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ON THE EXISTENCE AND UNIQUENESS OF LIMIT

CYCLES IN PLANAR PIECEWISE LINEAR SYSTEMS

WITHOUT SYMMETRY

JAUME LLIBRE, MANUEL ORDÓÑEZ, AND ENRIQUE PONCE

Abstract. Some techniques to show the existence and uniqueness of
limit cycles, typically stated for smooth vector fields, are extended to
continuous piecewise-linear differential systems. New results are ob-
tained for systems with three linearity zones without symmetry and
having one equilibrium point in the central region. We also revisit the
case of systems with only two linear zones giving shorter proofs of known
results.

1. Introduction and statement of main results

For planar differential systems, the analysis of the possible existence of
limit cycles and their uniqueness is a problem which has attracted the inter-
est of many works in the past. For smooth systems, good classical references
in the field are the books [24, 25]. The restriction of this problem to polyno-
mial differential equations is the well-known 16th problem Hilbert’s problem
[14]. In this context, a celebrated and rather general canonical form is the
Liénard equation. Since Hilbert’s problem turns out to be a strongly difficult
one, Smale [22] has particularized it to Liénard differential systems in his
list of problems for the present century. For just continuous or even smooth
Liénard systems there are many results on the non-existence, existence and
uniqueness of limit cycles, see for instance [1, 4, 6, 18, 23, 25]. Going beyond
the smooth case, the first natural step is to allow non-smooothness while
keeping the continuity, as has been done in some recent works [9, 15, 16]. In
a further step, other authors have considered a line of discontinuity in the
vector field defining the planar system, see [12, 26].

In this paper, we adapt some techniques from the smooth case to contin-
uous piecewise linear differential systems, obtaining new results for systems
without symmetry. We also revisit the case of systems with only two linear
zones giving shorter proofs of known results.
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Figure 1. The graphs of F and g considered in the paper
have no symmetries. The point indicates the only equilibrium
point, which is initially not at the origin.

In most of interesting applications, piecewise linear differential systems
have two or three different linearity regions separated by parallel straight
lines, see [2]. For such systems we assume without loss of generality that
the lines separating these regions are x = −1 and x = 1. Furthermore,
it is rather usual for these systems to exhibit only one equilibrium point,
which is supposed to be in the central linearity region when the system has
three linear zones, to be denoted in the sequel as L (left), C (central), and
R (right). If the system has only two zones, we assume that the left and the
central zones are in fact only one. Then, under these generic assumptions,
continuous piecewise linear differential systems (CPWL, for short) can be
written in the Liénard form

ẋ = F (x)− y,
ẏ = g(x) − δ,

(1)

where

F (x) =





tR(x− 1) + tC , if x ≥ 1,
tCx, if |x| ≤ 1,
tL(x+ 1)− tC , if x ≤ −1,

(2)

and

g(x) =





dR(x− 1) + dC , if x ≥ 1,
dCx, if |x| ≤ 1,
dL(x+ 1)− dC , if x ≤ −1.

(3)

Our assumption on the equilibrium point requires that the determinant in
central region be positive, that is, dC > 0, and also −dC < δ < dC , along
with dL, dR ≥ 0. This means that the only equilibrium point is located at
the line x = x̄ = δ/dC ∈ (−1, 1). The corresponding traces tL, tC , tR could
be arbitrary, but we know from Bendixson theory that they cannot have the
same sign for the existence of limit cycles.
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Remark 1. The above formulation includes as particular cases the following
ones. If tC = tL and dC = dL then we have a system with only two different
linearity zones, thoroughly analyzed in [9]. If tR = tL, dR = dL and δ =
0, then we have a symmetric system with three different linearity zones,
thoroughly analyzed in [10]. The case tR = tL, dR = dL and δ 6= 0 was
considered in [19]. Examples of this last situation appeared in [3].

Under suitable hypotheses that include systems without any symmetries,
see Fig. 1, our main results are the following.

