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Summary. We study the computational power of generalized P colony automata and
show how it is influenced by the capacity of the system (the number of objects inside the
cells of the colony) and the types of programs which are allowed to be used (restricted and
unrestricted com-tape and all-tape programs, or programs allowing any kinds of rules).

1 Introduction

P colonies are variants of very simple membrane systems, which are similar to
so-called colonies of simple grammars, a model in the theory of grammar systems,
launched by the introduction of cooperating, distributed systems of grammars in
[4]. One of the grammatical models of the field is the colony of grammars, see [12],
which is a collection of very simple generative grammars, but as a system, they
are able to generate complicated languages. For more on grammar systems and
colonies the interested reader is referred to the monograph [5].

Similarly to the grammar systems variant, P colonies also consist of a collec-
tion of very simple computing agents which interact in a shared environment, see
[13, 14]. The environment and the computing agents are both described by mul-
tisets of objects which are processed by the colony members using rules which
enable the transformation of the objects and the exchange of objects between the
colony members and the environment. The rules are grouped into programs, which
execute the rules they contain in parallel. A computation consists of a sequence of
computational steps during which the colony members execute their programs in
parallel, until the system reaches a halting configuration.

P colony automata, a variant of P colonies characterizing string languages
instead of multiset collections were introduced in [3] where several of its variants
were shown to be computationally complete in. The power of some of those left
open there was further examined in [1].

Generalized P colony automata were introduced in [11] in order to make the
model resemble more to the standard models of membrane computing, in particu-
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lar, to the model of P automata, introduced in [7]. In this case, the computation of
the colony defines an accepted multiset sequence, which is turned into an accepted
string by a non-erasing mapping (as in P automata). In [11] some basic variants
of the model were introduced and studied from the point of view of their compu-
tational power. Here we continue the investigations by examining generalized P
colony automata of capacity one, two, and three, and also take the initial steps in
the study of the relationship of their languages and the languages accepted by P
automata.

2 Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

A two-counter machine, see [9], M = (Σ ∪ {Z,B}, Q, q0, qF , T r) is a 3-tape
Turing machine where Σ is an alphabet, Q is a set of internal states with q0, qF ∈ Q
being the initial and the final states, and Tr is a set of transition rules. The machine
has a read-only input tape and two semi-infinite storage tapes which are used as
counters. The alphabet of the storage tapes contains only two symbols, Z and B
(blank), while the alphabet of the input tape is Σ ∪{B}. The symbol Z is written
on the first, leftmost cells of the storage tapes which are scanned initially by the
tape heads. An integer t can be stored by moving a tape head t cells to the right
of Z. A stored number can be incremented or decremented by moving the tape
head right or left. The machine is capable of checking whether a stored value is
zero or not by looking at the symbol scanned by the tape heads. If the scanned
symbol is Z, then the value stored in the corresponding counter is zero.

Without the loss of generality, we assume that two-counter machines check
and modify only one of their counters during any transition, thus, the rule set Tr
contains transition rules of the form (q, x, i, α)→ (q′, β) where x ∈ Σ ∪ {B} ∪ {ε}
corresponds to the symbol scanned on the input tape in state q ∈ Q, and α ∈
{Z,B}, i ∈ {1, 2} correspond to the symbols scanned on the i-th storage tape. By
a rule of the above form, M enters state q′ ∈ Q, and the i-th counter is modified
according to β ∈ {−1, 0,+1}. If x ∈ Σ ∪ {B}, then the machine was scanning x
on the input tape, and the head moves one cell to the right; if x = ε, then the
machine performs the transition irrespective of the scanned input symbol, and the
reading head does not move.

A word w ∈ Σ∗ is accepted by the two-counter machine if starting in the initial
state q0, the input head reaches and reads the rightmost non-blank symbol on the
input tape, and the machine is in the accepting state qF . Two-counter machines
are computationally complete; they are just as powerful as Turing machines (see
[9] for more details).

We will also need the notion of a register machine, and we also consider a
variant: a register machine with input tape. Such a machine consists of a given
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number of registers each of which can hold an arbitrarily large non-negative integer
number (we say that the register is empty if it holds the value zero), and a set
of labeled instructions which specify how the numbers stored in registers can be
manipulated (see [15] for more information).

Formally, a register machine is a construct M = (m,H, l0, lh, R), where m is
the number of registers, H is the set of instruction labels, l0 is the start label, lh
is the halting label, and R is the set of instructions; each label from H labels only
one instruction from R. There are several types of instructions which can be used.
For li, lj , lk ∈ H and r ∈ {1, . . . ,m} we have

• li : (ADD(r), lj) - add: Add 1 to register r and then go to the instruction with
label lj .

• li : (CHECKSUB(r), lj , lk) - zero check and subtract: If the value of register r
is not zero, subtract one from it and go to instruction lj , otherwise leave it
unchanged and go to lk.

