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Abstract 

The partial substitutions of Co for Fe and Ge for B are studied for a Fe83-xCoxZr6B10-yGeyCu1 

alloy series (x = 0, 5 and 20; y = 0 and 5) as a possible way to enhance the high temperature 

applicability of NANOPERM alloys. The devitrification process, the nanocrystallization 

kinetics and the nanocrystalline microstructure are similar for all the studied alloys. Good soft 

magnetic properties are observed even at a high crystalline volume fraction of bcc -Fe 

nanocrystals, which are stable up to ~1000 K. The partial substitution of Co for Fe is very 

effective to increase the Curie temperature of the residual amorphous matrix (TC
AM). Although 

the substitution of Ge for B is ineffective to increase TC
AM, a clear increase of the saturation 

magnetization with respect to the Ge-free alloy can be observed. 
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1. Introduction 

Nanocrystalline Fe-based alloys exhibit outstanding soft magnetic properties 

characterized by a very low coercivity and a very high saturation magnetization [1]. These 

alloys have a microstructure in which nanocrystals of a ferromagnetic -Fe type phase (~10 

nm in size) are embedded in a residual amorphous matrix, also ferromagnetic but with a lower 

Curie temperature. The ferromagnetic character of this matrix enables the exchange coupling 

between nanocrystals, which yield a severe reduction of the average magnetocrystalline 

anisotropy [2,3]. 

These nanocrystalline compositions have a high concentration of Fe and a typical 

composition: Fe-M-ET-(Cu), where M is a metalloid and ET is an early transition metal. The 

addition of metalloids, such as B, P, Si, etc., is necessary to enable the production of a 

precursor amorphous alloy by rapid quenching techniques, from which the nanocrystalline 

microstructure is obtained after controlled crystallization. It is important to distinguish two 

different kinds of metalloids: those highly soluble in the -Fe phase (e.g. Si) and those whose 

solubility in this phase is very restricted (e.g. B). The former elements will be generally 

dissolved in the crystalline phase, increasing the crystalline volume fraction but deteriorating 

some magnetic properties like the saturation magnetization and the Curie temperature of the 

crystalline phase. The latter elements will remain in the amorphous matrix and will diminish 

the maximum volume fraction of nanocrystals, although preserving the purity of the -Fe 

phase. 

The early transition metals (Zr, Nb, Hf, etc.) have a very low solubility in the -Fe 

phase and, consequently, will remain in the amorphous matrix. However, due to the very slow 

diffusivity of these elements in the amorphous phase, they pile up at the crystal-matrix 

interface and constrain the growth of the crystalline phase to the nanocrystalline scale. 

The addition of Cu is not necessary to obtain the nanocrystalline microstructure in 

some compositions named NANOPERM [4] but, generally, enhances the soft magnetic 
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properties of the material by refining the microstructure [5] through the formation of Cu-rich 

clusters previous to the nanocrystallization. 

The original compositions have been slightly modified by the addition of other 

elements, in order to achieve specific characteristics for different applications [1]. In 

particular, since the production of HITPERM alloys by Willard et al. in 1998 [6], the 

extension of the applicability of nanocrystalline alloys to higher temperatures is becoming an 

intensive area of research in the recent years. This alloy, of composition Fe44Co44Zr7B4Cu1, 

was proposed mainly because of the strong increase of the Curie temperature of the residual 

amorphous phase (TC
AM) due to the partial substitution of Co for Fe with respect to the Co-

free NANOPERM alloy [7]. In fact, the exchange coupling between nanocrystals is 

transmitted through the ferromagnetic residual amorphous matrix and thus, at temperatures 

above the Curie temperature of this residual amorphous matrix, the nanocrystals become 

exchange uncoupled and, consequently, the outstanding soft magnetic properties of these 

nanocrystalline alloys are lost [3]. 

Although a high saturation magnetization was achieved in HITPERM alloys [6], as 

well as a wide temperature range of constant permeability [8], the coercivity at room 

temperature increases one or two orders of magnitude with respect to the Co-free alloys (from 

1-10 A/m up to ~100 A/m [6,9]). Focusing on this problem, Suzuki et al. recently proposed a 

small substitution of Ge for Fe as a more effective way to improve soft magnetic properties at 

high temperatures than the partial substitution of Co for Fe [10]. However, it must be taken 

into account that the substitution of Fe by a “non-magnetic” atom will provoke a reduction of 

the magnetization of the material. On the other hand, Cremaschi et al. found a reduction of the 

coercivity in FINEMET-type alloys after the substitution of Ge for B [11]. 