Theorem 1. Consider the differential system (1)–(3) with only one equilib-
rium point in the central zone, i.e. dC > 0, −dC < δ < dC , and dL, dR ≥ 0.
If the external traces satisfy tL, tR < 0, while the central trace is positive,
that is tC > 0, then the equilibrium point is surrounded by a limit cycle
which is unique and stable.

Theorem 1 is shown in Section 5, and of course, by using the opposite sign
distribution for the traces, we could state a similar theorem on existence and
uniqueness of an unstable limit cycle.

For the case of only two linearity zones the corresponding result is a bit
more involved.

Theorem 2. Consider the differential system (1)–(3) with only two linearity
zones, more specifically, under the assumptions tC = tL and dC = dL > 0,
and one equilibrium point in the left zone, i.e. δ < dC , and dR ≥ 0. Assume
also that the left trace satisfy tL > 0, while the right trace is negative, that
is tR < 0. The following statements hold.

(a) A necessary condition for the existence of periodic orbits is that the
equilibrium point be a topological focus, that is t2L − 4dL < 0.

(b) If t2L − 4dL < 0 then the system has periodic orbits if and only if the
following condition holds

tL√
dL

+
tR√
dR

< 0.

In such case, the equilibrium point is surrounded by a limit cycle
which is unique and stable.

Theorem 2 is not new. It was stated in [8] in a equivalent way without
an explicit proof and indicating how several existing results could be con-
catenated to get such theorem. It can also be considered as a byproduct
of the case-by-case study made in [9]. We include here to emphasize how
the useful techniques introduced in proving Theorem 1 allow us to obtain a
much shorter proof of Theorem 2.

The rest of the paper is organized s follows. First, in Section 2 we illustrate
through some relevant examples the usefulness of the achieved results. Next
section is devoted to review the ideas underlying the Massera’s approach for
uniqueness of limit cycles. Finally, our main results are shown in Section 5.



4 JAUME LLIBRE, MANUEL ORDÓÑEZ, AND ENRIQUE PONCE

2. Examples

We analyze here a celebrated piecewise linear model in mathematical
biology. Following [3], the equations for the two-dimensional McKean model
of a single neuron take the form

Cv̇ = f(v)− w + I,
ẇ = v − γw,

(4)

where v stands for the voltage, w is the gating variable and

f(v) =





−v, if v < a/2,
v − a, if a/2 ≤ v ≤ (1 + a)/2,
1− v, if v > (1 + a)/2.

(5)

Here, C > 0, γ > 0, I is a constant drive, and f(v) is a PWL caricature of
the cubic FitzHugh-Nagumo nonlinearity f(v) = v(1 − v)(v − a), provided
that 0 < a < 1, see [3] for more details.

First, we put system (4) in the form given in (1). We start by using
instead of w a new variable u such that w = C(u + γv), so that we get a
new system where the dynamics of the second variable depends only on the
first one, namely

Cv̇ = f(v)− Cγ − Cu+ I,
u̇ = v − γf(v)− γI.

(6)

An appropriate translation and scaling of variables suffices now to arrive at
the form (1). We take

x = 4v − 2a− 1,
Cy = 4Cu− Cγ(2a+ 1)− 4I + 2a− 1,

(7)

and the computations give

tL = tR = − 1

C
− γ, tC =

1

C
− γ, dL = dR =

1 + γ

C
, dC =

1− γ

C
, (8)

and

δ =
γ(1− 2a+ 4I)− 2a− 1

C
. (9)

Since dL = dR > 0, it is now direct to conclude that to have always only
one equilibrium point we need γ < 1, for then dC > 0. Furthermore, to
be able of having oscillations in the model, we also need that γ < 1/C,
since then tC > 0. Finally, in order to apply Theorem 1, we translate the
condition −dC < δ < dC , getting the equivalent inequalities

1 + γ

2γ
a < I <

1 + γ

2γ
a+

1− γ

2γ
,

so that, under these conditions we can guarantee a unique stable limit cycle
in the model. The uniqueness of the limit cycle and this quantitative infor-
mation on the admissible range for the drive I, deduced from Theorem 1, is
an interesting information which complements the study made in [3].

