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Abstract

It is well-known that some of the classical location problems with polyhe-

dral gauges can be solved in polynomial time by �nding a �nite dominating

set, i.e. a �nite set of candidates guaranteed to contain at least one optimal

location.

In this paper it is �rst established that this result holds for a much larger

class of problems than currently considered in the literature. The model for

which this result can be proven includes, for instance, location problems with

attraction and repulsion, and location-allocation problems.

Next, it is shown that the approximation of general gauges by polyhe-

dral ones in the objective function of our general model can be analyzed with

regard to the subsequent error in the optimal objective value. For the ap-

proximation problem two di�erent approaches are described, the sandwich

procedure and the greedy algorithm. Both of these approaches lead - for �xed

� - to polynomial approximation algorithms with accuracy � for solving the

general model considered in this paper.

Keywords: Continuous Location, Polyhedral Gauges, Finite Dominating Sets,

Approximation, Sandwich Algorithm, Greedy Algorithm.
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1 Introduction

In recent years, research in location theory has been very active in models, which

can be solved using �nite dominating sets (FDS), i.a. a set of �nite cardinality

which contains an optimal location for the respective problem. If, in addition, the

cardinality of the FDS is polynomial in the input of the location problem the FDS

approach yields a polynomial solution algorithm, even in the worst case where an

extensive search for all candidates in the FDS is performed.

A predecessor of this idea is the median algorithm (see, for instance, [9, 23, 10])

for solving 1=P= � =l1=
P

1 , i.e. the problem of �nding a best location x in the

plane such that the sum of the weighted rectilinear distances

F (x) :=
NX
k=1

!kkx� akk1 (1)

of x to the existing facilities a1; : : : ; aN 2 R
2 is minimized. The FDS consists of

the grid points given by the intersection of the rectilinear grid lines passing through

a1; : : : ; aN .
A generalization of the previous problem is obtained if the rectilinear distance

kx� akk1 is replaced in (1) by a polyhedral gauge (see, e.g. [24, 28, 25])

Bk
(x) := inff� > 0 :

1

�
x 2 Bkg (2)

where Bk is for each k = 1; : : : ; N a convex polytope in R2 containing the origin

in its interior. An FDS for the resulting location problem 1=P= � =pol=
P

is given

by the grid points of the grid de�ned by the rays starting in ak and passing through

each of the extreme points of Bk; k = 1; : : : ; N (see [8] and - in more general form

- Theorem 1). Obviously, this FDS is polynomial in the size of the problem, if the

input is N , the number of existing facilities, and V , the maximal number of extreme
points in any of the polytopes Bk.

Additional polynomial FDSs have been found for restricted problems 1=P=R=pol=
P

where a regionR is excluded from siting new locations ([12, 25, 14], for barrier prob-

lems 1=P=B=pol=
P
, where additionally trespassing is forbidden [11, 6, 21], and for

ordered Weber problems 1=P= � =pol=
P

ord, a class of problems including - among

others - sum and maximizing objectives [29, 30].

The common feature of the problems in which the FDS approach has been applied

successfully is the fact that distances are of the type (2), where Bk is a polytope.

The goal of this paper is to show, that the FDS approach carries much further

than that. In Section 2, we introduce a very general location model which includes

1In this paper we use the 5-position classi�cation scheme for location problems of [13] where

Positions 1 through 5 characterize number and type of the new facility(ies), the environment

(e.g., planar, network, discrete), specialties ( restrictions, barriers, constant weights, etc.), distance

functions, and type of objective function (sum, max, multi-objective, etc), respectively. Here,

bullets indicate unspeci�ed items.
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problems with attraction and repulsion, location-allocation and gauges de�ned by

arbitrary compact, convex sets (i.e. non necessarily polytopes). Problems of this

type can so far only be tackled by standard methods of global optimization, which

do not use the speci�cs of the location background. In Section 3 we show, that this

problem class can be solved with any required accuracy by reducing it to a problem

solvable with an FDS approach. Sections 4 and 5 contain two proposals how the

general reduction idea can be speci�ed using the sandwich approximation technique

of [3] and a greedy approach, respectively. The paper is concluded by a summary of

the results and a list of further research projects which are stimulated by the ideas

of this paper.

