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Summary. We show that recogniser P systems with active membranes can be
augmented with a priority over their set of rules and any number of membrane
charges without loss of generality, as they can be simulated by standard P systems
with active membranes, in particular using only two charges. Furthermore, we
show that more general accepting conditions, such as sending out several, possibly
contradictory results and keeping only the first one, or rejecting by halting without
output, are also equivalent to the standard accepting conditions. The simulations
we propose are always without significant loss of efficiency, and thus the results of
this paper can hopefully simplify the design of algorithms for P systems with active
membranes.

1 Introduction

P systems with active membranes [10] have been extensively investigated
as computing devices, both from the computability and the computational
complexity standpoints.

By analysing the algorithms for P systems with active membranes described
in the literature, it is possible to identify a number of useful and recurring
techniques or “design patterns”. A standard one is using elementary membrane
division to produce all assignments of a set of variables x1, . . . , xn [10]; the
results of evaluating a Boolean formula under those assignments can then be
combined in several ways:

• by disjunction, allowing the solution of the SAT problem, and thus all NP-
complete problems [15];
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• by counting the number of satisfying assignments against a threshold,
allowing the solution of counting problems in the class PP [12];

• by alternating disjunctions and conjunctions by means of a tree-shaped
membrane structure of depth n, allowing the solution of PSPACE-complete
problems [14].

Other techniques involve simulating register machines [4] or Turing machines [2],
also in their nondeterministic version, by simulating nondeterminism with
parallelism as above for solving NP-complete problems [6]. Membranes at
different nesting levels can also be employed as “subroutines”, simulating
multiple Turing machines and becoming functionally equivalent to oracles for
subproblems [6].

While the main ideas behind those constructions are generally straightfor-
ward and show clear affinity with techniques from the theory of traditional
computing devices, their implementation unfortunately often involves a number
of technical details which obfuscate the big picture. One of the main culprits
are the ubiquitous timer objects, which keep the different parts of the P sys-
tem synchronised and allow the halting of the computation immediately after
producing the output, a condition that is usually imposed by the definition of
recogniser P systems and that often requires extra work to be met.

One of the crucial aspects of the definition of P systems with active mem-
branes is the number of possible membrane charges, which is 3 in the original
definition. Although charges are not needed to solve PSPACE-complete prob-
lems in polynomial time2 [3] and two charges suffice to achieve universality [1],
having access to a number of charges growing with the size of the input allows a
simpler implementation of many algorithms. For instance, when this is allowed,
the simulation of bounded-tape Turing machines becomes trivial [6]. In that
paper, an arbitrary number of charges was reduced to three without loss of
efficiency, but only in a very restrictive set of circumstances (essentially, no
communication with adjacent membranes is allowed, and the membrane must
behave deterministically).

The purpose of this paper is twofold. On the one hand, we want to un-
derstand which features of recogniser P systems with active membranes are
actually essential to characterise their behaviour. On the other hand, we want
to provide an array of useful extensions which can be added to P systems
with active membranes but can be simulated by the original model without
loss of efficiency. This will hopefully reduce the amount of “boilerplate code”
(repetitive rules unrelated to the main algorithm) in proofs and allow focusing
on a higher-level description of P systems, such as dividing membranes working
in parallel and their communication patterns.

The formally redundant but convenient features we describe in this paper
are the ability to use any number of charges, any partial priority ordering of
rules (as in the original definition of transition P systems [9]), and the ability
2 However notice that, in the absence of membrane dissolution rules, the lack of
charges seems to reduce the efficiency of P systems [5].
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to output the result of the computation in less restrictive ways, such as not
requiring the P system to halt after having sent out the result, or rejecting by
halting without output. Furthermore, we show that all these enhancements
can be simulated efficiently by standard recogniser P systems with active
membranes using only two charges (even when working in super-polynomial
time).

2 Basic notions

We recall the formal definition of P systems with active membranes using weak
non-elementary division rules [10, 16].

Definition 1. A P system with active membranes with weak non-elementary
division rules of initial degree d ≥ 1 is a tuple

Π = (Γ,Λ, µ, wh1
, . . . , whd

, R)

where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called
objects;

• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in
a one-to-one way;

• wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge, which can be either neutral (0), positive (+) or
negative (−) and is always neutral before the beginning of the computation.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α
and containing an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by
the objects in w).

(b) Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and
such that the external region contains an occurrence of the object a; the
object a is sent into h becoming b and, simultaneously, the charge of h is
changed to β.
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(c) Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h
to the outside region becoming b and, simultaneously, the charge of h
becomes β.

(d) Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the membrane is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

(e) Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α,
containing an occurrence of the object a but having no other membrane
inside (an elementary membrane); the membrane is divided into two
membranes having label h and charges β and γ; the object a is replaced,
respectively, by b and c, while the other objects of the multiset are replicated
in both membranes.

(f’) Weak non-elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α,
and containing an occurrence of the object a, even if it contains further
membranes; the membrane is divided into two membranes having label h
and charges β and γ; the object a is replaced, respectively, by b and c,
while the rest of the contents (including whole membrane substructures)
is replicated in both membranes.