Note that our results also apply to more general versions of the PWL func-
tion f(v), when the slopes of external pieces are different. This is the case
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for instance of the PWL models considered in [7] to study the oscillations
in an electronic circuit whose nonlinearity comes from an Esaki diode.

3. The Massera’s method for uniqueness of limit cycles

We review in this section a geometrical argument which is usually known
as the Massera’s method; it will allow us, after adequate adaptations, to
show the uniqueness of limit cycles in the CPWL differential systems con-
sidered in this paper, when they satisfy certain hypotheses. Uniqueness
results for limit cycles are typically rather involved; see [24, 25], for a review
in the subject. Here we reformulate in a specific way the simple and elegant
idea proposed by J.L. Massera in his brief note extending a previous result of
G. Sansone, see [20] and the recent study on the legacy of the latter author
in [21] .

First, we recall some notions and introduce some definitions. A period
annulus is a region in the plane completely filled by non-isolated periodic
orbits. We say that a vector field has the non-negative rotation property
whenever along any half-ray starting from the origin the angle of the vec-
tor field measured with respect the positive direction of the x-axis does not
decrease as long as one moves far from the origin. For a closed orbit sur-
rounding the origin, we say that it is star-like with respect to the origin when
any segment joining the origin and a point of the closed orbit has no other
points in common with the closed orbit, and consequently such segments are
in the interior of the closed orbit. The following result can be stated.

Lemma 1. (Massera’s method) Consider a Liénard system with a con-
tinuous vector field given by ẋ = F (x) − y, ẏ = g(x), and assume that
xg(x) > 0 for x 6= 0, and that F (0) = 0, so that the only equilibrium point is
at the origin. Assume that the system has the non-negative rotation property
and that period annuli are not possible. If the system has a closed orbit then
it is star-like with respect to the origin and it is a limit cycle which is unique
and stable.

Proof. First, we will show that if the system has a closed orbit then it
is star-like with respect to the origin. Obviously, since the vector field is
continuous the periodic orbit must surround the origin, see Theorem 3.1 in
[13]. Suppose that such an orbit is not star-like with respect to the origin.
Then there must be a half-ray that starting from the origin intersects the
closed orbit in more than one point; in fact such half-ray must have at
least three points in common with the closed orbit, see Fig. 2. It is easy
to conclude that the angle of the vector field measured with respect the
positive direction of the x-axis cannot be monotone, that is, first decreases
to increase later or vice versa. This is not compatible with the non-negative
rotation property, getting the desired contradiction.

We now assume that there exists a closed orbit Γ that surrounds the
origin, which must be star-like with respect to it by the above argument,
see Fig. 2 (right). Then, using Γ as starting point, one can build a geodesic
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x

y

x

y

Γ

Figure 2. (Left) Closed orbits that are not star-like with
respect to the origin cannot appear in systems with the non-
negative rotation property. (Right) If Γ is a star-like closed
orbit, one can build a geodesic system of closed curves by ho-
motetical transformations. Then, the non-negative rotation
property assures the stability of the closed orbit Γ and hence
its uniqueness.

system of closed curves by homotetical transformations, foliating the entire
plane by the curves kΓ for all k > 0. Consider now a half-ray starting
from the origin and take into account the non-negative rotation property.
Of course the vector field is tangent to Γ at the point where the half-ray
intersects Γ, see Figure 2 (right). Now the non-negative rotation property
assures that in the points where the half-ray intersects the closed curves
of the geodesic system near Γ the vector field points in such a direction
that it is guaranteed the stability of the periodic orbit, even in the case the
periodic orbit considered is not isolated. Since we exclude the possibility of
any period annulus and there cannot be consecutive nested stable periodic
orbits, if there exists such an orbit then it must be isolated and stable, that
is, it should be the unique stable limit cycle. The conclusion follows. �

4. Preliminary results and uniqueness of limit cycles

In this section we give some preliminary results and also include unique-
ness results for possible periodic orbits. Note that if we make in system (1)
the change X = −x, Y = −y we get the system

Ẋ = F̃ (X) − Y,

Ẏ = g̃(X) + δ,
(10)

where the new functions F̃ and g̃ are obtained from the given in (2) by
interchanging the subscripts L and R. Thus, there is no loss of generality in
assuming δ ≥ 0 hereafter.
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Our first result is just a preparation lemma, reducing by one the number
of parameters and looking for a more compact equivalent expression for
system (1)–(3).

Lemma 2. System (1)–(3) with 0 ≤ δ < dC is topologically equivalent to
the system

ẋ = Fn(x)− y,
ẏ = gn(x),

(11)

where

Fn(x) =





aR(x− xR) + aCxR, if x ≥ xR,
aCx, if xL ≤ x ≤ xR,
aL(x− xL) + aCxL, if x ≤ xL,

(12)

and

gn(x) =





bR(x− xR) + xR, if x ≥ xR,
x, if xL ≤ x ≤ xR,
bL(x− xL) + xL, if x ≤ xL,

(13)

with xL = −1− x̄, xR = 1− x̄, for 0 ≤ x̄ = δ/dC < 1, and the new piecewise
slopes satisfy aZ

√
dC = tZ , bZdC = dZ , for each Z ∈ {L,C,R}.

Proof. First, we put the equilibrium point at the origin by the translation
x̃ = x − x̄, ỹ = y − tC x̄. This makes that the new vertical lines separating
the zones be x̃ = xL and x̃ = xR and the δ-term in the second equation
disappears. Next, we make the change of variables and time defined by
X = x̃, ωY = ỹ, and τ = ωt, with ω2 = dC . We obtain

dX

dτ
=

F (X + x̄)

ω
− Y,

dY

dτ
=

g(X + x̄)

ω2
,

so that the conclusion follows from the two obvious equalities F (X + x̄) =
ωFn(X) and g(X + x̄) = ω2gn(X). �

The following remark will be useful to split the analysis of system with
three zones into two different subcases with only two zones.

Remark 2. System (11)-(13) is invariant under the following symmetry

(x, y, t, aC , aL, aR, bL,bR, xL, xR) → (−x,−y, t, aC , aR, aL, bR, bL,−xR,−xL).

Now, we consider a system with only two linearity zones which can be
obtained from system (11)-(13) by suppressing the left zone and extending
the central zone to the left, which is equivalent to assume aL = aC and
bL = 1.

Proposition 1. Consider the two-zones piecewise linear differential system
ẋ = F (x)− y, ẏ = g(x), where

g(x) =

{
x, if x < xR,
bR(x− xR) + xR, if x ≥ xR,

and

F (x) =

{
aCx, if x < xR,
aR(x− xR) + aCxR, if x ≥ xR,
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with aC > 0, aR < 0, bR ≥ 0 and xR > 0. The following statements hold.

(a) If bR = 1 then the system has the non-negative rotation property.
(b) If 0 ≤ bR 6= 1 then the system can be transformed in an equivalent

system with the non-negative rotation property.

Proof. To show the non-negative rotation property we will compute the
slope of the vector field along half-rays of the form y = λx. In the following
computations there naturally appears the expression F (x) − λx in some
denominators; obviously, we can disregard the points of vertical slope in
which F (x)− λx = 0.

If bR = 1 then g(x) = x for all x ∈ R. In this case, the slope of the vector
field along the half-rays y = λx is given by

mλ(x) =
dy

dx

∣∣∣∣
y=λx

=
x

F (x)− λx
,

which is constant for x ≤ xR. For x > xR, it has the derivative

dmλ(x)

dx
=

F (x)− λx− x(aR − λ)

[F (x)− λx]2
=

xR(aC − aR)

[F (x)− λx]2
,

which is always positive. The non-negative rotation property is concluded
for this simple case.