• lh : HALT - halt: Stop the machine.

A register machine accepts a number m if starting the computation with the
instruction labeled by l0 while having m in the first register (and all other registers
empty), it reaches the halting instruction. This way a register machine computes
a set of numbers.

To be able to accept strings, we might also add an input tape to a register
machine, together with a new type of instruction

• li : (READ(a), lj) for a symbol a ∈ Σ of some input alphabet Σ.

Such an instruction can be applied if the reading head scans a symbol a ∈ Σ on
the input tape, and the head moves to the next tape cell after the application of
the instruction.

It is not difficult to see that register machines with input tape characterize
the class of recursively enumerable languages, as they can simulate two-counter
machines. To see this, consider the following. For each transition t : (q, x, i, α) →
(q′, β) of a two-counter machine M2c, construct the instructions for a register
machine MR as follows.

Let MR have a register rq for each state q ∈ Q, and a register ri for each counter
ci of M2c. Initially the register for the initial state contains the value one, and all
other registers are empty. The transition t is simulated by several instructions of
MR.

The simulation starts with lt : (READ(x), lt,1), and then continues with lt,1 :
(CHECKSUB(q), lt,2, ltrap) where ltrap is a “trap” label with a “trap” instruction
ltrap : (ADD(q), ltrap). Then lt,2 : (ADD(q′), lt,3) follows for the new state q′. Now,
if α = B, then the next instructions are lt,3 : (CHECKSUB(i), lt,4, ltrap), and lt,4 :
(ADD(i), lt,5), if α = 0 then lt,3 : (CHECKSUB(i), ltrap, lt,5). These instructions check
the required state of the ith register. If β = 0, then lt,5 can be replaced by the
label lt′ for a new transition t′ (starting with the state q′) of M2c. If β = −1, then
lt,5 : (CHECKSUB(i), lt′ , ltrap), if β = +1, then lt,5 : (ADD(i), lt′).
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If we define the instructions of MR in such a way that each accepting transition
of M2c can also lead to the halting instruction, then MR accepts an input word if
and only if M2c does.

Now we define the notions related to multisets as follows. If the set of non-
negative integers is denoted by N, then a multiset over a set V is a mapping
M : V → N which assigns to each object a ∈ V its multiplicity M(a) in M .
The support of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a finite set,
then M is called a finite multiset. A multiset M is empty if its support is empty,
supp(M) = ∅. We will represent a finite multiset M over V by a string w over
the alphabet V with |w|a = M(a), a ∈ V , and ε will represent the empty multiset
which is also denoted by ∅.

We say that a ∈M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 : V → N, M1 ⊆M2 holds, if
for all a ∈ V , M1(a) ≤M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

A P system, see [17], is a structure of hierarchically embedded membranes
(a rooted tree), each having a unique label and enclosing a region containing a
multiset of objects. The outmost membrane is called the skin membrane.

An antiport rule is of the form (u, in; v, out), where u, v ∈ V ∗ are finite multisets
over V . If such a rule is applied in a region, then the objects of u enter from the
parent region and, in the same step, objects of v leave to the parent region.

A P automaton, see [6]Π = (V, µ, w1, . . . , wk, P1, . . . , Pk) is a membrane system
with object alphabet V , membrane structure µ, initial contents (multisets) of the
ith region wi ∈ V ∗, 1 ≤ i ≤ k, and sets of antiport rules Pi, 1 ≤ i ≤ k.

The configurations of the P automaton can be changed by transitions in the se-
quential mode (seq) or in the non-deterministic maximally parallel mode (par). In
the first case one rule is applied in each region in every step, in the second case as
many rules are applied simultaneously in the regions at the same step as possible.
Thus, a transition in the P automaton Π is (v1, . . . , vm) ∈ δΠ,X(u0, u1, . . . , um),
where δΠ,X denotes the transition relation, X ∈ {seq, par}, u1, . . . , uk are the con-
tents of the k regions, u0 is the multiset entering the system from the environment,
and v1, . . . , vk, respectively, are the contents of the k regions after performing the
transition in the working mode.

In this way, there is a sequence of multisets which enter the system from the
environment during the steps of its computations. If the computation is accept-
ing, that is, if it halts, then this multiset sequence is called an accepted multiset
sequence, and denoted by A(Π) for a P automaton Π.

Before giving the definition of the accepted string languages of P automata,
we define the notion of a generalized P colony automaton (genPCol automaton in
short).

