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Abstract 31 

Purpose: Degraded soils, such as those encountered in areas of mine activities, need to be 32 

ameliorated by liming to correct soil acidity and by addition of organic inputs to improve 33 

soil properties and fertility. 34 

Materials and methods: Non amended mine soil and soil amended with stabilized sewage 35 

sludge were incubated for 45 d. Soil physicochemical and biological indicators were 36 

periodically measured along incubation and other enzyme activities at the end of 37 

incubation. In improved soils a study of plant development in 250-g pots was carried out 38 

with three vegetal species: tomato, rye grass and ahipa. Germination and mortality rates, 39 

biomass production and photosynthetic pigments were measured. 40 

Results and discussion: Soil incubation with sewage sludge slightly increased soil pH and 41 

led to an enhancement of soil electrical conductivity, organic carbon and dehydrogenase 42 

activity, especially for the higher doses (5 and 10%). However soil respiration was more 43 

promoted with the 2% dose, pointing to a possible toxic effect of the sludge. At the end of 44 

incubation physicochemical and biological properties were in general enhanced. Biomass 45 

production was improved in tomato and rye grass by sewage sludge addition (more at the 46 

2% dose) whilst ahipa growth was not affected by sewage sludge treatments. Tomato 47 

mortality reached 73% with high sludge doses (10%). 48 

Conclusions: According to this set of parameters, amendment with SSL of a limed acid 49 

mine soil would be considered as a good strategy for soil amelioration in view of plant 50 

establishment and development. 51 

52 

Keywords  Ahipa • Mine soil • Organic amendment • Rye grass • Tomato 53 
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1 Introduction 54 

The Iberian Pyrite Belt occupies the southwestern corner of the Iberian Peninsula, 55 

extending from Seville, in Spain, to the Atlantic Ocean, south of Lisbon, in Portugal, 56 

making up a belt of about 230 km in length and 40 km in width (Sáez et al. 1996). It 57 

constitutes the world largest massive sulphide deposit (mainly Cu-Pb-Zn), which has been 58 

mined since the Metal Age, according to archeometallurgical evidences, but reaching a 59 

peak between the 19th and the 20th centuries, when most mines were closed due to 60 

exhaustion of the ore (Salkield 1987). 61 

The soils in this belt are characterised by high level of acidity, poor physical structure 62 

and also contain toxic concentrations of metals and low levels of major plant nutrients 63 

(Fernández-Caliani et al. 2009). Even if some communities of pioneer plants colonized this 64 

area, it needs to be improved by different measures, which include correction of soil 65 

acidity and improvement of soil properties, because the extreme environmental conditions 66 

are not suitable to promote plant establishment. Besides, it is essential to assess the 67 

efficacy of the implemented measures by evaluating physical, chemical and biological 68 

properties, in order to gain a full understanding of constraints and opportunities.  69 

Remediation of mine tailings by revegetation is an interesting approach with obvious 70 

economic and environmental advantages. However some of the limitations to revegetation 71 

on an acid soil include pH values out of physiological values, low nutrient status, low 72 

organic matter and microbial activity and low water holding capacity. Addition of organic 73 

amendments can increase organic matter, nutrient status, microbial activity and water 74 

holding capacity (Jones et al. 2012; González-Ubierna et al. 2012). The use of organic 75 

amendments together with liming or other materials rich in carbonates is a way of restoring 76 

the ecological function of metal-contaminated sites, given that these approaches improve 77 

the physicochemical and biological soil conditions and favour plant growth (Haynes and 78 

Swift 1988; Alvarenga et al. 2008, 2009; de Varennes et al. 2010) 79 



 4

Organic amendments from different sources have been assayed for the improvement of 80 

mine soil conditions, from agricultural, industrial or miscellaneous origins (Alvarenga et 81 

al. 2008; de Varennes et al. 2010, 2011; Arocena et al. 2012). Furthermore, the use of 82 

organic wastes from water treatment plants is an alternative to the disposal of these 83 

residues, generated in huge quantities. The applications of these biowastes, whose 84 

production is estimated up to 138 million tonnes per year in the EU and with high potential 85 

added value, are regulated by a European Directive (Council Directive, ECC 1986) which 86 

considers both environmental and soil protection, encouraging the agricultural use of 87 

sewage sludge in such a way as to avoid harm to vegetation, animals or humans. In 2007, 88 

1.17 Mt of dry urban sewage sludges were produced in Spain, as a result of the treatment 89 

of almost 85% of the total residual water, in compliance with European guidelines 90 