If bR 6= 1, the numerator in the computation of the derivative of mλ(x)
turns out to be dependent on λ and the sign of numerator could change.
However, we can transform the system by introducing a new first variable
u = u(x) so that the new second equation become ẏ = u for all u. For that,

it suffices to write u = sgn(x)
√

2G(x), where G(x) =
∫ x
0 g(s)ds. Note that

u = x if x ≤ xR and then the slope of the vector field in this case is not
altered. Now, we study its slope for u > xR. Clearly, from u2(x) = 2G(x)
we have u(x)u′(x) = g(x) for all x, and so

du

dx
=

g(x)

u
. (14)

Therefore,

du

dt
=

du

dx

dx

dt
=

g(x)

u
[F (x)− y] ,

and in the new variables the system is equivalent to the equation

dy

du
=

dy
dt
du
dt

=
u

F (x(u)) − y
,

that is, to the system u̇ = F (x(u)) − y, ẏ = u. As in the previous case
g(x) = x, we can write

mλ(u) =
dy

du

∣∣∣∣
y=λu

=
u

F (x(u)) − λu
,
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and also

dmλ(u)

du
=

F (x(u)) − λu− u [F ′(x(u))x′(u)− λ]

[F (x(u))− λu]2
=

F (x(u))− aRux
′(u)

[F (x(u))− λu]2
,

finally arriving at

dmλ(u)

du
=

xR(aC − aR) + aR[x(u) − ux′(u)]

[F (x(u)) − λu]2
. (15)

We will study the sign of x(u) − ux′(u) for x > xR. From (14) and the
equality u2 = 2G(x) = bR(x− xR)

2 + 2xRx− x2R for x > xR, we have

x(u)− ux′(u) =
xg(x)− u2

g(x)
=

=
x[bR(x− xR) + xR]− [bR(x− xR)

2 + 2xRx− x2R]

g(x)
,

and after obvious simplifications, we get

x(u)− ux′(u) =
(bR − 1)xR(x− xR)

g(x)
.

Now, if bR ≤ 1 the above expression is non-positive for x > xR, and then the
expression in (15) is obviously positive. The non-negative rotation property
follows.

The remaining case bR > 1 can be also managed by noticing that, when
x > xR, we have

0 <
(bR − 1)xR(x− xR)

g(x)
=

(bR − 1)xR(x− xR)

bR(x− xR) + xR
<

(bR − 1)xR
bR

,

so that
xR(aC − aR) + aR[x(u)− ux′(u)] >

> xR(aC − aR) + aR
(bR − 1)xR

bR
=

= xR

(
aC − aR

bR

)
> 0,

and since (15) is again positive, the conclusion follows. �
From the above result it should be noticed that some systems originally

not having the non-negative rotation property can be transformed in equiv-
alent systems satisfying such property. Possible periodic orbits can be de-
formed in shape by the transformation given in the above proof, but stability
and uniqueness results for periodic orbits can be translated between such
equivalent systems. More precisely, the following remarks can be stated.

Remark 3. From Lemma 1, we can conclude for the systems with two
linearity zones given in Proposition 1 that if there is a closed orbit, then it
surrounds the origin and it is a limit cycle which is unique and stable.



10 JAUME LLIBRE, MANUEL ORDÓÑEZ, AND ENRIQUE PONCE

Remark 4. If we consider systems with three linearity zones given in (11)-
(13) with xL < 0 < xR and satisfying the conditions aL, aR < 0, aC > 0
and bL, bR ≥ 0, then from Proposition 1 we can deduce that such systems
can be transformed in equivalent systems having the non-negative rotation
property for all the half-rays contained in the half-plane x ≥ 0. By using
the symmetry given in Remark 2, and applying again Proposition 1, we
can deduce that such systems can also be transformed in equivalent systems
having the non-negative rotation property for all the half-rays contained in
the half-plane x ≤ 0. In short, systems with three linearity zones given in
(11)-(13) with xL < 0 < xR and satisfying the conditions aL, aR < 0, aC > 0
and bL, bR ≥ 0, can be transformed in equivalent systems having the non-
negative rotation property in the whole plane. Consequently, from Lemma 1
we can also conclude for such systems that if there is a closed orbit, then it
surrounds the origin and it is a limit cycle which is unique and stable.