The instantaneous configuration of a membrane consists of its label h, its
charge α, and the multiset w of objects it contains at a given time. It is
denoted by [w]αh . The (full) configuration C of a P system Π at a given time
is a rooted, unordered tree. The root is a node corresponding to the external
environment of Π, and has a single subtree corresponding to the current
membrane structure of Π. Furthermore, the root is labelled by the multiset
located in the environment, and the remaining nodes by the configurations [w]αh
of the corresponding membranes.

A computation step changes the current configuration according to the
following set of principles:

• Each object and membrane can be subject to at most one rule per step,
except for object evolution rules: inside each membrane, several evolution
rules can be applied simultaneously.

• The application of rules is maximally parallel : each object appearing on
the left-hand side of evolution, communication, dissolution or division rules
must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). Analogously, each membrane can only be subject
to one communication, dissolution, or division rule (types (b)–(f’)) per
computation step; these rules will be called blocking rules in the rest of the
paper. In other words, the only objects and membranes that do not evolve
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are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules
involving the membranes themselves; this process is then repeated to
the membranes containing them, and so on towards the root (outermost
membrane). In other words, the membranes evolve only after their internal
configuration has been updated. For instance, before a membrane division
occurs, all chosen object evolution rules must be applied inside it; this way,
the objects that are duplicated during the division are already the final
ones.

• The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence ~C = (C0, . . . , Ck)
of configurations, where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable
in Ck. A non-halting computation ~C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distin-
guished objects yes and no: we assume that all computations are halting, and
that either object yes or object no (but not both) is sent out from the outermost
membrane, and only in the last computation step, in order to signal acceptance
or rejection, respectively. If all computations starting from the same initial
configuration are accepting, or all are rejecting, the P system is said to be
confluent. If this is not necessarily the case, then we have a non-confluent
P system, and the overall result is established as for nondeterministic Turing
machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (or, equivalently, decide languages),
we use families of recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is
associated with a P system Πx deciding the membership of x in a language L ⊆
Σ? by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for inputs of any length, as discussed in detail in [7].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ?} is (polynomial-
time) uniform if the mapping x 7→ Πx can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common
P system for all inputs of length n with a distinguished input membrane.
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• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ?.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not
exceed the length of the whole description, and the rules are listed one by
one. This restriction is enforced in order to mimic a (hypothetical) realistic
process of construction of the P systems, where membranes and objects are
presumably placed in a constant amount during each construction step, and
require actual physical space proportional to their number; see also [7] for
further details on the encoding of P systems.

In this paper we also take advantage of rule priorities, as in the original
paper introducing P systems [9]. A priority is any partial order � of the set of
rules such that, whenever a conflict between rules arises, only those with higher
priority can be applied; as usual, when two rules are incomparable with respect
to �, any conflict is resolved via a nondeterministic choice. Furthermore, we
also allow generalised charges, that is, any set Ψ ⊇ {+, 0,−} of charges may
be used [6]. Rule priorities and generalised charges will be proved redundant
in Section 4.

3 Generalised Acceptance Conditions

In this section we propose a more flexible variant of recogniser P system, where
we do not require a single output object at the last step of the computation, or
even the halting of the P system itself. This allows the omission of a number
of technical details from membrane computing solutions, which are sometimes
unrelated to the main algorithm but are still required in order to ensure
compliance to the formal definition of recogniser P systems. We prove that
there is no loss of generality in using these variants of accepting condition, as
it can always be simulated without significant loss of efficiency by the standard
one; we show this result first for P systems with priority and generalised
charges, and in a later section for standard P systems.

Definition 3. A generalised recogniser P system Π is a P system employing
two distinguished objects yes and no and behaving in any of the three following
ways:

1. It sends out an instance of object yes from its outermost membrane before
sending out any instance of object no; it can later send out any combination
of objects yes and no, and is not required to halt.
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2. It sends out an instance of object no from its outermost membrane before
sending out any instance of object yes; it can later send out any combination
of objects yes and no, and is not required to halt.

3. It halts without sending out neither an instance of yes, nor an instance
of no.

The P system Π is said to accept in case 1, and to reject in case 2. The
behaviour of 3 can be interpreted as either accepting or rejecting, according to
a specified convention.

It is trivial to observe that a standard recogniser P system [11] is a special
case of generalised recogniser P system, always halting and sending out exactly
an instance of yes or no and only in the last computation step. Furthermore,
other acceptance conditions proposed in the literature [8] are also special
cases of generalised recogniser P systems; in particular, we have acknowledger
P systems (which accept by sending out one or more instances of yes and
reject by halting without output) and recogniser≥1 P systems (which accept
by sending out one or more instances of yes and reject by sending out one
or more instances of no). The only notable case not covered by the notion of
generalised recogniser P systems is accepting by outputting yes while rejecting
by not halting; since P systems are known to be universal [1], this acceptance
condition characterises the whole class of recursively enumerable sets.

