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Summary. The 3-COL problem consists on deciding if the regions of a map can be
coloured with only three colors bearing in mind that two adjacent regions must be
coloured with different colors. It is a NP problem and it has been previously used in
complexity studies in membrane computing to check the ability of a model for solving
problems of such complexity class. Recently, tissue P systems with proteins on cells have
been presented and its ability to solve NP-problems has been proved, but it remained
as an open question to know if such model was still able to solve such problems if the
environment was removed. In this paper we provide an affirmative answer to this question
by showing a uniform family of tissue P systems without environment and with proteins
on cells which solves the 3-COL problem in linear time.

1 Introduction

The P versus NP problem is one of the most important unsolved problem in
computer science and it was chosen as one of the seven Millennium Prize Problems
[9]. The precise statement of the problem was introduced in 1971 by Stephen Cook
[5], although it was essentially mentioned in a personal communication between
K. Gödel and J. von Neumann [8].

Whereas the main question is unsolved (i.e., to decide if P and NP are or not
the same complexity class), many efforts have been oriented in the last years in
order to find frontiers of tractability, i.e., to identify some features of the com-
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putational models such that the corresponding device is able to solve or not NP
problems depending if it is endowed or not with such feature.

In membrane computing there is an extensive literature devoted to this issue
(see [21] and the references therein) and the present paper is a novel contribution in
such research line. We consider here a variant of one of the most popular P systems
architectures: tissue P systems. Such model was firstly presented in [13, 14] by
placing the cells in a general graph instead on a tree-like graph as in the cell-like
model. Under the hypothesis P6=NP, Zandron et al. [29] established the limitations
of P systems that do not use membrane division concerning the efficient solution
of NP-complete problems. Under this premise, Gh. Păun et al. presented in [24]
the model of tissue P systems with cell division, able to solve NP-problems. Since
then, many other variants have been presented, e.g., [6, 10, 11, 16, 17].

Recently, tissue P systems with protein on cells have been introduced [25]. Pre-
viously, tissue P systems with proteins on membranes had been presented [22] and
many of their properties have been explored (see, e.g., [23, 26, 27]). Nonetheless,
the model of tissue P systems with protein on cells is quite different to the model
with proteins on membranes: In the first one, proteins can move with multisets of
objects but they cannot change. In the model with proteins on membranes, they
can be changed, but they cannot move between membranes.

Tissue P system with proteins on cells is endowed with cell division and its
ability for solving NP problems has been proved [15, 22], but it is an open question
to know if after dropping some of the features, the model is still able to solve NP
problems. In this paper, we prove that the model of tissue P system with proteins
on cells can solve NP problems if the environment is removed. The environment
in tissue P systems has a singular characteristic which makes it different to any
other region: based on a biological inspiration, cells can take from the environment
the necessary resources for any computation in a similar way that a cell can take
as many oxygen molecules from the atmosphere as it needs. This means that the
number of objects in the environment is not important and the designer does not
need to take care of it. Avoiding the environment is a strong restriction, since all the
resources are inside the cells and nothing is taken from outside. The importance
of the environment in other membrane computing models has been previously
discussed in the literature (see, e.g. [4, 12, 19, 20]). In this paper we provide a
uniform family of P systems with proteins on cells without environment which
solves the 3-COL problem in linear time and hence, we prove that such systems
are able of solving NP problems even the environment is dropped.

The paper is organized as follows: Next we give a formal description of the P
system model used in this paper and recall some basics on recognizer P systems.
In Section 3 we present the uniform family of P systems which solve the 3-COL
problem in linear time and discuss the amount of resources needed. Finally, the
paper ends with some conclusions.
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2 Formal Framework

Tissue P systems with proteins on cells and cell division were introduced in [25].
In the same paper, the definition of recognizer tissue P systems [24] is presented
in this framework. We adapt these definitions to the case where the environment
is not considered.

Definition 1. A tissue P system without environment, with protein on cells and
cell division of degree q ≥ 1 is a tuple of the form

Π = (Γ, P,M1/p1, . . . ,Mq/pq,R, iin, iout),

where:

• Γ, P are finite non–empty alphabets such that Γ ∩ P = ∅; Γ is the working
alphabet and P is the set of proteins;

• Mi are finite multisets over Γ , 1 ≤ i ≤ q;
• pi are elements from P , 1 ≤ i ≤ q;
• R is a finite set of rules of the following types:

– Communication rules: (i, (pk, u)/(pl, v), j), for i, j ∈ {1, . . . , q}, i 6= j,
pk, pl ∈ P , u, v ∈ Γ ∗. The length of a communication rule is the total
number of objects and proteins involved in that rule.