In this work, the combined effect of partial substitution of Co for Fe and Ge for B on 

the microstructure and the magnetic properties of nanocrystalline alloys is studied. The 

maximum Co concentration studied in the alloys is 20 at. %, in order to search for a new 
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composition with competitive values of coercivity at room temperature, since previous studies 

showed that this parameter is seriously deteriorated for higher Co contents [6-9]. Although Ge 

is soluble in -Fe, the benefits of its addition to NANOPERM alloys would be due to its 

partition to the residual amorphous matrix [10], not producing a deleterious effect on the 

crystalline phase. In this work, the role of Ge is also studied as the Co content increases in the 

alloy. 

 

2. Experimental 

Ribbons (~5 mm wide and 20-30 m thick) of Fe83Zr6B10Cu1, Fe78Co5Zr6B10Cu1, 

Fe78Co5Zr6Ge5B5Cu1 and Fe63Co20Zr6Ge5B5Cu1 were obtained in amorphous structure by 

melt-spinning. For simplicity, they will be referred in the following only by their Co and Ge 

concentration: Co0Ge0, Co5Ge0, Co5Ge5 and Co20Ge5 alloys, respectively. The 

devitrification and melting process of the as-cast ribbons were studied by differential scanning 

calorimetry (DSC) using a Perkin-Elmer DSC7 calorimeter for temperatures below 973 K and 

a Netzsch DSC-404C calorimeter for temperatures up to 1623 K. In order to study the 

dependence of magnetic properties on the microstructure, as-cast samples were heated up to 

different selected temperatures at 10 K/min, using the calorimeter, and immediately cooled 

down to room temperature at the maximum available rate ( 100 K/min). Both heating and 

cooling processes were performed in an argon flow. The microstructure of these samples was 

characterized by X-ray diffraction (XRD) using Co-K radiation (=0.178897 nm) in a 

Philips PW1050 diffractometer and by Transmission Electron Microscopy (TEM) using a 

JEOL 2000 FX operated at 200 kV. Saturation magnetization (MS) as a function of 

temperature and Curie temperature (TC) were studied using a Faraday magnetometer. 

Coercivity (HC) was measured using a Förster Koerzimat. The saturation magnetostriction 

constant, S, of as-cast samples was measured applying the small angle magnetization rotation 

method (SAMR) [12] on long samples (~5 mm wide and ~150 mm long).  
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3. Results and discussion 

3.1 Calorimetry 

Figure 1 shows the DSC scans performed at 20 K/min for the four alloys in the 

temperature range corresponding to the crystallization phenomena. All the alloys present a 

similar devitrification process with two main exothermic peaks. The onset of the first 

transformation stage increases in the sense: Co20Ge5 < Co5Ge5 < Co5Ge0 < Co0Ge0. 

Therefore, it is evidenced that a substitution of Co for Fe decreases the thermal stability of the 

initial amorphous alloy, as it was found for other nanocrystalline systems [6,7,13]. On the 

other hand, substitution of Ge for B also decreases the stability of the amorphous alloy, 

although the partial substitution of Ge for Fe was reported as not affecting the crystallization 

onset temperature [10]. The measurement of the enthalpy of transformation is strongly 

affected by the selection of the baseline, especially for wide DSC peaks. However, once the 

same criteria have been assumed, the enthalpy of the first transformation stage is always 

clearly larger for the Co20Ge5 alloy than for the other three alloys. Different studies on Fe-Co 

based nanocrystalline alloys show that the Co concentration is neither enriched nor depleted 

in the -Fe phase and the nanocrystals are enriched only in Fe [14-16]. The observed changes 

in the enthalpy of the first transformation stage of these alloys can be related to that fact 

because, as the Fe content of the alloy decreases, a larger volume of the material will be 

affected during the growth of a nanocystal up to certain diameter. A very simple picture will 

be helpful to understand this assertion. In this picture, a spherical nanocrystal of 10 nm in size 

is surrounded by other sphere, which would supply all the Fe needed to enrich the 

nanocrystal. Therefore, at the initial state, the concentration of the whole system is that of the 

as-cast amorphous. After the nanocrystallization, inside the smaller sphere (nanocrystal) the 

Fe content is enriched up to fulfill the atomic percent which previously corresponded to the 

other elements different than Fe and Co (17 at. % in the studied cases) and outside the smaller 
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sphere the concentration of Fe is 0. A simple balance between the initial and the final state 

will supply the volume of the larger sphere, which is related with the affected volume during 

the nanocrystallization of a nanocrystal of 10 nm in diameter. This volume continuously 

increases with the decrease of the Fe content in the alloy, being 1205, 1218 and 1270 nm3 for 

the alloys with 0, 5 and 20 at. % of Co, respectively. In this picture, it has been assumed very 

abrupt and unrealistic concentration profiles of Fe, but the increase of the volume affected 

during the formation of a single nanocrystal, as the Fe content in the alloy decreases, can be 

extrapolated to a more realistic picture in which the concentration profiles will be smeared. 