3.1 Ensuring Output on Halting

We can now show that standard recogniser P systems with priority and
generalised charges solve exactly the same problems as generalised recogniser
P systems using the same features with polynomial slowdown. Priority and
generalised charges will then be eliminated, also without loss of efficiency, in
Section 4. We begin by reducing case 3 of Definition 3 to one of the other two
cases: case 2 if halting without output is interpreted as rejecting, or case 1 if
it is interpreted as accepting. The idea is to have a timer located inside the
outermost membrane, which is sent out as a no object if it does not receive a
signal for 2d consecutive steps, where d is the depth of the membrane structure.
This signal indicates that at least one rule was applied in the P system in
the last 2d steps, and is propagated as an object ♣ towards the outermost
membrane.

Let Π be the generalised recogniser being simulated, and let Π ′ be the
standard recogniser simulating it; both P systems have priority and generalised
charges. The initial membrane structure of Π ′ is identical to that of Π. Inside
each membrane, besides the original multiset, we place an instance of ♦ and
one of ♥; finally, the outermost membrane also contains an instance of the
timer object Td.

The rules of Π are modified in Π ′ so that their application is always
detectable; in order to do so, we always either change the charge of a membrane
where a rule was applied to a new, specific charge (for rules involving the
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membranes themselves) or produce an extra object on the right-hand side (for
object evolution rules). Assuming h ∈ Λ, α, β, γ ∈ Ψ , a, b, c ∈ Γ , and w ∈ Γ ?,
the new rules are

[a→ w]αh becomes [a→ w ♣]αh (1)

a [ ]αh → [b]βh becomes a [ ]αh → [b]β̃h

[a]αh → [ ]βh b becomes [a]αh → [ ]β̃h b

[a]αh → b remains identical

[a]αh → [b]βh [c]γh becomes [a]αh → [b]β̃h [c]γ̃h

Here the new charges of the form α̃, with α ∈ Ψ , encode the new charge of
the membrane and the information that a rule involving that membrane was
applied in the previous step. If object evolution rules were applied, then a
corresponding number of objects ♣ appear.

In membranes where no blocking rule was applied, the charge is not of the
form α̃. In that case, the following rule (which has lower priority) is applied
instead:

[♥]αh → [ ]α
′

h # for h ∈ Λ and α ∈ Ψ

The object ♥ is restored at each computation step by the following rules:

[♦ → ♦ ♥]αh for h ∈ Λ and α ∈ Ψ
[♦ → ♦ ♥]α̃h for h ∈ Λ and α ∈ Ψ

[♦ → ♦ ♥]α
′

h for h ∈ Λ and α ∈ Ψ

(Notice that these rules impede the halting of the P system, but this is allowed
by case 2 of Definition 3.)

Now each membrane has either a charge of the form α̃ or one of the form α′.
This denotes that we will now perform a signal propagation step, rather than
a step simulating rules of Π. All instances of ♣, both those just created by
applying rule (1) and those created in previous steps, are propagated one level
up (except for the outermost membrane k) and simultaneously change all
charges α̃ and α′ to plain α:

[♣]α̃h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ (2)

[♣]α
′

h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ (3)

The following rule, with priority lower than (2) and (3), create and immediately
propagate a new signal object if a rule involving the membrane was applied
and no object ♣ was already present:

[♥]α̃h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ
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If a membrane has charge α′ (no rule involving that membrane was applied in
the previous step) and there is no ♣ to propagate, then ♥ changes the charge
to α with the following rules with lower priority:

[♥]α
′

h → [ ]αh # for h ∈ Λ and α ∈ Ψ

Any extra occurrence of ♥ is always deleted by the following rules, which have
minimal priority:

[♥ → ε]αh for h ∈ Λ and α ∈ Ψ
[♥ → ε]α̃h for h ∈ Λ and α ∈ Ψ

[♥ → ε]α
′

h for h ∈ Λ and α ∈ Ψ

Any extra occurrence of ♣ is deleted only in the propagation steps by the
following rules with minimal priority (which are thus only enabled if the signal
is already propagated from the current membrane):

[♣ → ε]α̃h for h ∈ Λ and α ∈ Ψ

[♣ → ε]α
′

h for h ∈ Λ and α ∈ Ψ

The timer object Tt (with 0 ≤ t ≤ d) in the outermost membrane k counts
down in the simulation steps, when the charge of the that membrane is one of
the original ones:

[Tt → Tt−1]
α
k for α ∈ Ψ and 0 < t ≤ d

In order to reset the timer when a signal ♣ reaches the outermost membrane,
that object changes the charge, currently of the form α̃ or α′, to a new
charge α♣, whose presence denotes that the charge of the outermost membrane
of Π is α and at least one rule was applied in the last d simulated steps:

[♣]α̃k → [ ]
α♣
k # for α ∈ Ψ

All original rules related to the outermost membrane, which have a plain
charge α ∈ Ψ on the left-hand side, must be duplicated in order to maintain
the same behaviour when the left-hand charge is α♣ (the right-hand side must
remain unchanged, i.e., the subscript ♣ is removed when changing the charge
to one of the form β̃ or β′).