Definition 1. A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a
construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) where
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• V is an alphabet, the alphabet of the automaton, its elements are called objects;
• e ∈ V is the environmental object of the automaton;
• wE ∈ (V − {e})∗ is a string representing the multiset of objects different from

e which is found in the environment initially;
• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is a multiset over V , it

determines the initial contents of the cell, and its cardinality |wi| = k is called
the capacity of the system. The sets Pi of programs are formed from k rules of
the following types:

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

– nontape rules of the form a→ b, or c↔ d, called rewriting (nontape) rules
and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
• F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system. This process is defined more
precisely as follows.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE , u1, . . . , un),
where uE ∈ (V − {e})∗ represents the multiset of objects different from e in the
environment, and ui ∈ V ∗, 1 ≤ i ≤ n, represent the contents of the i-th cell.
The initial configuration is given by (wE , w1, . . . , wn), the initial contents of the
environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE , v1, . . . , vn), where

• vE ⊆ (V − {e})∗ represents a multiset of objects different from e being in the
environment, and each

• vi ∈ V ∗, 1 ≤ i ≤ n, is the contents of the i-th cell.

To describe the computation process formally, for any rule r we define the

following multisets. Let X ∈ {T, ε}, and if r = a
X→ b, or r = a

X↔ b, then let
left(r) = a, right(r) = b. Let us extend this notation also for programs. For α ∈
{left, right} and for any program p, let α(p) =

⋃
r∈p α(r) where the union denotes

multiset union (as defined above), and for a rule r and program p = 〈r1, . . . , rk〉,
the notation r ∈ p denotes the fact that r = rj for some j, 1 ≤ j ≤ k. Moreover, for
any tape program p we also define read(p) as the multiset of symbols (different from
e) on the right side of rewriting tape rules and on the left side of communication
tape rules, that is, read(p) =

⋃
r∈p,r=a T→b,b6=e

right(r) ∪
⋃
r∈p,r=a T↔b,a6=e

left(r).

Thus, left(r) and right(r) are the multisets consisting of the symbol on the left
or right side of the rule r. For a program p, left(p) and right(p) are the collection
(multiset) of symbols on the left or right sides of the rules in the program p. Finally,
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read(p) is the multiset (collection) of symbols (different from e) on the right side
of rewriting tape rules or the left side of communication tape rules.

We also denote by export(p) and by import(p) the multisets export(p) =⋃
r∈p,r=aX↔b,a6=e

a and import(p) =
⋃
r∈p,r=aX↔b

b, and by create(p) the multiset

create(p) =
⋃
r∈p,r=aX→b

b. So by export(p) and import(p), that were defined for

communication rules of a given program p, we indicate the objects that are sent
out to the environment and brought inside the cell, respectively. Whereas create(p)
is the multiset of symbols produced by the rewriting rules of program p.

Let the programs of each Pi be labeled in a one-to-one manner by labels from
the set lab(Pi), 1 ≤ i ≤ n, lab(Pi)∩ lab(Pj) = ∅ for i 6= j. In the following, for the
sake of brevity, if no confusion arises, we designate programs and their labels with
the same letters, thus, for a label p ∈ lab(Pi), we also write p ∈ Pi.

Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and
let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of es which are always present). We call a set
of programs, Pc, applicable in configuration c, if the following conditions hold.

• At most one program is selected for each cell, that is, if p, p′ ∈ Pc, p 6= p′ and
p ∈ Pi, p′ ∈ Pj , then i 6= j;

• the selected programs are applicable in the cells (the left sides of the rules
contain the same symbols that are present in the cell), that is, for each p ∈ Pc,
if p ∈ Pi then left(p) = ui;

• the symbols which are brought inside the cells by the programs are present in
the environment, that is,

⋃
p∈Pc

import(p) ⊆ UE ;
• Pc is maximal, that is, if any other program is added to it, then some of the

above conditions are not satisfied.

A configuration c = (uE , u1, . . . , un) is changed to a configuration c′ =
(u′E , u

′
1, . . . , u

′
n) and is denoted by c =⇒ c′ by applying the set Pc of applica-

ble programs if the following properties hold:

• If there is a p ∈ Pc such that p ∈ Pi, then u′i = create(p)∪import(p), otherwise
u′i = ui, 1 ≤ i ≤ n; and

• U ′E = UE −
⋃
p∈Pc

import(p)∪
⋃
p∈Pc

export(p) (where U ′E again denotes u′E ∪
{e, e, . . .} with an infinite number of es).

We denote the reflexive and transitive closure of =⇒ by =⇒∗.
The general idea behind the above definitions is that instead of the different

computational modes used in [3], we have a system with programs and we apply
the programs in the maximally parallel way as usual in P colonies, that is, in each
computational step, every component cell must non-deterministically choose and
apply one of its applicable programs. Then we look at those rules which were tape
rules (in the applied set of programs) and collect all the symbols that they “read”:
this multiset (of the collected symbols) is the multiset read by the system in the
given computational step. A successful computation defines this way an accepted
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sequence of multisets: the sequence of multisets entering the system during the
steps of the computation.