5. Existence of limit cycles and proof of main results

In this section, we will use as main tools the Poincaré return map to show
the existence of periodic orbits. We start by considering systems with three
linearity zones given in (11)-(13) with xL < 0 < xR for which the conditions
aL, aR < 0, aC > 0 and bL, bR ≥ 0 hold. We will use the positive and
negative parts of the y-axis as domain and range for defining two different
half-return maps, namely a right half-return map PR and a left half-return
map PL.

We start by studying the qualitative properties of the right half-return
map PR defined in the whole negative y-axis, by taking the orbit starting at
the point (0,−y), with y > 0, and coming back to the positive y-axis at the
point (0, PR(y)). The following lemma, proved here for sake of completeness,
is a modification of a classical result, see for instance the proof of Theorem
11.4 in [17]. It assures, under certain hypotheses, the existence of such a
map for all y > 0 and gives its asymptotic behavior as y → ∞.

Lemma 3. Consider a Liénard system with a continuous vector field given
by ẋ = F (x)− y, ẏ = g(x). Assume that F (x) is positive and increasing for
small positive values of x, it has a positive zero only at x = x1 > 0, and it
is decreasing to −∞ as x → ∞ monotonically for x > x1. Assuming also
that g(0) = 0, and g(x) > 0 for all x > 0, the following statements hold.

The orbits starting at the point (0,−y), with y > 0, enter the half-plane
x > 0 and go around the origin in an counterclockwise path, coming back to
the y-axis at the point (0, PR(y)), with PR(y)) > 0. The difference PR(y)−y
is positive for small values of y, but eventually becomes negative, tending to
−∞ as y → ∞.

Proof. Clearly, the unique equilibrium of the system in the half-plane x ≥ 0
is the origin. From the hypotheses, any orbit starting at the point (0,−y),
with y > 0, enters the half-plane x > 0 with null slope, to have positive slope
while y < F (x). The slope of the orbit becomes infinite when y = F (x) and
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y = F (x)

x

y

A

A′

A′′

B

B′
B′′

C

C ′
C ′′

E

F

G

H

I

J

xR

x = x1

Figure 3. Three typical orbits of a Liénard system with
a piecewise linear function F (x) satisfying hypotheses of
Lemma 3.

eventually becomes negative, finally arriving again to the y-axis with zero
slope, at the point (0, PR(y)) after making a half turn around the origin.
We will study how much changes along such a half-turn the function

V (x, y) = G(x) +
y2

2

where

G(x) =

∫ x

0
g(u)du.

Note that V̇ (x, y) = g(x)[F (x) − y] + y g(x) = F (x) g(x) and that G(0) =
0. Assume three nested arcs ACB, A′C ′B′ and A′′C ′′B′′, see Figure 3,
corresponding to orbits of the system. Suppose that the first orbit ACB
is contained in the strip 0 < x < x1, where F (x) > 0 and dy > 0. Thus
F (x)dy > 0 along such arc, and consequently

V (B)− V (A) =

∫ B

A
dV =

∫ yB

yA

F (x)dy > 0.
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Therefore, since 2(V (B)− V (A)) = y2B − y2A, we have

yB − |yA| = PR(|yA|)− |yA| > 0. (16)

Consider now the arcs of orbits A′C ′B′ and A′′C ′′B′′ not completely con-
tained in the strip 0 < x < x1, see Fig. 3. Considering the parts of the arcs
in such a strip where F (x) > 0, and since F (x) − y along A′′G is greater
than along A′E, where G and E are the points of the arcs which x = x1, we
have