2 The location model - formulation and examples

In this paper, we consider a general planar location problem in which N points

a1; : : : ; aN are given representing the geographic coordinates of demand points or ex-

isting facilities. The distance between facilities is measured using N gauges B1
; : : : ; BN

de�ned by their respective unit ballsB1; : : : ; BN which are compact, convex sets with

the origin in their interior. Hence, the gauges are de�ned by

Bk
(x) := inff� > 0 :

1

�
x 2 Bkg (3)

Note that 2 is a special case of this de�nition in which the unit balls Bk are

convex polytopes for all k = 1; : : : ; N . (See e.g. [24, 28] for further properties on

gauges.)

The problem addressed in this paper can be written as

min
x2S

F (x) := �(x; B1
(x� a1); B2

(x� a2); : : : ; BN
(x� aN)); (4)

where � : R2 � R
N
+ �! R satis�es

1. S is a bounded polygonal region in R2 .

2. For each x 2 S, the function �(x; �) : R
N
+ �! R is componentwise non-

decreasing, i.e., if any u := (u1; : : : ; uN); v := (v1; : : : ; vN) are such that ui � vi
for all i = 1; : : : ; N , then

�(x; u) � �(x; v)

3. For any x 2 S, the function �(x; �) is Lipschitz-continuous with Lipschitz

constant L > 0, i.e., for all x 2 S and all u; v 2 R
N
+ ,

j�(x; u)� �(x; v)j � Lku� vk;

where k � k denotes the Euclidean norm.

4. � is quasiconcave, i.e., the sets f(x; u) : �(x; u) � �g are convex for all �, [1].
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If we want to emphasize the dependence of the objective function on the chosen

unit balls we sometimes write the objective function as FB1;:::;BN
or as FB.

The model under consideration is general enough to include as particular cases

many notoriously diÆcult planar single-facility location problems encountered in the

literature. Some examples are listed below.

The Weber problem with attraction and repulsion can, for instance, be written

as

�(x; u) = �

Z
B(x� c) d�(c) +

NX
k=1

!kuk;

where !k; 1 � k � N are nonnegative weights, � is a measure in the plane and B
is a gauge such that, for each x, B(x� �) is integrable with respect to �.

Then, (4) becomes

min
x2S

NX
k=1

!kBk
(x� ak)�

Z
B(x� c) d�(c): (5)

In case � has only mass on a �nite set of points c1; : : : ; cT , (5) has the more familiar
form

min
x2S

NX
k=1

!kBk
(x� ak)�

TX
t=1

�(fctg)B(x� c); (6)

addressed e.g. in [5, 7, 31, 34].

Another class of problems which is covered by our general approach are location-

allocation Weber problems. Within this category, we may consider single-facility

location problems in which the locational decision yields also allocation of demand,

see [28]. A relevant instance is the so-called Pro�t-maximizing Weber problem, [17,

26]: Set

�(x; u) = min
(�1;:::;�N )2�

 
NX
k=1

�k (gk(uk)�Dk(�k))

!
;

where � is a compact subset of RN
+ , g1; : : : ; gN : R+ �! R are concave nondecreas-

ing functions with directional derivative bounded, and D1; : : : ; DN are arbitrary

functions. Then, Problem (4) can be written as

min
x2S;�2�

NX
k=1

�k (gk(Bk
(x� ak))�Dk(�k)) ;

or equivalently as

max
x2S;�2�

NX
k=1

�k (Dk(�k)� gk(Bk
(x� ak))) ; (7)

which has the following interpretation: together with the locational decision, we

can chose the prices (�1; : : : ; �N) 2 � charged per unit of product delivered to the
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demand points (markets) a1; : : : ; aN . The demand of market ak if price �k is charged
is Dk(�k), and the transportation cost per unit of product are given by a function

gk of the distance Bk
(x�ak) separating the facility and ak. Hence, the total pro�t,

to be maximized, is given by the objective function of (7).