(Council Directive, ECC 1991). The use of treated sewage sludges provides economic, 91 

agronomic and environmental benefits since they are low-cost amendments, have great 92 

fertilising ability and are a source of macro (N and P) and micro (Fe, Zn, Cu, etc) nutrients. 93 

Additionally they increase soil organic matter content thus improving soil water-holding 94 

capacity, microbial activity, and other physical, chemical, and biological properties (Hueso 95 

et al. 2012).  96 

The aims of this work were (a) to assess the effect of the addition of a stabilized 97 

sewage sludge of urban origin on physicochemical and biological properties of a severely 98 

degraded mine soil and (b) to study the effect of the amendment on the establishment of 99 

three plant species (tomato and rye grass, of agricultural interest and ahipa, a species which 100 

could be employed for biofuel production) and therefore their suitability to be used for 101 

revegetation. 102 

103 

2 Materials and methods 104 

2.1 Site description and properties of the soil and the amendment 105 
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The soil (NC) was collected in a mine waste situated in the proximity of the village of 106 

Nerva, province of Huelva (37◦ 42’ 4.5” N 6◦ 33’ 35.1” W), located in the Iberian Pyrite 107 

Belt, which includes one of the largest deposits of pyrite (FeS2) and other metallic and 108 

polymetallic sulphides as chalcopyrite (CuFeS2), sphalerite ((Zn,Fe)S) and galena (PbS) 109 

(Chopin and Alloway 2007). Soil samples, characterised as sandy loam, were collected at 110 

random from the selected site. They were air dried for 2 weeks, sieved through 3-mm for 111 

incubation assays, or passed through a 2-mm mesh sieve or ground to 50 m, for analysis 112 

following standard methodology. 113 

According to X-ray fluorescence analysis SiO2 (46.9%) and Fe (23.0%) and Al 114 

(12.7%) oxides represent more than 80% of the soil mineralogical composition. It is a very 115 

acid soil (pH 2.4) with low organic carbon content (OC, 1.4%), and high electrical 116 

conductivity (EC, 1.3 dS m-1, 1:2.5 ratio); 24% water content at field capacity; HIX 1.16; 117 

SUVA (L g-1cm-1) 10.8. Otherwise, this soil contents high total concentrations of potential 118 

hazardous elements (mg kg-1) (As, 3951; Cu, 694; Pb, 3976) and also of S (8320). 119 

Stabilized sewage sludge (SSL) from the wastewater treatment plant of Granada (SE 120 

Spain), was used for the amendment of NC soil. The main properties are: pH 6.9; EC (dS 121 

m-1, 1:10 ratio) 2.8; OC (%) 35.5; HIX 0.43. 122 

123 

2.2 Soil incubation 124 

Mine soil (NC) was first limed with Carbocal (Azucarera Ebro), a residue rich in calcium 125 

carbonate (83.4%) with an OC content of 5.1%. The limed Nerva soil (NCL) received 126 

Carbocal at an equivalent rate of 1.5% (w/w) in CaCO3. After liming the organic waste 127 

was applied at 2, 5 and 10% (w/w) (SSL2, SSL5 and SSL10, respectively), corresponding 128 

to approximately 40, 100 and 200 Mg ha-1. The mixtures, carried out with air-dried soil and 129 

the amendment, were placed in plastic trays covered with aluminium foil to avoid 130 

desiccation, their moisture adjusted to 40% of the soil field capacity with deionised water, 131 
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and allowed to stand in the dark at ambient temperature (20 ± 2 ºC), up to 45 d. Water was 132 

supplied as required to maintain soil humidity. One subsample was periodically withdrawn 133 

(0, 2, 5, 7, 14, 21, 29, 34, 42 and 49 days) for determination of pH, moisture, conductivity 134 

and organic carbon (OC) content. Another subsample was kept frozen (-18ºC) until 135 

analysis for enzyme activities and soil induced respiration (SIR). 136 

137 

2.3 Soil induced respiration and microbial biomass C 138 

Soil induced respiration (SIR) measurements were performed in an automatic equipment 139 