Definition 2. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol automa-
ton. The set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ (V − {e})∗, 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci =⇒ ci+1 with
⋃
p∈Pci

read(p) = ui+1 for all 0 ≤ i ≤ s− 1}.

Now we define the accepted string languages for both genPCol automata, and
“ordinary” P automata.

Definition 3. Let Π be a genPCol automaton or a P automaton, and let f :
(V − {e})∗ → 2Σ

∗
be a mapping, such that f(u) = ε if and only if u is the empty

multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

From now on, we are going to consider the mapping: fperm defined for any
multiset x ∈ (V − {e})∗ as

f(x) = {y ∈ (V − {e})∗ | y ∈ perm(x)}

where perm(x) ⊆ V ∗ denotes the set of strings representing the multiset composed
of the symbols of x, or in other words, perm(x) is the set of strings obtained by a
permutation of the symbols of the multiset x.

Concerning the power of P automata with the mapping fperm, the reader is
referred to [8] and [10]. In general, they characterize a language class that is
strictly included in the class of languages that can be accepted by logarithmic
space bounded Turing machines that read their input tape from left to right only
once.

For genPCol automata, their working modes, or in other words, the types
of programs that they are allowed to use, greatly influence their computational
power. Let us refine and extend the definition of the program types defined in [11]
as follows.

Definition 4.

• L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where all
the communication rules are tape rules,

• L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where all
the programs must have at least one tape rule,
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• L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol
automata with capacity k and with mappings from the class F where programs
with any kinds of rules are allowed.

For all-tape and com-tape languages we also define their restricted variants,
L(genPCol,F , restricted all-tape(k)) and L(genPCol,F , restricted com-tape(k)),
respectively. These are accepted by systems with programs not having any rules
of types

e
T→ e, a

T→ e, and e
T↔ e, e

T↔ a,

for arbitrary a ∈ V , where e is the special environmental object. Note that systems
which accept languages of these restricted classes must read nonempty multisets
in each computational step.

In the following, we will be considering systems with the permutation mapping
fperm defined above. For the sake of easier readability, we denote the languages of
systems with this type of mapping as

• Lperm(genPCol, X(k)), where X ∈ {com-tape, all-tape, ∗}.

3 Languages Accepted by genPCol Automata

The following are immediate consequences of the definitions.

Proposition 1 For any class of mappings F , we have

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k) for any k ≥ 1;

2. L(genPCol,F , restricted X(k)) ⊆ L(genPCol,F , X(k)) for any k ≥ 1 and
X ∈ {com-tape, all-tape, ∗}; and

3. L(genPCol,F , X(k)) ⊆ L(genPCol,F , X(k + 1)) for any k ≥ 1 and X ∈
{com-tape, all-tape, ∗}.

Proof. The first inclusions hold, as com-tape systems are special cases of all-
tape systems, which are both special cases of the unrestricted variant. The second
inclusion holds for a similar reason, while the third inclusion can be seen to hold if
we consider that adding the of object e to the initial cell contents, and a rule e→ e
to the programs of all cells in a system, does not change the accepted language.

�

3.1 The Capacity of genPCol Automata

First we consider genPCol automata of capacity one. In the case of P colonies, all
recursively enumerable sets of integers can be characterized by systems of capacity
one, see [2]. This is also true for genPCol automata with languages obtained by
permutation mappings, if programs with any kind of rules are allowed.
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Theorem 2. Lperm(genPCol, ∗(1)) = L(RE).

Proof. In Theorem 1 of [2] P colonies of capacity one are shown to be able to
simulate register machines. The idea of the simulation is to have an object in the
environment corresponding to the label of the instruction which is to be simulated
next. The cells of the system “process” the instruction label in such a way that
the necessary modifications of the configuration are implemented, and the label of
the next instruction is sent to the environment.

Based on this construction, we can show that genPCol automata can sim-
ulate register machines with input tape (see section 2 for the definitions), and
thus, characterize the class of recursively enumerable languages. In addition to
the construction in Theorem 1 of [2], we need to simulate the instructions of type
li : (READ(a), lj). To do this, we add one cell (e, Pli) to the system for each such
instruction of the register machine with the programs

Pli = {〈e↔li〉, 〈li
T→ a〉, 〈a→lj〉, {〈lj↔e〉}.

These programs can be applied when li appears in the environment. They read
an input symbol a while exchanging li for lj in the environment. �

The power of systems with capacity one decreases considerably if not all kinds
of programs are allowed. The next theorem examines the relationship of regular
languages and languages of genPCol automata with all-tape programs.

Theorem 3. Lperm(genPCol, all-tape(1)) is incomparable with the class of regular
languages.

Proof. First we show that there is a nonregular language in Lperm(genPCol, ∗(1)).
Let L1 = {{a, $}2n{c, $}2{b, $}2n+2 | n ≥ 0} be the non-regular language over
Σ = {a, b, c, $}, where by {x, y}m we denote the string w1w2 . . . wm with wi being
either xy or yx, 1 ≤ i ≤ m.