When the charge of the outermost membrane k has the form α♣, the
counter is reset to d:

[Tt → Td]
α♣
k for α ∈ Ψ and 0 < t ≤ d

If, however, the timer reaches 0 while the charge of the outermost membrane k
has no subscript ♣, this means that no rule of Π was simulated by the
P system Π ′ in the last d steps. We can thus assume that Π has halted, and
send out the timer as a no object:
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[T0]
α
k → [ ]α̃k no for α ∈ Ψ

If, on the other hand, halting without output is interpreted as accepting, we
send out a yes object instead:

[T0]
α
k → [ ]α̃k yes for α ∈ Ψ

If no object yes or no has been previously sent out, this no (or yes) object
becomes the result of the computation, otherwise it does not change the
previous result according to cases 1 and 2 of Definition 3.

The computation time of the P system Π ′ is as follows: if Π sends out a yes
or no object at step t, then the same object is sent out by Π ′ at step 2t− 1
(the corresponding simulation step); if, on the other hand, Π rejects by halting
after t steps without output, then Π ′ sends out a no object at time 2t− 1+2d,
i.e., the time required for simulating the t steps of Π, plus the time required
to propagate the signal from the deepest membrane and the time for a last
timer cycle, before the final output step.

Discutere dissoluzione

3.2 Ensuring Halting on Output

Having reduced case 3 to case 2 of Definition 3, we still need to ensure that
a single output object is sent out of the P system, and only in the last
computation step in cases 1 and 2, in order to prove that each generalised
recogniser can be replaced by a standard recogniser without significant loss
of efficiency. We can further ensure that the all membranes of the simulating
system have a new, distinguished charge ♠ with no associated rules in the last
configuration, denoting that the P system is halting; this technical detail will
prove useful in Section 4.

Let Π be a generalised recogniser P system which always produces output
(i.e., accept either by case 1 or 2) but not necessarily a unique output, and
that does not necessarily halt. We design a recogniser P system Π ′ satisfying
the requirements above.

The initial configuration of Π ′ is exactly the same as Π, except that each
membrane contains as many instances of the new object ♠ as the number of
its children membranes, and the outermost membrane contains an instance of
the new object Rd. The rules and the alphabet of Π ′ include all those of Π,
except as described below.

The P system Π ′ executes all rules of Π, with the same priority, except for
those sending out the result of the computation from the outermost membrane,
while simultaneously doubling the amount of ♠ contained inside each membrane
by using the following rules, which are only enabled by the original charges
of Π:

[♠ → ♠ ♠]αh for h ∈ Λ and α ∈ Ψ (4)
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Notice that these rules do not compete with the original rules of Π, since they
are object evolution rules.

When Π sends out the result object yes or no from the outermost mem-
brane k by means of a rule of the form

[a]αk → [ ]βk yes [a]αk → [ ]βk no

the P system Π ′ applies instead a rule of the form

[a]αk → [ ]yesk # [a]αk → [ ]nok # (5)

These update rules maintain the same priority as the original ones.
The final result of the computation is thus temporarily stored in the

charge of the outermost membrane, and a “junk” object is sent out instead.
Notice that, since the charges yes and no are new, the objects of the original
alphabet Γ of Π cannot apply any rule inside the outermost membrane. The
other membranes might continue computing; we now propagate the information
about having produced output towards the internal membranes in order to
stop the computation.

Notice that the number of objects ♠ has always been kept at least equal
to the number of children membranes during the computation, even when
taking membrane division into account (the membranes can at most double in
number during each step). When the charge of the outermost membrane of Π ′
becomes yes or no, the rules (4) becomes disabled for the outermost label, and
the following rules with priority lower than (4) but higher than the simulated
rules of Π become now applicable:

♠ [ ]αh → [#]♠h for h ∈ Λ and α ∈ Ψ (6)

The charge of each children membrane thus changes to ♠. Notice that the
objects ♠ in excess of the number of children membrane become inert, since all
their rules are now disabled (all reachable membranes now having charge ♠).
The new charge ♠ also disables the rules of type (4) for membrane h, enabling
those of type (6) for its children membranes. This propagates the charge ♠ to
the next level, and so on.

The P system reaches a configuration where all membranes, except the
outermost one, have charge ♠ exactly d steps after applying one of the rules
in (5). The timer Rd inside the outermost membrane k, also enabled when
rule (5) is applied, counts these d steps, using the rules

[Ri → Ri−1]
yes
k [Ri → Ri−1]

no
k for 0 < i ≤ d

When reaching zero, the object R0 is finally sent out as the result of the
computation while setting the charge of the remaining membrane to ♠:

[R0]
yes
k → [ ]♠k yes [R0]

no
k → [ ]♠k no
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Notice that Π ′ has exactly the same number of computations as Π and with
the same result; indeed, the new rules do not interfere with the simulation
of Π while this is still running, and the last phase, where all charges become ♠,
is deterministic. Furthermore, if Π sends out its first result object at time t,
then Π ′ sends out the same result and halts at time t+ d+ 1.