(μTrac 4200, Sy-Lab, Gomensoro, Madrid, Spain), after defrozing the samples at ambient 140 

temperature. Briefly, ca. 5 g soil was mixed with 50 mg of talc:glucose (10:1 ratio) and 141 

weighed into a plastic tube, which was introduced into a measuring cell containing 2 mL of 142 

a 2% KOH solution. The tightly closed cell was maintained at 30ºC during 20 h and CO2143 

evolution was monitored every 5 min, through the measurement of solution impedance 144 

decrease. Results are expressed as mg CO2 100 g-1 h-1.  145 

Soil microbial biomass C (SMBC, mg C 100 g-1 soil) was estimated from the SIR 146 

assay. SMBC was calculated from the CO2 generated during 6 h of soil incubation as 147 

follows: SMBC = 40.04   CO2 + 0.37 (Anderson and Domsch 1978). 148 

149 

2.4 Enzyme activities 150 

Enzyme activities are used as an index of microbial functional diversity if they reflect 151 

changes in microbial activities. Since microbial functional diversity includes many 152 

different metabolic processes, a representative set of enzyme activities was assessed: 153 

During incubation dehydrogenase activity (DHA), proposed as a measure of overall 154 

microbial activity, was determined by incubating soil samples during 20 h at 25°C with 0.2 155 

mL of 0.4% 2-p-iodophenyl-3 p-nitrophenyl-5 tetrazolium chloride as a substrate. The 156 
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iodonitrotetrazolium formazan (INTF) formed was measured spectrophotometrically at 490 157 

nm, according to García et al. (1997).  158 

At the end of the incubation period various enzymes were analyzed: enzymes 159 

participating in the C cycle (β-glucosidase), N cycle (protease), P cycle (alkaline 160 

phosphatase) and S cycle (arylsulphatase). The enzyme activities β-glucosidase (Glu), 161 

alkaline phosphatase (AlkP) and arylsulphatase (Aryl) were spectrophotometrically 162 

quantified at 400 nm by estimating the p-nitrophenol (PNP) released by incubating the soil 163 

with a substrate containing a p-nitrophenyl moiety (Tabatabai and Bremner 1970; Ladd 164 

and Butler 1972; Tabatabai 1994) and expressed as μg PNP g-1 h-1. Protease activity (Pro) 165 

determined the released tyrosine reacted with Folin-phenol reagent measuring at 700 nm 166 

by spectrophotometry (Ladd and Butler 1972). This activity is expressed as μg tyrosine g-1167 

h-1. All enzyme activities were determined in defrozen samples in triplicate and expressed 168 

on an oven-dried (105ºC) soil basis. 169 

170 

2.5 Analytical methods 171 

The soil particle size distribution was determined by sieving and sedimentation, applying 172 

the Robinson’s pipette method after organic matter had been removed with H2O2, using 173 

sodium hexametaphosphate as dispersing agent. Field capacity was obtained from water 174 

retention of disturbed soil samples using ceramic pressure plates at an air pressure of 0.03 175 

MPa. The pH and EC determinations were carried out in sample/deionised water 176 

suspensions 1/2.5 (w/v) for soil and mixtures of soil and sludge and 1/10 (w/v) for sludge. 177 

Organic C (OC) content was determined by a modified Walkey and Black method 178 

(Mingorance et al. 2007). The humification index (HIX) (Zsolnay 2003) and the specific 179 

UV absorbance (SUVA, L g−1 cm−1) (Hernández-Soriano et al. 2011) were determined in 180 

sample/deionised water suspensions 1/4 (w/v) at the end of the incubation period. Samples 181 
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were analysed in triplicate. Estimation of metal content was accomplished by X-ray 182 

fluorescence analysis.  183 

184 

2.6 Pot experiments 185 

Three plant species were selected for the experiments: two of agricultural interest, tomato 186 

(Lycopersicon esculentum Mill.) and rye grass (Lolium perenne L.), and ahipa 187 

(Pachyrhizus ahipa (Wedd.) Parodi), whose tuberous root could be used for biofuel 188 

production. The experiment was carried out in pots of 250 g and under greenhouse 189 

conditions (average temperature 21.8°C and humidity 67%). Non-amended limed soil 190 

(NCL) as a control and NCL amended with stabilized SSL at 2 and 10% (SSL2; SSL10) 191 

were the treatments tested.  192 

In each pot the number of seeds was planted according to previous germination assays. 193 

The seeds showed the following germination rate: tomato 85%, rye grass 95% and ahipa 194 

70%. A total of ten plants per pot were cultivated. Tap water was periodically added to 195 

maintain soil field capacity. In order to reduce soil compactness, 40 g of glass beads (4 196 

mm) were mixed in each pot.  197 

Germination and mortality rates, biomass production and photosynthetic pigments were 198 

measured. Germination was monitored at the beginning and mortality at the end of the 199 

assays. The experiment was carried out during 18 days for rye grass and for one month for 200 

tomato and ahipa harvesting plants at vegetative stage. Fresh weight of the plant aerial 201 

vegetative part was only measured at the end of the experiment. Photosynthetic pigments 202 

were determined using a spectrophotometer (Thermo, Helios Gamma). A piece of leaf was 203 

taken and pigments were extracted with pure methanol for 24 hours and then the extract 204 

was measured. The concentrations of Chlorophyll a (Chl. a), b (Chl. b) and the sum of leaf 205 

carotenoids were calculated with the following equations given for pure methanol, where 206 
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the pigment concentrations are given in µg mL-1 extract solution (Lichtenthaler and 207 