Consider Π = (Σ ∪ {e}, e, wE , (e, P1), (e, P2), (e, P3), F ), the genPCol automa-
ton with the sets of programs as

P1 = {〈e T→ $〉, 〈$ T↔ e〉},

P2 = {〈e T→ a〉, 〈a T↔ e〉, 〈e T→ c〉, 〈c T↔ $〉},

P3 = {〈b T↔ c〉, 〈c T→ b〉, 〈b T↔ a〉, 〈a T→ b〉},

and set of accepting configurations: F = {(u, e, $, b) | u ∈ (Σ \ {a})∗}.
It is easy to see, that the first cell starts producing $ objects indefinitely, while

the second cell reads 2n (n ≥ 0) as, while sending as in the environment n times.
After stopping, the third cell starts to work, eliminating every a in the environment
while reading two bs.

Next, we show that L2 = {bbc, c} cannot be accepted by any Π genPCol
automaton with capacity one, working in all-tape mode, using the fperm mapping.
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Let V = {b, c} ∪ {e, e′} be the alphabet of a genPCol automaton. Note that
these are the only symbols that might appear in the programs, and e′ can only
serve as the initial cell contents. It is clear, that the automaton must accept bbc
and c. We show that it is impossible to accept these and only these strings. Let us
examine the cases:

1. There is only one cell: Π = (V, e, wE , (w0, P0), F ). In this case there are
three subcases:

1.(a) w0 = e′. In order to decide whether to read c or bbc, Π must create two

pathways. To do this, P0 must contain the following programs: 〈e′ T→ e〉, 〈e T→
c〉, 〈e T→ b〉 or 〈e′ T→ c〉, 〈e′ T→ b〉. If nondeterministically Π decides to read b, it

should be able to read one more b. To do this, we can either add 〈b T→ b〉 or 〈b T↔ e〉
program to P0, but it would create a nondeterminism, so that the automaton could
read strings other than bbc or c.

1.(b) w0 = b or w0 = c. In this case we would need to have the program 〈b T→ b〉
again, or P0 would contain 〈b T↔ e〉 or 〈c T↔ e〉. Since we have one cell, one of these
rules automatically decides which string we would like to start reading, therefore
it is impossible to accept both bbc and c strings.

1.(c) The only remaining option in this case is w0 = e. Here P0 must contain

〈e T→ b〉 and 〈e T→ c〉. If Π nondeterministically chooses 〈e T→ b〉, then it would
be still left to read bc. There are three different rules that could be used at the
moment: 〈b T→ b〉, 〈b T→ e〉, 〈b T↔ e〉, however these cases lead to nondeterminism,
where Π could read strings other than bbc or c.

2. There are n ≥ 2 cells: Π = (V, e, wE , (w0, P0), . . . , (wn, Pn), F ).We are able
to define the ith (0 ≤ i ≤ n) cell in three different ways. Please note that in order
to decide whether to read c or bbc, Π must create two pathways. In these cases Π
would create the pathways using two or more cells:

2.(a) wi = b or wi = c. Hence the maximal parallelism, the ith cell would
immediately read c or b, therefore restricting to accept only bbc or c.

2.(b) wi = e. Pi could contain 〈e T↔ b〉 or 〈e T↔ c〉, but these cases require to
have b or c in the environment, which is impossible because of the previous case.

Thus Pi must contain one or more of these programs: 〈e T→ e〉, 〈e T↔ e〉, 〈e T→ b〉 or

〈e T→ c〉. Please note that in all of these cases, Π would be able to accept strings
other than bbc or c, therefore it would be impossible to accept bbc and c.

2.(c) wi = e′. In this last subcase, Pi could contain 〈e′ T→ e〉, 〈e′ T→ b〉 or

〈e′ T→ c〉. Choosing 〈e′ T→ e〉 would lead to the previous case, where wi = e. The
two remaining programs would immediately read strings other than bbc or c.

3. The last case that is left to be examined is when there are n ≥ 2 cells, and
Π creates the nondeterministic pathways in one cell. Let the 0th cell be the one
that creates the nondeterministic pathways. Hence case (1), w0 = e and P0 must

contain 〈e T→ b〉 and 〈e T→ c〉. If the 0th cell decides to read b, we must ensure that
Π would read bc and then stop. If an other cell would continue to read, the only
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logical scenario would be to have b or c in the cell at start and the cell might only

use a program in the following form: 〈k1 ∈ {b, c}
T↔ k2 ∈ ({b, c} ∪ {e′})〉, but it is

impossible to have k2 in the environment without reading k2. Thus the 0th cell is

to continue to read b, which can happen by one of the following programs: 〈b T→ b〉
or 〈b T↔ e〉, however both of them lead to unnecessary nondeterminism.