By combining the results of Sections 3.1 and 3.2 we obtain:

Lemma 1. Let Π be a confluent (resp., non-confluent) generalised recog-
niser P system with priority and generalised charges working in time t. Then,
there exists a standard confluent (resp., non-confluent) recogniser P system
with priority and generalised charges having the same result and working in
time O(t+ d), where d is the depth of both P systems. ut

By using a variant of the proof techniques of Section 3.1 and 3.2 it is
possible to employ even other accepting conditions. For instance, it is possible
to keep the last output object (before halting) as the result of the computation,
rather than the first one, by storing the last of the sequence of output objects
in the charge of the outermost membrane, but only outputting it when the
original P system halts. Even more generally, we can collect the sequence
of output objects and combine them by applying any computable function
(exploiting the universality of P systems).

4 Charges and Priority

We will now show how confluent P systems Π with priority and any number of
charges can be efficiently simulated by confluent P systems Π ′ without priority
and using only two charges. The idea is to give a total ordering of the set of
rules of Π compatible with its original priority, say r1 � r2 � · · · � rm; we
decompose each computation step of Π into m micro-steps, each one applying
exactly one rule in the whole system as much as possible. The computation is
thus sequential across the set of rules, but each rule ri is applied in a maximally
parallel way in all membranes involved in ri. Halting in Π ′ is triggered by the
halting of Π, assuming that each membrane of the latter system has charge ♠,
as proved possible in Section 3.2.

Notice that a linear priority does not make the P system Π deterministic,
since send-in rules choose an arbitrary membrane among a set of different
but externally indistinguishable ones having the same label (this will be the
only form of nondeterminism for Π with priority � and thus for Π ′). On the
other hand, using a total priority ordering of the rules requires, in general, the
simulated P system Π to be confluent, since only a subset of its computations
are simulated by Π ′. Non-confluent P systems Π can be simulated using our
construction if they already have a total priority ordering (in that case, the
simulating P system Π ′ is also non-confluent).

The membrane structure of Π ′ is, once again, identical to that of Π. A con-
figuration C at time t of Π is encoded as a configuration C′ at time something
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of Π ′ as follows: if C contains a membrane having configuration [w]αh , then the
corresponding membrane in C′ has configuration [w α]0h, that is, the original
charge is encoded as an object in C′. We can view this as an invariant main-
tained by the simulation for all time steps t of Π. Notice it is trivial to recover
the original configuration C from C′ (and vice versa).

Simulating each step of Π begins with an initialisation phase of four steps
of Π ′. First we rewrite the charge-object α as α′ ⊕:

[α→ α′ ⊕]0h for h ∈ Λ and α ∈ Ψ

Each membrane of Π ′ has now the configuration [w α′ ⊕]0h. The object ⊕
changes the charge of the membrane to + (it will always have this behaviour
in the rest of the paper), while α′ is rewritten into α′′ �:

[⊕]0h → [ ]+h # for h ∈ Λ
[α′ → α′′ �]0h for h ∈ Λ and α ∈ Ψ

This leads to the configuration [w α′′ �]+h . The object � changes the charge
to 0 (here and in the rest of the paper), while the objects in the original
alphabet Γ gain a prime; the object α′′ is rewritten into α′′′ •, where • is �
if rule r1 has membrane h and charge α on the left-hand side, and • is ⊕
otherwise:

[�]+h → [ ]0h # for h ∈ Λ
[a→ a′]+h for h ∈ Λ and a ∈ Γ
[α′′ → α′′′ •]+h for h ∈ Λ and α ∈ Ψ

The current configuration is thus [w′ α′′′ •]0h, where w′ is w with all objects
primed. The object • is then sent out, setting the charge of h to + (if • is ⊕)
or 0 (if • is �), while all remaining objects take a subscript 1:

[�]0h → [ ]0h # for h ∈ Λ
[α′′′ → α1]

0
h for h ∈ Λ and α ∈ Ψ

[a′ → a1]
0
h for h ∈ Λ and a ∈ Γ

This leads either to configuration [w1 α1]
0
h or [w1 α1]

+
h , depending on whether

rule r1 has the right label and charge on the left-hand side.
We now establish a second invariant: for each 1 ≤ i ≤ m, we have four

possible forms of configurations at time something:

1. [wi αi]
0
h denotes that we have already tried to apply rules r1, . . . , ri−1 in

sequence (each of them in a maximally parallel way), but no blocking rule
for h has been applied during the simulation of the current step of Π.
The membrane contains the multiset of objects wi, where each object has
subscript i, and the charge of the simulated membrane is α. Furthermore,
rule ri has label h and charge α on the left-hand side.
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2. [wi αi]
+
h is as in 1, but rule ri has either the wrong label or the wrong

charge on the left-hand side.
3. [wi αi,j ]

0
h is as in 1, but a blocking rule rj for h, for some j < i, has been

previously applied during the simulation of the current step of Π, and ri
is necessarily an object evolution rule.

4. [wi αi,j ]
+
h is as in 1, but a blocking rule rj for h, for some j < i, has been

previously applied during the simulation of the current step of Π, rule ri is
either an object evolution rule with wrong label or charge on the left-hand
side, or it is any blocking rule.