Buschmann 2001) 208 

209 

210 

211 

212 

213 

2.7 Statistical treatment of the data 214 

Exploratory analysis was carried out to check normality of the data sets. Differences 215 

between treatments were determined by ANOVA of normal data sets and Kruskal-Wallis 216 

test of non-normal data sets. Otherwise, the post-hoc Tukey-t or Fisher's LSD (least 217 

significant difference) tests were used for comparison of several means. Comparison 218 

between two sample means was performed by t-test or Mann-Whitney test. The 219 

relationship between variables was performed by either correlation or regression analysis. 220 

Hierarchical cluster analysis was used to arrange the soil and plant properties into groups 221 

using the Ward’s method as linking algorithm and the square Euclidean distance as 222 

similarity measurement. The clustering results were shown in a dendogram to provide 223 

grouping of variables. 224 

Values with p < 0.05 were considered significant. SPSS v.17.0 (Illinois, USA) was 225 

used for statistical data analysis. 226 

227 

3 Results and discussion228 

3.1 Evolution of soil physicochemical properties along incubation 229 

Addition of Carbocal as a liming agent effectively raised soil pH with an average value of 230 

6.8 ± 0.18 for the whole assayed period. The increase in pH as a result of liming has been 231 

linked with a change in the charge characteristics of soil OC (Curtin and Smillie 1983; 232 

[Chlorophyll a] = (16.75 * A665,2) – (9.16 * A652,4) 
[Chlorophyll b] = (34.09 * A652,4) – (15.28 * A665,2)

[Carotenoids] = ((1000 *A470) – (1.63 * [Chlorophyll a]) – (104.96 * [Chlorophyll b])) 
                                                                        221 
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Chan and Heenan 1999). The pH increased 0.009 units per incubation day (R2= 0.812) 233 

reaching a value of 7.1 at the end of this period. 234 

The addition of SSL modified soil pH depending on the applied dose. The pH for the 235 

SSL2 treatment did not change with incubation time (p > 0.05) and the overall pH average 236 

(6.9 ± 0.15) was slightly higher than that of non-amended soil (pH 6.8 ± 0.16), which 237 

neither varied along the incubation (p > 0.05). However, addition of 5% SSL increased pH 238 

linearly with incubation time (R2=0.846; tpH  02.071.6 ) and in the case of SSL10 239 

pH also increased linearly during 17 d (R2=0.812; tpH  07.039.6 ) and then 240 

remained constant at a value of 7.7. 241 

Soil EC also increased for limed soil, from 1.2 to 2.2 dS m-1, due especially to a strong 242 

enhancement of CO3
2- and Ca2+ concentrations because of the Carbocal addition and of 243 

formation of SO4
2- from the pyrite due to the pH increase (Curtin and Smillie 1983). 244 

Amendment addition resulted in a further soil solution EC increase in comparison with 245 

non-amended (NCL) soil. The EC of NCL (2.2 ± 0.1) and of SSL2 (2.5 ± 0.2) remained 246 

constant during incubation while that of SSL5 ( 09.03.2 tEC  ) and SSL10 247 

( 15.04.2 tEC  ) increased with increasing incubation time following a power function 248 

reaching final values of 3.2 and 4.1 dS m-1, respectively (Fig. 1). This increase was 249 

probably as a consequence of the production of low molecular weight organic ions or of 250 

the release of salts during decomposition of organic substances and agrees with soil EC 251 

increases after addition of high doses of organic amendments to soil (González-Ubierna et 252 

al. 2012). The increase in EC coincides with the increase in soil pH indicated above 253 

(r=0.844). It is important to note that 4.0 dS m-1 has been reported as an EC value which 254 

may inhibit plant growth and seed germination (Ye et al. 2002). 255 

Soil OC was initially enhanced, as expected from the OC content of the organic waste, 256 

and was proportional to the applied dose ( doseOC  34.05.1 ; R2=0.981) (see Fig. 1). 257 