V (G)− V (A′′) =
∫ G

A′′
dV =

∫

A′′G

F (x)g(x)

F (x)− y
dx <

<

∫

A′E

F (x)g(x)

F (x)− y
dx =

∫ E

A′
dV = V (E)− V (A′) (17)

Let H, I the points where the parallel lines to the x-axis passing through E
and F intersect the arc A′′C ′′B′′. Since F (x) < 0 along GH and dy > 0 for
x > 0, we obtain

V (H)− V (G) =

H∫

G

dV =

∫

GH
F (x)dy < 0. (18)

Now, since F (x) along HI is negative and exceeds in absolute value F (x)
along EF for the same value of y, it follows that

V (I)− V (H) =

∫ I

H
dV =

∫

HI
F (x)dy <

<

∫

EF
F (x)dy =

∫ F

E
dV = V (F )− V (E). (19)

Along IJ , as in the study made along GH, it holds that

V (J)− V (I) < 0 (20)

As in (17), we obtain

V (B′′)− V (J) < V (B′)− V (F ) (21)

Adding inequalities (17)–(21), we obtain

V (B′′)− V (A′′) < V (B′)− V (A′),

that is, y2B′′ − y2A′′ < y2B′ − y2A′ , or equivalently,

PR(|yA′′ |)− |yA′′ | < PR(|yA′ |)− |yA′ |. (22)

We conclude that for the orbits starting at (0,−y) and crossing the graph
y = F (x) for x > x1 the difference PR(y) − y is monotonically decreasing.
It remains to show that it tends to −∞ when y → ∞. Of course, if PR(y)
turns to be bounded then the conclusion is trivial. In any case, it suffices to
observe that from the first part of (17) we have that V (G)−V (A′′) > 0 but
decreasing to 0 as the point C ′′ goes far from the origin; the same is true
for V (B′′)− V (J). However the contribution of the difference V (J)− V (G)
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is negative and unbounded as the point C ′′ goes far from the origin. The
conclusion follows. �

Clearly, we can do a similar study for the left half-return map PL defined
in the positive y-axis, by taking the orbit starting at the point (0, y), with
y > 0, and coming back to the negative y-axis at the point (0,−PL(y)). In
fact, by using Remark 2, the following result is straightforward.

Lemma 4. Consider systems with three linearity zones given in (11)-(13)
with xL < 0 < xR and satisfying the conditions aL, aR < 0, aC > 0 and
bL, bR ≥ 0. The following statements hold.

(a) The orbits starting at the point (0,−y), with y > 0, enter the half-
plane x > 0 and go around the origin in an counterclockwise path,
coming back to the y-axis at the point (0, PR(y)), with PR(y) > 0.
The difference PR(y)− y is positive for small values of y, but even-
tually becomes negative, tending to −∞ as y → ∞.

(b) The orbits starting at the point (0, y), with y > 0, enter the half-plane
x < 0 and go around the origin in an counterclockwise path, coming
back to the y-axis at the point (0,−PL(y)), with PL(y) > 0. The
difference PL(y) − y is positive for small values of y, but eventually
becomes negative, tending to −∞ as y → ∞.

With these results, it is easy to give a proof of Theorem 1.

Proof of Theorem 1. From Lemma 2 we can pass to an equivalent system
in the form (11)-(13) and satisfying all the hypotheses of Lemma 4. We start
by studying the existence of periodic orbits.

Clearly the existence of periodic orbits is equivalent to the existence of
two positive values yL and yR such that

PR(yR) = yL,
yR = PL(yL).

(23)

Adding and subtracting the above equations we get an equivalent system of
sufficient and necessary conditions for existence of periodic orbits, namely

PR(yR) + yR = PL(yL) + yL,
PR(yR)− yR = − [PL(yL)− yL] .