An important particular case (although the allocation part disappears), is given

by the choice � = f�0g, i.e., the price is not any more a decision variable. Then,

up to irrelevant additive constants, � has the form
PN

k=1 �
0
kgk(uk), thus Problem

(4) becomes the Weber problem in which costs are assumed to be non-decreasing

concave (not necessarily aÆne) functions of distances, [19, 33].

Other single-facility location-allocation easily accommodated within our frame-

work areWeber problem with supply surplus introduced in [20] or the Weber problem

with alternative transportation systems, addressed in [4].

Obviously, the objective function F of Problem (4) is not di�erentiable. More-

over, F is as composition of a nondecreasing quasiconcave and convex functions

(Bk
(� � ak)), in general neither (piecewise) convex nor concave, such that several

local optimal solutions may exist which are not globally optimal. Hence, if global

optimal solutions are sought, one is obliged to use Global-Optimization procedures,

from the simplest grid-search to more sophisticated techniques, such as polyhedral

annexation, outer approximation or branch and bound schemes ([15, 18]).

These methods may be successfully applied if the feasible region S is a rectangle

or a convex polygon, but if S does not have a nice shape, these general-purpose

techniques may be hard to implement (think, for instance, of the construction of a

regular covering grid over a nonconvex polygon) or may not work at all (e.g. the

polyhedral-annexation procedure described in [33]). Only (variants of) the branch-

and-bound method introduced in [16] seem to be of use for these cases, see [15, 27].

Even if in some cases the latter methods may work well in practice, it is only known

that, for any accuracy " > 0, they stop after a �nite number of iterations yielding

an "-optimal solution, [27]. However, no worst-case analysis, providing the order of
magnitude of such �nite number of iterations to obtain an "-optimal solution seems
to have been described so far.

In the following section we will therefore introduce an approach which - under

the rather weak assumptions of our model - results in algorithms with a priori known

complexity bounds.

3 Approximation results

We �rst analyze Problem 4 in the case of polyhedral gauges.

If the unit balls Bk are polytopes, we consider for each k = 1; : : : ; N the cones

de�ned by the rays starting from ak in the direction of the corner points of Bk. It

is well-known (see [8, 24, 28]) that Bk
de�ned by (3) is a linear function in each

of these cones. Hence, their intersection over all k = 1; : : : ; N de�nes a tessellation

of the plane into polyhedra such that within these polyhedra each of the functions

6



�

�
�

Figure 1: Illustration for Theorem 1.

Bk
(x� ak) is aÆnely linear in x.
For an arbitrary set X we denote by ext(X) the set of all extreme points of the

convex hull conv(X) of X. Since a concave function attains its minimum at extreme

points of the feasible region, the discussion above implies the following result.

Theorem 1 Suppose B1; : : : ; BN are polytopes. Let fPi; i 2 Ig be a �nite set of

polyhedra covering R2 such that each Bk
(x� ak) is aÆnely linear in x within each

Pi. Then, the set fext(S \ Pi); i 2 Ig is an FDS for problem (4) (see Figure 1).

Proof.

Since fPi; i 2 Ig covers the plane, for any x 2 S there exists i� 2 I such that x
belongs to the polygon Pi� \ S.

Since each Bk
(x� ak) is aÆnely linear within Pi�, it follows that, within Pi�, F

is the composition of the quasiconcave function � with the aÆnely linear function

mapping y 2 Pi� to (y; B1
(y � a1); : : : ; BN

(y � aN)). Thus F is quasiconcave on

conv(Pi� \S), and, therefore, attains its minimum on conv(Pi� \S) in some element
of ext(Pi� \ S).

Hence, any feasible x is dominated by some x� 2
S

i2I
ext(Pi� \ S), as asserted.