Along incubation OC content of the non-amended NCL soil (1.5 ± 0.14) and amended with 258 
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2% SSL (1.9 ± 0.27) decreased slightly but without significant variations (p >0.05). On the 259 

contrary, the OC of soils amended with 5 and 10% SSL decreased with time following a 260 

quadratic regression (R2 = 0.850, 2
5 002.008.04.3 ttOCSSL  ; R2=0.902, 261 

2
10 001.009.06.4 ttOC SSL  ) likely as a result of OC mineralization in a 262 

stabilization process of the sludge (see Fig. 1).  263 

264 

3.2 Evolution of soil biological properties with incubation 265 

To assess the results of soil remediation it is also necessary to observe the microbial 266 

processes, since soil biological investigations (such as soil respiration, biomass, enzyme 267 

activities, microbial counts) can give information on the presence of viable 268 

microorganisms. Biological methods can therefore be a good complement of 269 

physicochemical methods for the evaluation of amendment addition or for the assessment 270 

of the success of a remediation strategy.  271 

Evolution of CO2 was low for untreated NC soil (0.76 mg CO2 100 g-1 h-1), and 272 

increased with liming (3.49 mg CO2 100 g-1 h-1). The low NC respiration could be related 273 

with high soil metal pollution. Tyler (1974) showed a severe reduction of soil respiration 274 

with increasing concentrations of Cu and Zn. On the contrary, lime application to acid soils 275 

is known to induce a temporary stimulation of soil biological activity and has been 276 

reported to enhance microbial biomass content, soil respiration rate, soil enzyme activities 277 

and net mineralization of soil organic N and S (Haynes and Swift 1988; Haynes and Naidu 278 

1998). However it is also possible that dissolution of CaCO3 from the liming agent could 279 

partially contribute to the emitted CO2 as has been recently indicated for soil carbonates 280 

(Tamir et al. 2011).   281 

The evolution of CO2 from soil amended with SSL was similar to that corresponding to 282 

non-amended soil (Fig. 2). At the beginning of the incubation, the fact that soil respiration 283 

increased more for the 2% amendment (4.18 ± 0.31) than for the higher doses (3.21 ± 0.43 284 
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for SSL5 and 3.45 ± 0.22 for SSL10), which displayed a similar behaviour, could be an 285 

indication of SSL toxicity. Sewage sludges from the treatment of domestic waters may 286 

contain organic pollutants and potentially toxic elements (Smith 2009; Passuello et al. 287 

2010), which could interfere or even inhibit the effective mineralization of labile organic 288 

compounds by soil microorganisms.  289 

Dehydrogenase is an oxidoreductase only present in viable cells, therefore it has been 290 

considered to represent the average activity of the active microbial population of a soil 291 

(Nannipieri et al. 2002). Dehydrogenase activity (DHA) slightly increased with liming 292 

(0.030 μg INTF g-1 h-1 for NC and 0.036 μg INTF g-1 h-1 for NCL), in agreement with 293 

previous reports (Badalucco et al. 1992), and was greatly promoted by addition of SSL (see 294 

Fig. 2), already after the first incubation day, proportionally to the SSL dose (R2 = 0.991; 295 

20052.0086.0045.0 dosedoseDHA  ), suggesting that this fresh amendment 296 

provided C which could be metabolised by most soil microorganisms. Addition of 2% SSL 297 

increased DHA values after 4 days of incubation, keeping the values constant along the 298 

incubation period, whereas SSL5 and SSL10 provided a strong increase with maximum 299 

DHA activity occurring between 4 and 12 days after amending (see Fig. 2). Then a 300 

concomitant reduction in DHA values was observed, which should be related to the 301 

decrease of easily-degradable substrates (Serra-Wittling et al. 1996; Saviozzi et al. 2002), 302 

in coincidence with a decline of the OC concentration in the soil (see Fig. 1).  303 

304 

3.3 Soil properties at the end of the incubation period 305 

Table 1 shows the enhancing effects of SSL on soil properties after 45 days of incubation. 306 

Soil pH increased with SSL addition, and the increases in EC and OC content were 307 

proportional to the added dose (R2 0.999, doseEC  19.025.2 ; R2 0.812, 308 

doseOC  17.017.0 ). The characterization of the more available OC fraction for soil 309 

microorganisms and plants, dissolved OC (DOC), showed that SSL addition diminished its 310 
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aromaticity and humification degree. Both HIX and SUVA indexes displayed low values 311 

for amended soils, decreasing proportionally to the dose (R2=0.962, 312 

202.027.083.1 dosedoseSUVA  ).  313 

The enzyme activities of non-amended soil without liming (data not shown) were 314 

below those corresponding to agricultural soils (Trasar-Cepeda et al. 2000) probably 315 

reflecting the toxic effect of some metals in this soil (Kandeler et al. 1996). It has been 316 

shown that increasing metal concentrations (Ni, Cd or Pb), reduce some biochemical 317 

indicators such as enzyme activities (Tejada et al. 2008; Khan et al. 2010). It is long known 318 

that incorporation of organic matter modifies soil biochemical activity and can change the 319 

effects of heavy metal to selected soil biochemical parameters. However, the influence of 320 