– Division rules: [pj |a]i → [pk|b]i [pl|c]i for i ∈ {1, . . . , q}, pj , pk, pl ∈ P ,
a, b, c ∈ Γ , i 6= iout

• iin, iout ∈ {1, . . . , q}.

A tissue P system without environment, with protein on cells and cell division
can be viewed as a set of q cells, labelled by {1, . . . , q} such that M1, . . . ,Mq rep-
resent the finite multisets of objects initially placed in the q cells of the system
and p1, . . . , pq represent one and only one copy of protein initially placed on the
q cells of the system; iin is the cell where the input is placed in the initial con-
figuration; and iout represents a distinguished cell which will encode the output
of the system. A configuration of the P system at any instant is described by all
multisets of objects over Γ associated with all the cells present in the system and
the proteins presented on all cells. The initial configuration is (M1/p1, . . . ,Mq/pq).
A communication rule of type (i, (pk, u)/(pl, v), j) is applicable to a configuration
at an instant if cell i contains the protein pk and the multiset u of objects, cell j
contains the protein pl and the multiset v of objects (multisets u, v may be empty;
the empty multiset will be denoted by the symbol λ). When applying such a rule,
under the control of the proteins pk on cell i and pl on cell j, both the protein pk
and the multiset u of objects are sent from cell i to cell j, and simultaneously, the
protein pl and the multiset v of objects are sent from cell j to cell i. A division
rule [pj |a]i → [pk|b]i [pl|c]i is applicable to a configuration at an instant if cell i
contains the protein pj and the object a. When applying such a rule, under the
influence of protein pj and the object a in cell i, the cell is divided into two cells
with the same label; in the first copy of the cell the protein pj is replaced by pk
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and the object a is replaced by b, in the second copy of the cell the protein pj is
replaced by pl and the object a is replaced by c; all the remaining objects in the
original cell are replicated and distributed in each of the new cells.

Rules are used in a maximally parallel way: at each step, all cells which can
evolve must evolve and a maximal multiset of rules is applied (no further rule can
be added being applicable). As usual in the variant of tissue P systems, this way
of applying rules has only one restriction: when a cell is divided, the division rule
is the only one which is applied to that cell at that step. The new cells resulting
from division could participate in the interaction with other cells by means of
communication rules at the next step (if they are not divided once again).

2.1 Recognizer Tissue P Systems with Protein on Cells and Cell
Division

We recall the main notions related to the theory of recognizer P systems, which
can be adapted to this model in a natural way. For a detailed description see, e.g.,
[18, 21]. A decision problem X is a pair (IX , θX) such that IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total Boolean
function over IX . In general, in a P system with input and output of any P system
variant we consider a working alphabet Γ , with q membranes labelled by 1, . . . , q,
and initial multisets M1, . . . ,Mq associated with them; Σ, which is an (input)
alphabet strictly contained in Γ ; the initial multisets are over Γ −Σ; and iin, iout
are the labels of two distinguished membranes (input and output). Let Γ be the
working alphabet of Π, µ its membrane structure, and M1, . . . ,Mp the initial
multisets of Π. Let m be a multiset over Σ. The initial configuration of the P
system is (µ,M1, . . . ,Miin ∪m, . . . ,Mq).

A recognizer P system is a P system with input and output such that:

• The working alphabet contains two distinguished elements yes, no.
• All its computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the output region (denoted with la-
bel iout), and only in the last step of the computation. We say that C is an
accepting computation (respectively, rejecting computation) if the object yes
(respectively, no) appears in the output region associated to the corresponding
halting configuration of C.

A decision problem X can be solved in a polynomially uniform way by a family
Π = {Π(n)}n∈N of P systems of type F if the following holds:

• There is a deterministic Turing machine M such that, for every n ∈ N, starting
M with the unary representation of n on its input tape, it constructs the P
system Π(n) in polynomial time in n.

• There is a deterministic Turing machine N that started with an instance I ∈ IX
with size n on its input tape, it computes a multiset wI (called the encoding
of I) over the input alphabet of Π(n) in polynomial time in n.
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• For every instance I ∈ IX with size n, starting Π(n) with wI in its input
membrane, every computation of Π(n) halts and sends out to the environment
yes if and only if I is a positive instance of X.

According to the standard notation, ̂TPDC(k) denotes the class of recognizer
tissue P systems without environment with protein on cells and communication
rules of length at most k and PMC

T̂PDC(k)
the set of all decision problems which

can be solved by means of such class. This class is closed under polynomial time
reduction and under complement.

3 The 3-COL Problem

A k–coloring (k ≥ 1) of an undirected graph G = (V,E) is a function f : V →
{1, . . . , k}, where {1, . . . , k} are interpreted as colors. We say that G is k–colorable
if there exists a k–coloring, f , such that f(u) 6= f(v) for every edge {u, v} ∈ E
(such a k–coloring f is said to be valid).