Let us consider the four types of possible configuration separately.

4.1 Configuration of the Form [wi αi]
0
h

The behaviour of the P system Π ′ when the configuration at time whatever
is [wi αi]0h depends on the type of rule ri of Π to be simulated.

Applicable Send-Out Rules

Suppose that ri is a send-out rule of Π of the form [a]αh → [ ]βh b; also suppose
that the simulated membrane h contains at least one instance of a, i.e., that
the configuration of the membrane in Π ′ is [ai vi αi]

0
h for some multiset vi.

The rule is implemented by first sending out an object ai as b̃i; the tilde here
denotes that that instance of object bi has already been subject to a rule during
this simulated step of Π. The charge of the membrane is also changed to +
in order to signal that rule ri was actually applied (i.e., that the membrane
contained at least one instance of ai):

[ai]
0
h → [ ]+h b̃i (7)

At the same time, the object αi is primed:

[αi → α′i]
0
h

The configuration of the membrane is now [ui α
′
i]
+
h , where ui is vi with any

extra objects received from children membranes3, and the object b̃i is now
managed by the outer membrane. When the membrane becomes positive, each
original object of Γ (possibly in a tilded version) gains a prime, while α′i
becomes α′′i,i, storing in its second subscript the index i of the blocking rule
that has actually been applied:
3 This is not actually possible with standard P systems, since the children of a
membrane always have a different label, and thus cannot apply any rule while ri is
being applied. However, we will prove later that we can replace labels by charges;
therefore, we will consider this case anyway.
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[ci → c′i]
+
h for c ∈ Γ

[c̃i → c̃′i]
+
h for c ∈ Γ

[α′i → α′′i,i]
+
h (8)

This leads us to the configuration [u′i α
′′
i,i]

+
h , where u

′
i is ui with all objects

primed. The object α′′i,i is now rewritten as follows:

[α′′i,i → α′′′i,i �]+h

The configuration is now [u′i α
′′′
i,i �]

+
h . The object � sets the charge to 0:

[�]+h → [ ]0h #

while α′′′i,i produces •, where • is � if rule ri+1 is an evolution rule with
label h and charge α (i.e., ri+1 is potentially applicable), and • is ⊕ otherwise
(i.e., ri+1 is not applicable due to the label, the charge, or the membrane h
having already been used):

[α′′′i,i → α′′′′i,i •]+h

The configuration is thus [u′i α′′′′i,i •]0h. In the last step, we need to increase the
rule counter i to i+1, remove all primes, and update the charge of h according
to •:

[α′′′i,i → αi+1,i]
0
h

[c′i → ci+1]
0
h for c ∈ Γ

[c̃′i → c̃i+1]
0
h for c ∈ Γ

[�]0h → [ ]0h #

[⊕]0h → [ ]+h #

We have thus reached the configuration [ui+1 αi+1,i]
0
h or [ui+1 αi+1,i]

+
h after 5

steps of Π ′, thus restoring the invariant.

Applicable Send-In Rules

If ri is a send-in rule a [ ]αh → [b]βh and the outer membrane contains an instance
of object a that is actually assigned to this rule for the current membrane,
the computation proceeds exactly as for applicable send-out rules, in 5 steps,
except that rule (7) is replaced by the symmetrical rule

ai [ ]
0
h → [̃bi]

+
h
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Applicable Division Rules

If ri is a weak (elementary or non-elementary) division rule [a]αh → [b]βh [c]γh
and membrane h contains an instance of a, then the computation evolves
again as for applicable send-out rules, in 5 steps, with the following variations.
Rule (7) is replaced by the send-out rule

[ai]
0
h → [ ]+h #

This rule sets the charge to +, thus signalling that the rule is actually being
applied. This fact is recorded by the object α′i using rule (8); the actual
division does not happen immediately, but is delayed until the end of the
iteration across all rules. The reason for this delay is to comply with the usual
semantics of P systems, where internal membranes logically evolve before
external ones: if division happened immediately, the internal membranes may
evolve differently in the two copies of the membrane, due to the nondeterminism
possibly introduced by send-in rules.

Applicable Dissolution Rules

A dissolution rule ri = [a]αh → b is simulated in 5 steps as a send-out rule
followed by a delayed dissolution; this is recorded, as for division rules, in the
second subscript of the object α′′i,i. The actual dissolution is delayed because
further object evolution rules might be applicable.

Object Evolution Rules

An object evolution rule ri = [a→ x]αh , with x ∈ Γ ?, is simulated in a slightly
different way than blocking rules: since they are applied in parallel to all
objects a contained in h, this rule cannot change the charge of the membrane
to signal its application. The object αi must thus evolve without knowing if
and to how many objects the rule ri is being applied.

In the first step the actual evolution occurs:

[ai → x̃i]
0
h (9)

[αi → α′i]
0
h

where x̃i is x with all objects tilded and subscripted by i. This leads to the
configuration [vi α

′
i]
0
h, where vi is the multiset wi updated according to rule (9).