2

As a consequence of Theorem 1, Problem (4) can - for polyhedral gauges - be

reduced to inspecting the �nite list of points in the set
S

i2I ext(Pi \ S). If each Bk
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has v(Bk) extreme points, V := maxNk=1 v(Bk) and S has v(S) extreme points, thenS
i2I ext(Pi \ S) will have cardinality

O(N2V 2 +NV v(S)); (8)

and can be constructed by well-known computational geometry techniques [2, 22].

In the case of gauges de�ned by arbitrary compact, convex unit balls B1; : : : ; BN ,

Theorem 1 obviously does not hold. The best we can hope for in this general

situation is an FDS result for an approximate solution of Problem (4).

The following, straightforward property will be of use to achieve this goal.

Theorem 2 Given two compact convex sets B1; B2 with the origin in the respective

interior, the following property holds.

1. If B1 � B2 then B1
� B2

2. For any � > 0, (�B) =
1
�
B

Next, we will use the Lipschitz property of the function � to see the impact for

Problem (4) of replacing unit balls in the de�nition of gauges by other unit balls

and prove the following approximation result. (Recall, that FQ(x) stands for the
objective function F (x) in Problem (4) in which the gauges are de�ned with respect

to the set Q = fQ1; : : : ; QNg of unit balls.)

Theorem 3 Let Ck; Ek; Dk be compact, convex sets with 0 2 int(Ck) and

Ck � Ek � Dk � �Bk; k = 1; : : : ; N; (9)

for some � � 1. Moreover, let L > 0 be the given Lipschitz constant for �(x; �),
and let M satisfy

M � max
y2ext(S)

kC1
(y � a1); : : : ; CN (y � aN )k (10)

Then we get for any P;Q 2 fC;D;Eg and " = L(1� :L(1� 1
�
)M

1.

0 � jFP (x)� FQ(x)j � " (11)

2. Any optimal solution xP forminx2S FP (x) is an "-optimal solution for minx2S FQ(x)

Proof.

By Theorem 2,

Ck(x) � Ek
(x) � Dk

(x) �
1

�
Ck(x) 8x 2 S; k = 1; 2; : : : ; N
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Since, by assumption, �(x; �) is componentwise nondecreasing,

FC(x) = �(x; C1
(x� a1); : : : ; CN (x� aN ))

� �(x; E1
(x� a1); : : : ; EN

(x� aN ))

� �(x; D1
(x� a1); : : : ; DN

(x� aN))

� �(x;
1

�
C1

(x� a1); : : : ;
1

�
CN (x� aN))

Hence for all P;Q 2 fC;D;Eg

0 � jFP (x)� FQ(x)j

� FC(x)� �(x;
1

�
C1

(x� a1) : : : ;
1

�
CN (x� aN ));

� Lk(C1
(x� a1); : : : ; CN (x� aN ))�

1

�
(C1

(x� a1); : : : ; CN (x� aN ))k

= L(1�
1

�
)k(C1

(x� a1); : : : ; CN (x� aN))k

� L(1�
1

�
)max

y2S
k(C1

(y � a1); : : : ; CN (y � aN))k

Since the function mapping u 2 R
N
+ to kuk is convex and componentwise increas-

ing, and the function assigning to each x 2 R
2 the value (C1

(x� a1); : : : ; CN (x �
aN)) is convex, it follows that the function x 2 R

2
7�! k(C1

(x � a1); : : : ; CN (x �
aN))k is also convex, thus attaining its maximum on S at some point in ext(S). In
other words,

max
y2S

k(C1
(y � a1); : : : ; CN (y � aN))k = max

y2ext(S)
k(C1

(y � a1); : : : ; CN (y � aN))k

� M;

such that

jFP (x)� FQ(x)j � L(1�
1

�
)M;

as claimed in (11).