In particular, when k = 3, we have the well-known 3–coloring problem: given
an undirected graph G, decide whether or not G is 3-colorable; that is, if there exists
a valid 3–coloring of G. For the sake of readability, we will use {R,G,B} instead
of {1, 2, 3} to represent the colors (R, G and B standing for red, green and blue,
respectively). This problem is related to the famous Four Color Conjecture (proved
by Appel and Haken [2, 3]). The NP-completeness of the 3–coloring problem was
proved by Stockmeyer [28] (see [7]).

Next, we will prove that the 3–coloring problem can be solved in a linear time
by a family of recognizer tissue P systems without environment and with proteins
on cells. As usual, we will address the resolution via a brute force algorithm, which
consists in the following stages:

• Generation Stage: All the possible 3–coloring are generated, each of them placed
in a different cell. By using the division rules, an exponential amount of cells
can be obtained in linear time. In parallel, the cell containing initially a copy
of the description of the graph is also divided generating as many copies of the
graph as 3-colorings.

• Checking Stage: If a generated 3–coloring has two objects Ki and Kj (K ∈
{R,G,B}) and the graph has an edge Aij linking the nodes i and j, this coloring
is not valid. Since the number of cells containing a copy of the description of
the graph is large enough, the checking for all the colorings can be done in
parallel by pairing cells encoding 3-colorings with cells encoding copies of the
graph. This stage takes only one step.

• Output Stage: It suffices that one of the possible coloring satisfies the conditions
in order to have a positive answer. If such coloring exists, a distinguished
protein will be send to the appropriate cell. We can control via a counter the
number of steps for it. If such protein occurs in the right cell at the right
moment, the system sends yes to the output cell. If such step is reached and
the protein has not been released, an object no is sent to the output cell.
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Each of the P systems of the uniform family Π = {Πn}n∈N described below
depends only on one parameter n which represents the number of nodes of the
graph. Each of these Πn is supplied with the encoding of a concrete instance of a
graph with n vertices in order to start the computation. The graph will be encoded
by using an input alphabet Σ = {Aij : 1 ≤ i < j ≤ n}, and an object Aij will
belong to the input multiset if and only if there is an edge in the graph linking the
nodes i and j. For the sake of simplicity we drop the subscript in Πn. Formally,
for each n ∈ N, the tissue P system is defined as

Π = (Γ, P,Σ,M1/p1,M2/p2,M3/p3,M4/p4,M5/p5,R, iin, iout),

• Γ = Σ ∪ {Ai, Ri, Gi, Bi, Ui, Vi : 1 ≤ i ≤ n}
∪ {ai : 0 ≤ i ≤ 2n+ 1}
∪ {bi : 0 ≤ i ≤ 2n+ 2}
∪ {T, yes, no}

• Σ = {Aij : 1 ≤ i < j ≤ n}
• P = {pi,j : i ∈ {1, 2} j ∈ {1, . . . , 2n+ 1}

∪ {qi,j : i ∈ {1, 2} j ∈ {1, . . . , 2n}
∪ {p0}

• M1 = {A1, . . . , An} with the initial protein p1,1 in cell 1;
• M2 = {A1, . . . , An} with the initial protein p2,1 in cell 2;
• M3 = {a0} with the initial protein p0 in cell 3;
• M4 = {b0, yes, no} with the initial protein p0 in cell 4;
• M5 = {a1, . . . , a2n+1, b1, . . . , b2n+2} with the initial protein p0 in cell 5;
• R is the following set of rules:

1. Division rules: For i ∈ {1, 2} and j ∈ {1, . . . , n}
r1,i,j ≡ [pi,j |Aj ]i → [qi,j |Uj ]i [qi,j |Vj ]i
r2,i,j ≡ [qi,j |Uj ]i → [pi,j+1|Rj ]i [pi,j+1|Gj ]i
r3,i,j ≡ [qi,j |Vj ]i → [pi,j+1|Bj ]i [pi,j+1|T ]i

2. Communication rules:
r4,i,j,K ≡ (1, (p1,2n+1, Aij)/(p2,2n+1,KiKj), 2)

for i, j ∈ {1, . . . , n}, i < j, K ∈ {R,G,B}
r5,i ≡ (3, (p0, ai)/(p0, ai+1), 5) for i = {0, . . . , 2n}
r6,i ≡ (4, (p0, bi)/(p0, bi+1), 5) for i = {0, . . . , 2n+ 1}
r7 ≡ (2, (p2,2n+1, λ)/(p0, a2n+1), 3)
r8 ≡ (4, (p0, b2n+2 yes)/(p2,2n+1, λ), 3)
r9 ≡ (4, (p0, b2n+2 no)/(p0, λ), 3)

• iin = 1, is the input cell
• iout = 3, is the output cell

3.1 An Overview of the Computation

The system is deterministic and it exploits the parallelism intrinsic to membrane
computing systems and the specific feature of tissue P system with proteins on
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cells which fix one and only one protein in each membrane. From the initial con-
figuration, four processes start:

1. Cell 1 is divided by the application of rules r1,1,j , r1,2,j and r1,3,j . The config-
uration C2n has 2n membranes with label 1, each of them containing a copy
of the input and a protein p1,2n+1.