(24)

Since by standard results on uniqueness of solutions we know that PR and
PL are monotone increasing functions, see Proposition 1.21 in [5], we can

define two new functions P̂R and P̂L such that for each Y = PZ(y) + y > 0

we take P̂Z(Y ) = PZ(y) − y, where y > 0 and Z ∈ {L,R}. These new
functions represent a different parameterization of the graphs of PR and
PL and have the same qualitative behavior, that is, both are positive for
sufficiently small Y > 0 and eventually become negative, tending to −∞ as
Y → ∞. Furthermore, the conditions (24) for existence of periodic orbits
translate now to the existence of a value Y > 0 being solution of the single
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equation P̂R(Y ) = −P̂L(Y ), that is of

P̂R(Y ) + P̂L(Y ) = 0.

The lefthand side of above equation is positive for sufficiently small Y > 0
and eventually become negative for sufficiently big Y . It suffices now to
apply the intermediate value theorem for continuous functions to conclude
the existence of at least a solution, and so a periodic orbit of the system.

The uniqueness and stability of periodic orbits come from Remark 4 and
the conclusion follows. �

The situation is slightly different in the case of systems with only two
zones. In fact, for such systems the equilibrium point cannot be a node
since its invariant manifolds are straight lines that should extend to infin-
ity, precluding so the existence of periodic orbits. Anyway, the proof of
Theorem 2 can be stated shortly as follows.

Proof of Theorem 2. As indicated above, the equilibrium point must be
a focus and statement (a) follows.

From Lemma 2 we can pass to the corresponding system in the form (11)-
(13), now with aL = aC and bL = 1, and satisfying all the hypotheses of
Proposition 3. We start again by studying the existence of periodic orbits.

The unstable focus condition in the left zone is equivalent to

0 <
tL√
dL

< 2

and translates to the condition 0 < aL < 2 and now the system becomes
purely linear for x < xR with the unstable focus at the origin. Then it
is easy to see, see for instance [11], that PL is a linear function given by
PL(y) = eπγLy where

γL =
aL√
4− a2L

< 0.

Regarding PR we know that it behaves qualitatively as indicated in Proposi-

tion 3. Taking now the functions P̂R(Y ) and P̂L(Y ) introduced in the proof
of Theorem 1 we will determine when there is an intersection between the
graphs of P̂R and −P̂L.

We note first that the slope of the graph of P̂L is a positive constant and
equal to

PL(y)− y

PL(y) + y
=

eπγLy − y

eπγLy + y
=

eπγL − 1

eπγL + 1
< 1.

If the dynamics on the right zone is of node type, we know that PR is
bounded by the invariant manifolds of the virtual node. Then the slope of

the graph of P̂R as Y → ∞ tends to

lim
y→∞

PR(y)− y

PR(y) + y
= −1,
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and therefore the graphs of P̂R and −P̂L must intersect at least once. Note
that in this case we have in terms of original parameters

tR√
dR

≤ −2

so that the condition in the theorem always holds.
If the dynamics on the right zone is of focus type and we define

γR =
aR√

4bR − a2R

< 0,

the slope of the graph of P̂R as Y → ∞ tends to

lim
y→∞

PR(y)− y

PR(y) + y
= lim

y→∞
eπγRy − y

eπγRy + y
=

eπγR − 1

eπγR + 1
< 0,

since aR < 0. Now the intersection of the graphs of P̂R and −P̂L is assured
if and only if

−eπγL − 1

eπγL + 1
>

eπγR − 1

eπγR + 1
,

which is equivalent after standard algebraic manipulations to

γL + γR < 0.

This condition reads, in terms of the original parameters, as

γL+γR =
tL/

√
dL√

4− t2L/dL

+
tR/

√
dL√

4dR/dL − t2R/dL

=
tL√

4dL − t2L

+
tR√

4dR − t2R

< 0.

Other standard algebraic manipulations now show that such condition for
existence of periodic orbits is equivalent to

tL√
dL

+
tR√
dR

< 0,

as stated in the theorem.
The uniqueness of periodic orbits comes directly from Remark 3 and the

conclusion follows. �
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Departament de Matemàtiques, Facultat de Ciencies, Universitat Autònoma
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