OM on soil biological properties depends upon amount, type, size and dominant 321 

component of added organic materials (Tejada et al. 2008).  322 

As can be seen in Table 1, changes in biological properties by SSL incorporation were 323 

also noteworthy. However, the consideration of soil properties individually has proven 324 

generally to be unsatisfactory in providing an appropriate estimate of soil quality. It is 325 

difficult to draw meaningful conclusions about soil quality using individual soil enzyme 326 

activities, because a particular soil enzyme activity is not strongly related to a specific soil 327 

property but rather to a range of soil properties. Therefore, an overall index, i.e. the 328 

geometric mean of the assayed enzyme activities 329 

( 5
1

)Pr( AryloAlkPGluDHAGMea  ) was used to assess soil functioning (García-330 

Ruíz et al. 2008; Paz-Ferreiro et al. 2012). GMea was significantly higher in the 331 

organically-amended soil than in non-amended soil (see Table 1). This value was highly 332 

dependent on the dose (R2 = 0.965, doseGMea  43.3 ), confirming the improvement of 333 

soil quality due to the addition of increasing SSL doses. In fact the enhanced enzyme 334 

activities fell into the range of the values found in earlier studies (63-202 μg PNP g-1 h-1 for 335 
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glucosidase and 4.2-59.8 μg PNP g-1 h-1 for arylsulfatase) (Trasar-Cepeda et al. 2000) 336 

relative to agricultural soils. 337 

A better understanding of the role of these enzymes on soil functioning is obtained by 338 

re-examining them individually, as they are related to the mineralization of relevant 339 

nutrients. Glu, an extracellular enzyme related to the C-cycle, catalysing the hydrolysis of 340 

cellobiose and other disaccharides, releasing sugars that act as energy source for 341 

microorganisms and Pro, which is related to the N-cycle and involved in the release of 342 

inorganic N from simple peptidic substrate, strongly increased with SSL addition (see 343 

Table 1), in agreement with Alvarenga et al. (2009) who reported increases in both 344 

enzymatic activities after addition of SSL between 25 and 100 Mg ha-1 to an acid mine 345 

soil. It is clear that the N cycle was modified when the mine soil was treated with SSL, 346 

since Pro was stimulated even at the lowest SSL dose (Table 1). Glu reflects the state of 347 

the organic matter and the processes occurring therein (García et al., 1994). The activity 348 

was low for control soil and increased with amendment addition, likely as a consequence 349 

of the higher content of labile C in the soil, as corroborated by SUVA and HIX values for 350 

soil DOC (Table 1). 351 

AlkP, used to describe a wide group of enzymes which catalyze the hydrolysis of 352 

organic-P compounds to phosphates, and DHA also showed an increase with SSL at the 353 

end of the incubation period (see Table 1). The supply of readily metabolizable C in SSL 354 

may have been responsible for the stimulation in the synthesis of soil AlkP activity. The 355 

variations of the Aryl behaviour, an enzyme which hydrolyzes sulfate esters with an 356 

aromatic radical, were lower without showing a relationship with SSL addition, as 357 

previously reported (Paz-Ferreiro et al. 2012).  358 

SIR did not follow any clear trend at the end of incubation, indicating that a SSL dose 359 

above 2% would decrease microbial activity. De Andrés et al. (2012) also reported that 360 

sewage sludge application generally increased soil respiration, although in a manner not 361 
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proportional to the quantity applied. On the other hand, Paz-Ferreiro et al. (2012) attributed 362 

the decrease in soil respiration by sewage sludge addition to the solubility of heavy metals 363 

in soil, while enzymatic activities were enhanced.  364 

In general, the organic amendment stimulated soil enzymatic activities because the 365 

added material may contain intra- and extracellular enzymes, as well as labile organic 366 

matter fractions which may also improve microbial activity in the amended soil. The large 367 