In the second step the following rule is applied:

[α′i → α′′i ⊕]0h

leading to configuration [vi α
′′
i ⊕]0h. The charge is then set to +:

[⊕]0h → [ ]+h #

[α′′i → α′′′i �]0h
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leading to [vi α
′′′
i �]

+
h . The objects in Γ and their tilded versions are now

primed, while the charge becomes 0:

[ci → c′i]
+
h for c ∈ Γ

[c̃i → c̃i
′]+h for c ∈ Γ

[�]+h → [ ]0h #

[α′′′i → α′′′′i •]+h

where • works as described above. This leads to the configuration [v′i α
′′′′
i •]0h.

The last step is as for applicable send-out rules, and leads to [vi+1 αi+1]
0
h

or [vi+1 αi+1]
+
h depending on ri+1.

Non-Applicable Blocking Rules

If ri is a blocking rule with label h and charge α, but the object on the
left-hand side of the rule is missing, we reach the configuration [vi α

′
i]
0
h after

one step, where vi is wi except for any objects coming from or sent in children
membranes. The object α′i detects that rule ri was not applied by observing
the neutral charge of the membrane. The membrane can then evolve as for
object evolution rules, leading to configuration [vi+1 αi+1]

0
h or [vi+1 αi+1]

+
h

(depending on ri+1) in 5 computation steps.

4.2 Configuration of the Form [wi αi]
+
h

If the P system reaches configuration [wi αi]
+
h , then rule ri is not applica-

ble either because it involves a label different from h, or a charge different
from α on the left-hand side. In that case, the P system must reach config-
uration [vi+1 αi+1]

0
h (or [vi+1 αi+1]

+
h if ri+1 has the wrong label or charge),

where v is w except for any object coming from or sent in children membranes,
after exactly 5 steps, in order to keep all membranes synchronised. In this par-
ticular configuration, unlike the previous one, the objects of Γ and their tilded
counterparts have their subscript incremented without first being primed.

First the object αi waits for two steps, and then produces a �; the object αi
is also tilded to record the fact that rule ri is not being applied at this time:

[αi → α̃′i]
+
h [α̃′i → α̃′′i ]

+
h [α̃′′i → α̃′′′i �]+h

While the charge is set to 0, the object • (which is either � or ⊕ according to
the label and charge of ri+1) is produced:

[�]+h → [ ]0h # [α̃′′′i → α̃′′′′i •]+h

Finally, all subscripts are incremented:
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[α̃′′′′i → αi+1]
0
h

[ci → ci+1]
0
h for c ∈ Γ

[c̃i → c̃i+1]
0
h for c ∈ Γ

This leads to the configuration for rule ri+1.
Notice that the fact that the objects in Γ (both in plain and tilded versions)

are not primed in this simulated micro-step allows them to be sent into a
children membrane if rule ri requires so.

4.3 Configuration of the Form [wi αi,j]
0
h

If the configuration has the form [wi αi,j ]
0
h, then a blocking rule rj , with j < i,

has already been applied to that membrane, and ri is thus necessarily an object
evolution rule with label h and charge α. The computation then proceeds as for
object evolution rules in Section 4.1, except that the second subscript j of αi,j
is also preserved, thus reaching configuration [vi+1 αi+1,j ]

0
h (or [vi+1 αi+1,j ]

+
h )

after 5 steps, where v is w updated according to ri and any object coming
from or sent in children membranes.

4.4 Configuration of the Form [wi αi,j]
+
h

If the configuration has the form [wi αi,j ]
+
h , then a blocking rule rj , with j < i,

has already been applied to that membrane, and ri either has the wrong label
or charge, or it is another blocking rule (and thus it is not applicable). In
this case, the computation proceeds as in Section 4.2, except that the second
subscript j of αi,j is preserved.

4.5 Concluding the Simulation of One Step

After having simulated all rules r1 � r1 � · · · � rm in priority order, the
subscripts of the objects inside each membrane will reach the value m + 1.
Suppose that all membranes have been set to neutral at that time (as if
the non-existing rule rm+1 were always applicable). In order to restore the
outer invariant of Section 4, we need to remove the subscripts and the tildes,
update the objects representing the charges, and completing the application
of dissolution and division rules.

The objects in Γ and their tilded counterparts can be immediately rewritten
into their final form:

[cm+1 → c]0h for h ∈ Λ and c ∈ Γ
[c̃m+1 → c]0h for h ∈ Λ and c ∈ Γ

If a dissolution rule rj involving the membrane being simulated was applied
during this simulated step, the actual dissolution can now take place (recall
that the object b on the right-hand side of the rule has already been sent out):
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[αm+1,j ]
0
h → #

If a weak (elementary or non-elementary) division rule rj involving membrane h
was applied, then we can first perform the actual division:

[αm+1,j ]
0
h → [α′m+1,j ]

0
h [α′′m+1,j ]

0
h

and then update the simulated charges and create the right-hand side objects
in the two copies of h:

[α′m+1,j → β b]0h [α′′m+1,j → γ c]0h

If a blocking rule rj of the remaining types (send-in or send-out) was applied
to the membrane, then we just need to update the charge object to β, the
right-hand side charge of rj ; however, this must take two steps to maintain
synchronisation with membranes where division was applied:

[αm+1,j → α′m+1,j ]
0
h [α′m+1,j → β]0h

Finally, if no blocking rule was applied in membrane h, then we must keep the
same charge as in the previous step of Π; once again, this must take two steps
to maintain all membranes synchronised:

[αm+1 → α′m+1]
0
h [α′m+1 → α]0h for h ∈ Λ, α ∈ Ψ

The new configuration of Π ′ then corresponds to a reachable configuration
of Π according to the encoding described above.