We have covered the possible ways to construct Π. It is now easy to see, that
it is impossible to construct Π in any way to accept {bbc, c}. �

Now we show that for systems with capacity at least three, their all-tape and
com-tape languages include any recursively enumerable language. Given a recur-
sively enumerable language L, the idea is to take a system of capacity two which,
when any kind of programs are allowed, accept L (we refer to [11] for such a sys-
tem), and transform it to a system of capacity three having a communication tape
rule in each program by adding “dummy” tape rules which do not interfere with
the work of the rest of the system.

Proposition 4 Lperm(genPCol, X(3)) = L(RE) for X ∈ {com-tape, all-tape}.

Proof. The construction is based on the proof of Theorem 3 in [11] where a gen-
PCol automaton of capacity two with no restriction on the type of programs is
presented. Modifying such a system, we can easily construct a genPCol automa-
ton of capacity three with all-tape or even com-tape type of programs by simply

putting one more e object into each cell, and add the rule e
T↔ e to every program.

�

3.2 Variants of genPCol Automata of with Capacity Two

In [11] we have started the study of genPCol automata languages that can be
accepted by systems of capacity two with the mapping fperm. We have shown that
if they use restricted all-tape or restricted com-tape programs, then similarly to
“ordinary” P automata, they characterize a language class that is strictly included
in the class of languages that can be accepted by logarithmic space bounded Turing
machines that read their input tape from left to right only once.

On the other hand, even genPCol automata with restricted all-tape or re-
stricted com-tape programs are more powerful than P automata using the mapping
fperm.

If we denote by LX(fperm, PA) the class of languages characterized by P au-
tomata with X ∈ {seq, par} for parallel or sequential rule application, then we
have the following.

Theorem 5. Lperm(genPCol, restricted all-tape(2))\LX(fperm, PA) 6= ∅ for X ∈
{seq, par}.

Proof. Consider the language L = {(ab)n(cd)n | n ≥ 1} which, according to [10]
cannot be accepted by any P automaton using the mapping fperm. The following
genPCol automaton accepts L with fperm.
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Let Π = ({a, b, c, d}, e, ∅, (ee, P ), F ) with F = {(u, ad) | u ∈ d∗}, and

P = {〈e T→ a, e↔e〉, 〈e T→ b, a↔e〉, 〈b T→ a, e↔e〉, 〈b T→ c, e↔e〉,

〈c T→ d, e↔a〉, 〈a T→ c, d↔e〉}

In the first phase of its functioning, the system above reads a string (ab)n while
sending n copies of a into the environment. Then in the second phase, as many
cds are read, as the number of as that can be found in the environment. �

Next we show that if we only require that all programs contain at least one
tape rule (but unlike in the restricted case, they can also use the environmental
symbol e), then any recursively enumerable language can be accepted also with
systems of capacity two.

Theorem 6. L(genPCol, fperm, all-tape(2)) = L(RE).

Proof. Let L ⊆ Σ∗ be an arbitrary recursively enumerable language, and let
M = (Σ ∪ {Z,B}, Q, q0, qf , T r) be a two-counter machine with L = L(M), as
defined in section 2.

Construct the genPCol automaton Π = (V, e, wE , (w0, P0), . . . , (wn, Pn), F ) of
capacity two, where V = Σ ∪ Q ∪ {t, t′, t′′, t′′′ | t ∈ Tr} ∪ {c1, c2, A}, the initial
contents of the cells are w0 = q0e, wi ∈ {ee, te, t′′e}, 1 ≤ i ≤ n, as we will specify
later, and F = {(u, qfe, w1, . . . , wn) | u ∈ V ∗}.

For any α ∈ {B,Z}, β ∈ {−1, 0,+1}, we define the disjoint sets of transitions
Trα,β ⊆ Tr as follows: t ∈ Trα,β , if and only if, t : (q, x, i, α)→ (q′, β), x ∈ Σ∪{ε},
i ∈ {1, 2}. Thus, Tr = TrB,−1 ∪ TrB,0 ∪ TrB,+1 ∪ TrZ,0 ∪ TrZ,+1.

For every t ∈ TrB,+1 the proof will need three cells each, whereas for each
t ∈ (TrB,−1∪TrB,0∪TrZ,0∪TrZ,+1) only two cells are required, thus n = 3k1+2k2,
where k1 = |TrB,+1| and k2 = |(TrB,−1 ∪ TrB,0 ∪ TrZ,0 ∪ TrZ,+1)|.

As the cells in the constructed system correspond to transitions of the simulated
two-counter machine, in the following we will index the cells Ci = (wi, Pi) (except
C0) with two indices: the transition and an integer (the integer will be 1, 2, or 3,
depending on how many cells the simulation of the given transition requires). The
sets of programs are defined as follows:

Let w0 = q0e, and let

P0 = {〈q0 ↔ e; e
T→ e〉, 〈e T→ e; e↔ qf 〉}.