OC content of SSL would provide an energy source for soil microorganisms, but in 368 

particular, the metal load of this mine soil, with toxic effects on soil microbiota, could be 369 

counterbalanced in SSL-amended soil by the chemical composition of its OM, which 370 

would be effective in binding and chelating the metals from the soil. Similar results were 371 

reported by Tejada et al. (2008) in an acid-amended soil. However, due to the intrinsic 372 

chemical complexity of DOC, it is difficult to predict DOC reactivity (Weisshaar et al. 373 

2003)  374 

375 

3.4 Screening of plant growth 376 

The growth of ahipa was not inhibited by SSL treatments and none of the parameters 377 

studied were affected (p > 0.05). This means that this species does not need any soil 378 

correction to grow, except Carbocal addition to raise the soil pH.  379 

In rye grass, SSL amendment increased significantly (p <0.05) the biomass production 380 

in comparison with non-amended soil, presenting significantly greater growth at 2%, but 381 

without significant differences between treatments (p > 0.05) in photosynthetic pigments, 382 

germination or mortality rate (Table 2). 383 

Soil added with SSL2 (Fig. 3) led to an increase of biomass production of tomato (p = 384 

0.013), but SSL10 produced a growth inhibition, resulting in biomass values similar to 385 

non-amended soil (p = 0.695). Actually, at 0 and 2% SSL no mortality was recorded but it 386 

reached values ranging from 58 to 100% with addition of SSL10. At the highest SSL 387 
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application, tomato stunted growth and later plant death might have resulted by the 388 

significant increase in soil EC (Table 1) (the species is more sensitive to salinity at 389 

germination and early seedling stage, see Foolad 1996). Inhibition of plant growth in soils 390 

of high salinity has been reported for other vegetal species when added with sewage sludge 391 

or other organic amendments (Gascó and Lobo 2007; Pardo et al. 2011). However, other 392 

effects should not be discarded like overcoming toxicity thresholds either from metals in 393 

the sludge or in the contaminated soil. In tomato, the SSL treatment had a positive effect 394 

on photosynthetic pigments (see Table 2), being significantly higher in plants growing in 395 

amended soil as compared to non amended soil (p < 0.05) without showing significant 396 

differences between doses (p > 0.05). Estimation of chlorophyll content is often 397 

accomplished to assess the impact of most environmental stresses as the pigment content is 398 

linked to toxicity/deficiency symptoms and photosynthetic plant productivity (Gupta and 399 

Sihna 2007). Our results are in agreement with earlier reports (Gupta and Sihna 2007; 400 

Singh and Sihna 2005) and may be attributed to the improved bioavailability in the soil of 401 

elements required for chlorophyll biosynthesis or the additional supply of nutrients from 402 

the sludge. Carotenoids, protective pigments associated to chlorophylls, increase 403 

sometimes under stress conditions (Kenneth et al. 2000; Rossini et al. 2010) and the results 404 

suggest the metal contamination of the soil and the metal contribution of sludge 405 

application. 406 

An exploratory cluster data analysis (see Fig. 3), carried out to discover similarities 407 

among the main soil properties and the plant growing indicators, revealed that plant 408 

mortality was related with soil properties and the dose of SSL; the biomass and pigment 409 

content were related with soil respiration, an indicator of soil fertility; finally, the third 410 

group is related with the quality of DOC but seems not to be related with plant growth. 411 

There is clear evidence that addition of SSL had a strong effect on plant establishment and 412 

at the same time a dose increase resulted in an improvement of the soil biological activity 413 
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and microbial efficiency and, depending on the species, of the plant growth.  414 

Finally, if we focus on individual plant species, ahipa and rye grass grow well up to 415 

SSL10, while a dose > 2% negatively affects tomato establishment.  416 

417 

4 Conclusions418 

The addition of organic amendments to degraded soils, such as those from acid mining 419 

areas, should be selected taking into consideration not only soil fertility, but also soil 420 

ability to protect the underlying saturated zone from pollution and the ability to constitute 421 

an optimum ecosystem for the introduction of appropriate plants for revegetation purposes. 422 

Addition of SSL from urban treatment plants resulted in an initially enhanced soil OC, 423 

though it decreased with time as a result of sludge stabilization, and a general increase of 424 

biological and biochemical parameters (enzymatic activities and soil respiration). 425 

According to this set of parameters, soil amended with SSL would be considered as a good 426 

candidate for soil revegetation and plant establishment and development. All the species 427 

tested (tomato, rye grass and ahipa), with different economic and agricultural interest, 428 

could be used for revegetation after liming this soil for pH correction and the use of the 429 

amendment at 2%, which implies less economic investment, might be recommended for 430 

the establishment of tomato plants. However to confirm the observed effects attained with 431 

the present approach, based on a screening carried out with the three plant species in small 432 

pots, a future test under field conditions will be required.  433 
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Figure caption sheet 573 