If xP and xQ denote optimal solutions for minx2S FP (x) and minx2S FQ(x), re-
spectively, then we get

jFP (xP )� FQ(xQ)j = FP (xP )� FQ(xQ)( if not, interchange P and Q

� FP (xQ)� FQ(xQ)

� L(1�
1

�
)M;

showing the " = L(1� 1
�
)M - optimality. 2

Theorem 3 enables us to solve Problem 4 with any required accuracy " by choos-
ing P = B = fB1; : : : ; BNg as the originally given unit balls B of Problem 4 and

Q = ~B = f ~B1; : : : ; ~BNg as a set of polyhedral balls satisfying (9) according to the

following algorithm.

9



Algorithm 1 (Input: " > 0; Output: ~x, "-optimal for Problem (4)).

Step 0: Set

M = maxf
"

L
; max
y2ext(S)

kB1
(y � a1); : : : ; BN

(y � aN )kg

� = 1 +
"

LM � "

Step 1: Find a set ~B of polytopes ~B1; : : : ; ~BN such that P = ~B and Q = B satisfy

the conditions of Theorem 3.

Step 2: Use Theorem (1) to �nd an optimal solution ~x of

min
x2S

~F (x) := �(x;  ~B1
(x� a1);  ~B2

(x� a2); : : : ;  ~BN
(x� aN )): (12)

STOP ~x satis�es

jF � ~B(~x)�min
x2S

F (x)j � "

As we have seen in the beginning of this section, Step 2 can be done for �xed "
in polynomial time, where the complexity of this step is depending on the maximal

number V of extreme points in any of the polytopes ~Bk. It is therefore crucial to

choose the polytopes in such a way that V is as small as possible. In the subsequent

section, we will present two approaches dealing with this problem. In the �rst

approach based on the sandwich algorithm of [3, 32] we choose in Theorem (3)

Ek = Bk and Ck and Dk as inner and outer approximation of Bk, respectively.

The resulting algorithm will produce an a priori bound on the cardinality of a FDS

to solve Problem 4 with required accuracy ". In the second approach, a Greedy

procedure is applied to �nd a so-called polyhedral, convex separator Ek separating

Ck = Bk and Dk = �Bk = (1 + "

LM�"
)Bk. It will be shown that the number of

extreme points produced with this procedure is at most by 1 larger than the smallest

possible one.

4 Finding approximating polytopes by the sand-

wich procedure

We use the sandwich algorithm proposed by [3] for univariate convex functions

and applied by [32] for approximation of convex bodies. The idea of the sandwich

approach is to iteratively approximate a given convex body B with the goal of getting

at the end of the iterations a required accuracy Æ � 0 by an interior polyhedron Bi

and an outer polyhedron Bo, respectively, i.e. Bi
� B � Bo

� (1 + Æ)B. In
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Figure 2: One iteration of the sandwich algorithm. The distance l2(x; y) > Æ such

that z is included as additional point in both approximating polyhedra.

each iteration of the algorithm points x 2 Bo, y 2 Bi are identi�ed for which the

Hausdor� distance (with respect to Euclidean distance l2)

Hl2(B
i; Bo) = max

x2Bo
min
y2Bi

l2(x; y) > Æ:

If no such points exist, Hl2(B
i; Bo) � Æ as required. Otherwise, a pair x 2 Bo,

y 2 Bi with l2(x; y) > Æ is chosen and the point z 2 [x; y] \ bd(B) is identi�ed. Bi

and Bo are updated by choosing z in both polyhedra as additional extreme point as

indicated in Figure 2.

If R is the circumference of B, it can be shown (see [3, 32]) that no more than

max

(
4;

r
8R

Æ
+ 2

)

many iterations are needed before the procedure stops with Bi
� B � Bo such that

Hl2(B
i; Bo) � Æ.

Since B is sandwiched by Bi and Bo we obtain the same bound for the Hausdor�

distances between B and Bi, and B and Bo, i.e.

Hl2(B;B
o) � Æ and Hl2(B;B

i) � Æ:

Consequently, both, Bi and Bo, can be used as Æ-approximation of B. We can

therefore de�ne in Theorem 3 Ck = Bi
k; Ek = Bk and Dk = Bo

k for all k = 1; : : : ; n,
and � = Æ+1. If Rk is the circumference of Bk; k = 1; : : : ; N and Vk an integer

such that Vk � max
n
4;
q

8R
Æ1

+ 2
o
, then Bi

k and B
o
k are polyhedra with O(Vk) many

extreme points. Using V := maxk Vk and the complexity result for solving location

Problem 4 with respect to polynomial gauges, Theorem 3 yields the following result.