For every t ∈ (TrB,0 ∪ TrB,−1) we will have two cells. The initial contents of
the first cell is wt,1 = ee, whereas the set of programs is the following:

Pt,1 = {pt1 : 〈e↔ q; rt1〉, pt2 : 〈q T→ e; rt2〉, pt3 : 〈e→ t′; ci
T→ e〉,

pt4 : 〈t′ ↔ e; e
T→ e〉, pt5 : 〈e T→ e; e↔ t′′′〉,

pt6 : 〈t′′′ → q′; e
T→ e〉, pt7 : 〈q′ ↔ e; e

T→ e〉},
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where rt1 and rt2 are the rules e
T→ a and a↔ ci, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e↔ ci.
For every t ∈ TrB,−1 the initial contents of the second cell is still wt,2 = ee,

but the set of programs is different:

Pt,2 = {pt8 : 〈e↔ t′; e
T→ e〉, pt9 : 〈t′ → t′′′; e

T→ e〉, pt10 : 〈t′′′ ↔ e; e
T→ e〉}.

Next, the initial contents of the first cell for every t ∈ TrB,+1 is wt,1 = te, and
the set of programs is the following:

Pt,1 = {pt1 : 〈t↔ q; rt1〉, pt2 : 〈q T→ e; rt2〉, pt3 : 〈ci ↔ e; e
T→ e〉,

pt4 : 〈e→ t′; e
T→ e〉, pt5 : 〈e T↔ t; t′ ↔ e〉},

where rt1 and rt2 are the rules e
T→ a and a↔ ci, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e↔ ci.
For every t ∈ (TrB,0∪TrB,+1) the initial contents of the second cell is wt,2 = t′′e

and the set of programs is as follows:

Pt,2 = {pt8 : 〈t′′ ↔ t′; e
T→ e〉, pt9 : 〈t′ → ci; e

T→ e〉, pt10 : 〈ci ↔ e; e
T→ e〉,

pt11 : 〈e→ t′′′; e
T→ e〉, pt12 : 〈e T↔ t′′; t′′′ ↔ e〉}.

The initial contents of the third cell for every t ∈ TrB,+1 is wt,3 = ee, and the
set of programs is the following:

Pt,3 = {pt13 : 〈e↔ t′′′; e
T→ e〉, pt14 : 〈t′′′ → q′; e

T→ e〉, pt15 : 〈q′ ↔ e; e
T→ e〉}.

For every t ∈ (TrZ,0 ∪ TrZ,+1) the initial contents of the first cell is wt,1 = ee
and the set of programs is as follows:

Pt,1 = {pt1 : 〈e↔ q; rt1〉, pt2 : 〈q → t′; rt2〉, pt3 : 〈t′ ↔ e; e
T→ t〉,

pt4 : 〈e T↔ ci; t→ A〉, pt5 : 〈e T↔ t′′′; t→ q′〉, pt6 : 〈t′′′ T→ e; q′ ↔ e〉},

where rt1 and rt2 are the rules e
T→ a and a

T→ e, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e
T→ e.

For every t ∈ TrZ,0 the initial contents of the second cell is wt,2 = ee and the
set of programs is as follows:

Pt,2 = {p7 : 〈e T↔ t′; e→ t′′′〉, p8 : 〈t′′′ ↔ e; t′
T→ e〉}.

Last, but not least, for every t ∈ TrZ,+1 the initial contents of the second cell
is wt,2 = t′′e and the set of programs is as follows:
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Pt,2 = {pt8 : 〈t′′ ↔ t′; e
T→ e〉, pt9 : 〈t′ → t′′′; e

T→ e〉, pt10 : 〈t′′′ ↔ e; e
T→ e〉,

pt11 : 〈e→ ci; e
T→ e〉, pt12 : 〈e T↔ t′′; ci ↔ e〉}.

The genPCol automaton Π simulates the work of the two-counter machine M
by reading the input symbols with its tape programs and keeping track of the
contents of the i-th counter as the number of ci, i ∈ {1, 2} objects present in the
environment.

Each transition of M is simulated separately. At the first step, the 0th cell
contains and object that corresponds to q0 ∈ Q, which is then sent to the envi-
ronment. The environment keeps track of the current internal state of M . One
transition rule is simulated by the interplay of programs of two or three cells from
Π, if and only if M changes its state from q to q′ while the counter contents are
also checked and modified accordingly.