574 

Fig. 1  Evolution during incubation of electrical conductivity (left) and soil organic carbon 575 

(right) for limed Nerva soil (NCL) amended with stabilized sewage sludge (SSL) at 0, 2, 5 576 

and 10% 577 

578 

Fig. 2  Evolution during incubation of soil induced respiration (left) and dehydrogenase 579 

activity (right) for limed Nerva soil (NCL) amended with stabilized sewage sludge (SSL) at 580 

0, 2, 5 and 10% 581 

582 

Fig. 3  Dendrogram for hierarchical clustering of soil and plant variables583 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Evolution during incubation of electric conductivity (left) and soil organic 

carbon (right) for limed Nerva soil (NCL) amended with stabilized sewage sludge (SSL) 

at 0, 2, 5 and 10%. 
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Figure 2. Evolution during incubation of soil induced respiration (left) and 

dehydrogenase activity (right) for limed Nerva soil (NCL) amended with stabilized 

sewage sludge (SSL) at 0, 2, 5 and 10%. 
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Figure 3. Dendrogram for hierarchical clustering of soil and plant variables 
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Table 1. Selected properties of non-amended and amended mine soil with stabilized sewage sludge (SSL) sampled at the end of the incubation 

study. Values are means of 3 replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

EC: electrical conductivity. OC: organic carbon. DHA: dehydrogenase activity. Glu: β-glucosidase. AlkP: alkyl phosphatase. Pro: protease. Aryl: 

arylsulfatase. GMea: geometric mean of the enzyme actitivies. SMBC: soil microbial biomass C. SIR: soil induced respiration. SUVA: specific 

UV absorbance. HIX: humification index.  

 

 

 

 

 
Chemical properties 

Enzyme activities 
μg substrate g

-1
 h

-1 
Microbial properties Soil solution 

SSL 
dose (%) 

pH 
EC 

dS m-1 
OC 
% 

DHA Glu AlkP Pro Aryl GMea 
SMBC 

mg C 100 g-1 soil 
SIR 

mg CO2 100g-1 h-1 
SUVA HIX 

0 7.14 2.25 1.47 0.060 10.2 2.63 0.28 0.185 0.61 67.4 2.99 1.88 5.74 

2 7.24 2.60 1.91 0.396 108 78.4 48.2 6.39 15.9 85.9 3.82 1.25 1.91 

5 7.58 3.21 3.02 2.798 109 305 98.4 16.2 43.1 63.2 2.80 1.01 1.35 

10 7.69 4.11 3.10 3.664 173 530 181 14.9 61.9 77.7 3.45 0.94 1.02 



 

 

 

 

 

 

 

Table 2. Parameters in the plants growing in non-amended and amended mine soil with stabilized sewage sludge (SSL). Values are means of 3 

replicates ± standard deviation. 

 

 

 

Species 
SSL 

dose (%) 
Germination (%) Mortality (%) Biomass (g) Chl. a (mg g

-1
) Chl. b (mg g

-1
) Carotenoids (mg g

-1
) 

Ahipa 0 87 ± 0 3 ± 4 4.78 ± 1.13 2.56 ± 0.45 0.83 ± 0.15 0.65 ± 0.11 

 2 64 ± 28 3 ± 4 4.76 ± 2.19 2.47 ± 0.23 0.76 ± 0.08 0.63 ± 0.04 

 10 69 ± 4 9 ± 9 3.38 ± 1.10 2.43 ± 0.48 0.77 ± 0.14 0.59 ± 0.17 

Rye grass 0 91 ± 9 3 ± 6 0.07 ± 0.01 1.08 ± 0.16 0.56 ± 0.05 0.23 ± 0.09 

 2 94 ± 5 0 ± 0 0.24 ± 0.02 1.57 ± 0.27 0.67 ± 0.10 0.38 ± 0.06 

 10 88 ± 5 0 ± 0 0.13 ± 0.01 1.76 ± 0.33 0.92 ± 0.23 0.32 ± 0.06 

Tomato 0 92 ± 8 6 ± 11 0.38 ± 0.08 0.99 ± 0.14 0.34 ± 0.06 0.23 ± 0.04 

 2 81 ± 13 0 ± 0 1.12 ± 0.30 2.04 ± 0.28 0.71 ± 0.09 0.53 ± 0.08 

 10 92 ± 8 73 ± 24 0.23 ± 0.05 2.21 ± 0.43 0.75 ± 0.13 0.52 ± 0.09 
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