11
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Figure 3: Example for Tangent (d; C).

Theorem 4 An "-optimal solution of Problem 4 can be obtained by considering an

FDS of cardinality O(N2V 2+Nv(S)V ) where v(S) is the number of extreme points

of the feasible region S and V is any integer with V � max
n
4;maxk

q
8R
Æ
+ 2
o

5 Finding approximating polytopes by the Greedy

algorithm

In this section we will separate the closed, convex sets Ck = Bk and Dk = �Bk =

(1+ "

LM�"
)Bk by a polytope Ek in the sense of Theorem 3. A polytope Ek with the

required property Ck � Ek � Dk is called a convex separator with respect to Ck and

Dk, denoted cs(Dk nCk). In order to simplify the denotation we will in the following

delete the index k and investigate the problem of �nding for given closed, convex

sets C and D with C � D a convex separator cs(D n C), i.e. C � cs(D n C) � D
The boundary bd(cs(D n C)) of cs(D n C) is a closed polygonal curve. If the

context is clear we often call the boundary itself a convex separator. Our goal is

to �nd convex separators with the smallest possible number of extreme points, a

minimum convex separator.

For this purpose we de�ne for any point d 2 bd(D) the procedure Tangent (d; C)
as the process of identifying

� the clockwise tangent with respect to C passing through d

� the point c 2 C where the tangent touches C

� the second point d0 2 bd(D) contained in the tangent.

Output of Tangent (d; C) is the line segment [d; d0] and the touching point c (see

12



Figure 3). The following algorithm will iteratively apply the procedure Tangent

(d; C) until a convex separator is found.

Greedy Algorithm for �nding cs(D n C) (see Figure 4)

1. Choose d1 2 D and apply Tangent (d1; C) to obtain [d1; d2] and c1, set i = 2.

2. Apply Tangent (di; C) to obtain [di; di+1] and ci.

3. If d1 is visible from di+1 choose in [di; di+1] the point ~d closest to di which is visi-
ble from d1 set di+1 = ~d and output bd(cs(CnD)) = (d1; c1; d2; : : : ; di; ci; di+1; ci+1; d1)

Else: i := i+ 1andGoto2

� �

� 

	 




�

	 �

	 �

� � � �
� � � � � �

�

Figure 4: Example for the Greedy Algorithm.

By de�nition, the Greedy algorithm produces a convex separator with respect

to C and D. The next theorem shows, that it is, for the purpose of applying it to

the location problem 4, particularly well suited.

Theorem 5 The Greedy algorithm outputs a minimum convex separator with re-

spect to C and D or contains one more vertex than a minimum convex separator.

Proof: Let cs(DnC; d1) be the convex separator de�ned by the Greedy procedure
obtained from starting point d1. Obviously the following property holds:

If d1 is moved clockwise along bd(D) then c1; c2; : : : ; ci+1 and d2; : : : ; di+1
will also move clockwise along C and D, respectively.

We now show that d1 can be chosen in such way that cs (D n C; d1) is even a

minimum convex separator.

For this purpose let the close polygon P be any minimal convex separator. Wlog

we assume that every edge of P is tangent to D. (If this is not the case, move

13



a non-tangent edge inwards along its adjacent edges until it becomes tangent (see

Figure 5). This process does not increase the number of vertices of P .) Two cases

may exist.




�

Figure 5: Moving an edge inwards.

Case 1: P contains exactly one or no vertex in int D. Then P = cs(D n C; d1),
where d1 is the vertex of P clockwise next to the vertex in int C (if such a

vertex exists) or any vertex of P , respectively.