A transition t : (q, x, i, B) → (q′,−1) ∈ TrB,−1 is simulated by two cells Ct,1,
Ct,2 with the sets of programs Pt,1 and Pt,2. First, q enters the first cell Ct1 from
the environment by program pt1 , activating the simulation of the transition. Then
ci enters the first cell (program pt2), and by programs pt3 and pt4 , object t′ is sent
to the environment. Now the programs of the second cell Ct2 are activated, t′ is
changed to t′′′ and sent to the environment by the programs pt8 , pt9 , and pt10 .
Now by pt5 , pt6 of the first cell, t′′′ is changed to q′ denoting the next state of M ,
and it is sent to the environment by pt7 .

A transition t : (q, x, i, B)→ (q′, 0) ∈ TrB,0 is also simulated by two cells with
the sets of programs Pt,1 and Pt,2. Now the initial contents of the second cell is t′′e.
The first four steps are identical with the previous case described above. When t′

appears in the environment, the programs of the second cell exchange it with t′′

and send ci and t′′′ to the environment by the programs pti , 8 ≤ i ≤ 12, then t′′′

is exchanged with the object q′ (denoting the next state of M) in the environment
by pt5 , pt6 , and pt7 of the first cell.

A transition t : (q, x, i, B)→ (q′,+1) ∈ TrB,+1 is simulated by three cells with
the sets of programs Pt,1, Pt,2 and Pt,3. The initial contents of the three cells are
te, t′′e, and ee, respectively. In the first five steps the programs of the first cell are
active, but besides the object t′, this time the cell also sends ci to the environment.
When t′ appears in the environment (after the application of Pt,5, the programs of
the second cell take over. They are identical to the previous case, they exchange
t′ with t′′ and send ci and t′′′ to the environment as above. Finally the third cell
becomes active, and t′′′ is exchanged with the object q′ (denoting the next state
of M) in the environment by pt13 , pt14 , and pt15 .

A transition t : (q, x, i, Z) → (q′, 0) ∈ TrZ,0 is simulated by two cells with the
sets of programs Pt,1 and Pt,2. The initial contents of both cells are ee. The first
three steps, the first cell exchanges q to t′ in the environment while the second cell
remains inactive. When t′ appears in the environment, the programs of the second
cell exchange it with t′′′ in the next computational step. During this step, the first
cell is either inactive, or imports an object ci from the environment, if there is at
least one such object is present there. In this later case, the transition cannot be
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applied in a simulation of the two counter machine M , as the value stored the ith
counter is not zero. This is reflected by program pt,4 which introduces a a “trap
object” A. If the transition is applicable in M , that is, if there is no ci present in
the environment. Then after two inactive steps, t′′′ is exchanged with the object
q′ (denoting the next state of M) in the environment by pt5 and pt6 of the first
cell.

Finally, a transition t : (q, x, i, Z) → (q′,+1) ∈ TrZ,+1 is simulated by two
cells with the sets of programs Pt,1 and Pt,2. The initial contents of the two cells
are ee and t′′e, respectively. The first three steps is identical with those in the
previous case. When t′ appears in the environment, the programs of the second
cell exchange it with t′′, send an object t′′′ and then an object ci (in exchange
with t′′) to the environment. These are done by programs pt5 and pt6 . Similarly
to the previous case, during the fourth computational step, the first cell is either
inactive, or imports an object ci from the environment (by program pt4 , if there is
at least one such object is present there). In the later case, the transition cannot
be applied in a simulation as the value stored the ith counter of M is not zero (so
the “trap object” A is introduced). If there is no ci present in the environment (the
transition is applicable in a simulation), then after three steps (in which the first
cell is inactive), t′′′ is imported into the first cell, and then the object q′ (denoting
the next state of M) is sent to the environment by pt5 and pt6 , respectively.

According to these considerations, we have seen that having the object q in the
environment, the genPCol automaton Π replaces it with q′, and either simulates
a transition of the two-counter machine M from state q to state q′ (checking and
adjusting the multiplicity of the objects corresponding to the counter contents
accordingly), or its computation is not successful. Thus, starting with q0 in the
environment (q0 is sent to the environment by the first program in P0 in the
very first step of Π) the genPCol automaton produces qacc, the accepting state
of the two-counter machine M in the environment if and only if its computation
corresponds to an accepting computation of M . Having qacc in the environment,
Π can reach its final configuration by importing it into the cell C0 by using the
second program of P0. �

4 Conclusions

We have studied the effect of the capacity of generalized P colony automata on
their computational power using the all-tape and com-tape variants of programs
used. We have shown that even with capacity one, if we do not place additional
restrictions on the types of programs allowed to be used by the system, genPCol
automata characterize the class of recursively enumerable languages. On the other
hand, for systems with capacity three, even the use of most restrictive program
types does not result in any decrease of the computational power. The most inter-
esting cases are the ones in between these two: the restricted variants of capacity
one and capacity two. These require further study, especially interesting would be
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to refine the relationship of the model with P automata, as they are very closely
related, but not as similar as one might expect at the first glance.

References
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