2. Cell 2 is divided by the application of rules r2,1,j , r2,2,j and r2,3,j in parallel
with the cell of label 1. The configuration C2n has 2n membranes with label 2
all of them with the protein p2,2n+1. Some of these membrane contain one or
more copies of the object T . Each of the remaining 3n membranes contain a
3-coloring, i.e., a multiset of objects C1C2 . . . Cn with C ∈ {R,G,B}.

3. Cell 3 interchanges one object with cell 5 during the 2n first steps, so at C2n

it contains the protein p0 and the object a2n.
4. Analogously, cell 4 interchanges one object with cell 5 during the 2n first steps,

so at C2n it contains the protein p0 and the object b2n.

At the configuration C2n, cells 1 contain the protein p1,2n+1 and cells 2 contain
the protein p2,2n+1. If a cell 2 contain two objects KiKj with the same color
(K ∈ {R,G,B}) and there exists an edge Aij in the input, then the rule r4,i,j,K
is applied and the corresponding cells interchange their proteins. Since there are
enough cells with label 1, the following holds:

• If a cell 2 represent a valid coloring, then the rule r4,i,j,K is not applied and
the cell has the protein p2,2n+1 at the configuration C2n+1.

• Otherwise, if the coloring represented in the cell is not valid, then the rule
r4,i,j,K is applied and the cell has the protein p1,2n+1 at the configuration
C2n+1.

• Moreover, at C2n+1, cell 3 has protein p0 and an object a2n+1 and cell 4 has
protein p0 and and object b2n+1

Let us recall that if there exists at least one valid coloring, then the answer to
the 3-COL problem must be affirmative. Let us consider that there exist such
valid coloring and then, at C2n+1 there exists (at least) one cell 2 with protein
p2,2n+1. In such case the rule 7 applied and at C2n+2 the cell 3 contains the protein
p2,2n+1. Otherwise, if none of the cells 2 has the protein p2,2n+1, then the rule 7
is not applied and cell 3 has the protein p0 at C2n+2. In such configuration the
object b2n+2 has reached cell 4. Finally, depending on the protein p0 or p2,2n+1 in
cell 3, rule 8 or rule 9 will be applied sending the right answer to cell 3. No more
rules can be applied and C2n+3 is a halting configuration.

3.2 Computational Efficiency

The amount of resources used in the construction of the P system Πn can be
summarized as follows: The working alphabet Γ is O(n) with 10n + 8 objects;

the input alphabet is O(n2) with n2−n
2 objects; the set of proteins is O(n) with

6n+3 proteins; and the number of rules is O(n2) with 3
2n

2 + 17
2 n+6 rules. All the
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computation halt after 2n+ 3 steps. Finally, the communication rules have length
5 at most. Therefore the main result of this paper holds.

Theorem 1. 3-COL ∈ PMC ̂TPDC(5)

Corollary 1. NP ∪ co−NP ⊆ PMC ̂TPDC(5)

These results hold from the previous construction and the closure under
polynomial-time reduction and under complement of the complexity class.

4 Conclusions

Whereas the P vs. NP is unsolved, the search of new frontiers of tractability allows
us to have a deeper knowledge of the problem. In the framework of membrane
computing, and in natural computing in general, the use of bio-inspired features
in such complexity studies shed a new light on an old problem. In this paper we
present a new solution to the 3-COL problem with tissue P systems with proteins
on cells and without environment which uses communication rules of length at
most 5. By using environment, the solution for the SAT problem proposed in [25]
uses communication rules of length at most 4. In [15] the proposed solution for
the 3-COL problem also uses communication rules of length at most 4. Although
both problems, SAT and 3-COL, are different, it remains open the question if it is
possible to find a solution to a NP problem in the model of tissue P systems with
proteins on cells by removing the environment and using communication rules of
length at most 4.

References

1. Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A.
(eds.): Membrane Computing - 14th International Conference, CMC 2013, Chişinău,
Republic of Moldova, August 20-23, 2013, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 8340. Springer (2014)

2. Appel, K., Haken, W.: Every planar map is 4-colorable - 1: Discharging. Illinois
Journal of Mathematics 21, 429–490 (1977)

3. Appel, K., Haken, W.: Every planar map is 4-colorable - 2: Reducibility. Illinois
Journal of Mathematics 21, 491–567 (1977)

4. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
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