4.6 Halting and Output

In the simulation of this section, detecting whether a membrane of Π has
stopped computing paradoxically requires us to iterate across all rules, thus
preventing the simulating P system Π ′ to halt. However, according to the
results of Section 3, we can always assume the simulated P system Π to be
a standard recogniser, and that all membranes assume charge ♠ when they
stop computing. Thus, we simulate each membrane as described above until it
assumes the charge ♠. When this happens, the simulating membrane contains
the object ♠; however, by construction the children of this membrane, if any,
have not yet assumed the charge ♠, as this will propagate there by send-in
in the next computation step. Hence, when a simulated membrane reaches
charge ♠, we must perform a last iteration across the rules of Π in order to
simulate those send-in rules, and then the simulating membrane can finally
halt. This last iteration is needed in order to update the subscripts of the
objects ci (with c ∈ Γ ). Another small modification to be made involves
sending out the yes or no object: in Π, the corresponding rules do not generally
have the lowest priority, and thus the actual sending out of the result object



266 Alberto Leporati et al.

must be delayed in order to be the last action performed by the simulating
P system Π ′.

Halting the simulation of a membrane can thus be performed by simply
deleting the object ♠m+1 obtained after the last iteration across the rules:

[♠m+1 → ε]0h for h ∈ Λ (10)

The outputting of yes or no by Π ′ at the last step can be achieved by replacing
any outermost membrane output rules rj of the forms

[a]αk → [ ]βk yes [a]αk → [ ]βk no

of Π by a rule of the form

[a]αk → [ ]βk # [a]αk → [ ]βk #

During the subscript-deleting phase of Section 4.5 we can perform the actual
output by using one of the following rules:

[αm+1,j ]
0
k → [ ]0k yes [αm+1,j ]

0
k → [ ]0k no (11)

Since, by hypothesis, the rest of the P system Π has already halted, the
simulation of Π ′ in the worst case completes the last iteration across the rules
of Π for the innermost membranes by applying a rule of type (10) exactly
when an output rule (11) is applied. The P system Π ′ halts immediately after.

4.7 Main Result

The only remaining detail to consider is the amount of resources needed in
order to perform the simulations described in this section and in Section 3. It
suffices to observe that all rules of the final P system are obtained by repeating
simple patterns with parameters ranging over sets of polynomial size with
respect to the description of the simulated P system (e.g., the set of rules of
the original P system, its set of labels, the set of integers up to the membrane
nesting dept, . . . ).

For example, the rules of type (6) can be output by using two nested loops
as follows:

for h ∈ Λ do
for α ∈ Ψ do

output “♠ [ ]αh → [#]♠h ”
end

end

The construction of Π ′ can thus be performed in polynomial time. This leads
immediately to our main result:
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Theorem 1. Let Π be a generalised confluent recogniser P system using pri-
ority and generalised charges working in time t. Then, there exists a standard
confluent recogniser P system Π ′ without priority and using only two charges
having the same result as Π and working in time O(r× (d+ t)), where r is the
number of rules of Π and d its depth. Furthermore, the mapping Π 7→ Π ′ can
be computed in polynomial time with respect to the length of the description
of Π. ut

4.8 A Note on Rule Types

The construction used to prove Theorem 1 necessarily requires evolution, send-
in and send-out rules. Any other type of rule (dissolution, elementary and weak
non-elementary division) is only necessary if the original P system Π being
simulated employs it. This construction might, in principle, be extended in
order to simulate other kinds of rules, provided that the simulating P system Π ′

is also allowed to use them. The technical details are, however, necessarily
dependent on the specific type of rule.

5 Conclusions

The results of this paper show that the number of charges (as long as it is at
least two) and the exact accepting conditions of recogniser P systems with
active membranes are immaterial, and can always be reduced to two charges
and to the standard definition of recogniser without loss of efficiency. This
allows us to use as many charges as are convenient for the solution of the
current problem, to employ more relaxed halting conditions, and even to add a
rule priority. Hopefully, these tools will yield algorithms having less irrelevant
technical details and a better focus on the novel techniques and ideas employed.

We conjecture that results analogous to those presented in this paper may
also be proved for other classes of P systems, therefore further simplifying
membrane computing algorithms. For instance, it would be interesting to
explore which features (such as charges, rule priorities and accepting conditions)
may be added to tissue P systems [13] without changing their computing power
or efficiency.
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