitney U test (M-U) for WDPT values (mean ± standard deviation, s) from areas with different fire 
severity, stone cover class and type of determination (between stones and under stones). 

Fire severity Stone cover Between stones Under stones M-U, p 

Unburned <20% 2±1 2±1 > 0.5 
 >60% 2±1 2±1 > 0.5 
 M-U, p > 0.05 > 0.05  
Low <20% 3±2 13±7 0.0010 
 >60% 3±2 17±10 0.0003 
 M-U, p > 0.05 > 0.05  
Moderate <20% 23±11 58±18 0.0007 
 >60% 45±17 53±28 >0.05 
 M-U, p 0.0100 > 0.05  
High <20% 101±54 239±102 0.0010 
 >60% 263±71 322±173 > 0.05 
 M-U, p 0.0006 >0.05  
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availability. Flameless smouldering may have contributed 

to enhanced water repellency in BS sites under high stone 

cover. 

4 CONCLUSIONS 

Stones resting on the soil surface caused a patchy 

distribution of SWR after burning. In areas under low stone 

cover (<20%), water repellency from soil surfaces covered 

by stones increased respect to soil surfaces non-covered 

by stones, with mean WDPT increased more than 3 times.  

In areas under high stone cover (>60%), SWR increased 

significantly from BS soil surfaces to US soil surfaces after 

LFS. In MFS and HFS soils under high stone cover, mean 

WDPTs were higher than in soil surfaces non covered by 

stones, but no significant differences were observed. In 

this case, closeness between stones during severe burning 

may have contributed to reduce the intensity of 

temperature gradient between BS and US sites. 

Smouldering processes after the passage of fire is also 

suggested to be a factor implied in water repellency 

development. 
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