Case 2: If P contains at least two vertices in int D. Let v be one of them with

adjacent edges e and f in clockwise order, and let u be the other end vertex

of f . If we move along the extension of e to bd(D) and maintain the tangent

property of f , vertex u moves clockwise along bd(C). (see Figure 6)

According to the observation at the beginning of the proof all subsequent vertices

of P will move clockwise along bd(D) until the �rst node in D is reached. A new

vertex in int (D) is generated resulting in a new convex separator P with the same

number of vertices, but containing one more of them on bd(D) than before.

By iteratively applying this procedure the assumption of Case 1 �nally holds

such that cs (D n C; d1) is, indeed, a minimal convex separator.

Now let P (D n C; d1) and P (C nD; b) be an arbitrary and minimal convex sep-

arator, respectively, both delivered by the Greedy procedure.
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Figure 6: Moving v to the boundary.
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Figure 7: ~b and b0 are directly connected by an edge.

If the two vertices of P (D n C; b) \ bd(D) next to d1 - say ~b and b0 - are directly
connected by an edge of P (D n C; b) (see Figure 7), then draw both tangents with

respect to C passing through D and intersecting P (DnC; b) at w and v, respectively.
Move v along the tangent away from d1 until it reaches bd(C) thus rotating the

following edges as discussed before. This operation gives us the polygonal curve

P (D n C; c1) which - by construction - is a convex separator and has a number of

vertices at most one larger than the number of vertices of the minimum convex

separator P (C nD; b).
Note that P (D nC; d1) is even a minimum convex separator if d1 = b or d1 = b0.

If ~b and b0 are connected by two edges of P (D n C; b) the same procedure leads
again to P = (DnC; d1) with jV (P (DnC; d1))j = jV (P (DnC; b))j+1 (see Figure 8)

15






�

� 
� � � � 
 � �  �

� � � � 
 � � �

� � � �

�
�

Figure 8: ~b and b0 are not directly connected by an edge.

In the case, where the sets D and C are unit balls of the Euclidean metric, the

choice of the starting point is because of the symmetry of C and D irrelevant. The

proof of the preceding theorem thus implies that the following result holds.

Corollary 6 If D = fx 2 R
2 : kxk � 1g is the l2-unit ball and C = � � D for

� > 1, then any P (C nD; c1) produced by the Greedy procedure is optimal.

Notice that in the case of Corollary 6, the location problem with polyhedral

gauges may be further simpli�ed. If the optimal numbers V of extreme points in

the convex separator is known from the application of the Greedy algorithm, the

Greedy convex separators may be replaced by regular V -gones. Consequently, the
usually irregular tessellation of the plane (see Figure 1) is replaced by a regular

one which opens up new possibilities to improve the average running time of the

algorithm.

6 Conclusion and future research topics

In this paper we have developed a polynomial approximation scheme for a very

general class of location problems. The characteristic of the solution approach is the

reduction of the original problem to problems in which the distance between new

and existing facilities is measured by a polyhedral gauge. This modi�ed problem

can be solved by identifying a �nite dominating set (FDS) of a size which is - for

�xed accuracy " - polynomial in the input of the problem.

We have presented two alternative approaches to �nd a suitable transformation

to a polyhedral gauge problem, one based on the sandwich approach, the other on

a Greedy procedure.
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The algorithms presented in this paper are for some of the speci�c choices of

feasible sets S and function � the only known approaches to solve these problems in a

systematic way and with an a priori knowledge of the accuracy obtained after a given

number of elementary operations. Besides the fact, that this allows the treatment

of problems which so far could not be dealt with, it will also be investigated in

the future, how the approach compares with alternatives in cases, where algorithms

which have worked in the past satisfactorily are already available.

A �rst example will be problems with Euclidean distances. Here, the approxima-

tion uses polyhedral gauges with unit balls having the smallest number of extreme

points. Since the unit balls can be chosen as regular V -gones the search in the

resulting regular grid can be streamlined. It remains to be seen, whether the re-

sulting algorithm will be competitive with current approaches to Euclidean location

problems with non-convex objectives.
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