Therefore, a larger volume affected should provoke a larger enthalpy associated with the 

development of the nanocrystalline microstructure with the same crystalline volume fraction, 

as it has been observed in the studied system and for other HITPERM alloy series [13]. Table 

I summarizes the main parameters obtained from the calorimetric studies. 

The kinetics of the first transformation, corresponding to the development of the 

nanocrystalline microstructure, was studied by three different non-isothermal approaches: 

Kissinger [17], Augis-Bennett [18] and Gao-Wang [19] methods. A set of four scans obtained 

at heating rates of 5, 10, 20 and 40 K/min was used for each alloy. Although the Kissinger 

method is the most widely used, its theoretical validity for describing crystallization of 

amorphous metals has been questioned by some authors [20,21]. The Kissinger method can be 

summarized in the following expression: 

 
  
  R

Q

Td

TLnd

p

p 
/1

/ 2
 (1) 

where  is the heating rate, Tp the peak temperature (considered as the temperature at which 

the transformation rate is maximum), Q is the activation energy and R is the gas constant. 

On the other hand, the Augis-Bennett method considers the influence of the onset 

temperature, TX, and yields the expression: 
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 Finally, the Gao-Wang method supplies two expressions for calculating Q and the 

Avrami exponent, n, respectively: 
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and 

 (dX/dt)p = 0.37nQ/(RTp
2)  (4) 

where (dX/dt)p is the transformation rate at the peak temperature.  

The kinetic parameters are listed in table II. The values of Q obtained by the three 

different methods are consistent, although the values obtained by the Kissinger method are 

always lower than those obtained by the Gao-Wang method and these are lower than those 

obtained by the Augis-Bennett method. The Co20Ge5 alloy shows the lowest value of Q (~3 

eV) and the Co0Ge0 alloy presents the highest value of Q (~4 eV), confirming the decrease of 

the thermal stability of the amorphous phase as Co and Ge are substituted for Fe and B, 

respectively. These values are similar to those found for NANOPERM and HITPERM alloys 

[1,22-24]. The value of the Avrami exponent of the nanocrystallization process is close to 1 

for all the studied alloys. This value is characteristic for the kinetics of the nanocrystallization 

of metallic amorphous alloys [1,22,23]. 

The shape of the peak of the second transformation stage is clearly asymmetric for the 

alloys with Ge (much clearer for the alloy with 20 at. % of Co), while it is sharp and 

symmetric for the alloys without Ge. The enthalpy involved in the process is comparable in 

all the studied cases, ~37 J/g. The peak temperature of the second crystallization process 

increases in the sense Co5Ge0 < Co20Ge5 ~ Co0Ge0 < Co5Ge5 alloy. However, if the onset 

of the second crystallization stage is used, the strong asymmetry of this peak in the alloys with 
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Ge alters this order being Co20Ge5 < Co5Ge5 < Co5Ge0 ~ Co0Ge0, where a difference has 

been considered significant if it is larger than 3 K. 

Between the second transformation stage and the melting of the system detected by 

calorimetry, there are no clear events, except for an endothermic process at ~1225 K detected 

for the Co20Ge5 alloy, which corresponds to the - transition of the Fe(Co) crystalline 

phase. A similar feature, although much weaker and at higher temperatures, is detected for the 

Co0Ge0 (~1250 K) and Co5Ge0 (~ 1240 K) alloys. In the case of the Co5Ge5 alloy, no 

remarkable endothermic process is detected. This can be due to the presence of Ge within the 

nanocrystals. In fact, the - transition is totally avoided for a Ge content > 4 at. % [25]. The 

temperature value of the endotherm detected for the Co20Ge5 alloy is in agreement with a 

content of ~20 at. % of Co in the Fe(Co) phase [25]. As it will be discussed in more detail 

below, the decrease of the lattice parameter of the -Fe(Co) phase, observed for Co20Ge5 

alloy after the second crystallization stage, also supports the idea of a rejection of Ge from the 

-Fe(Co) to other intermetallics. However, for the other two alloys, without Ge, the shift of 

the endothermic peak to higher temperatures cannot be understood in terms of Co or Ge 

effects. As it will be shown later in this paper, XRD patterns of fully crystallized samples 

show that the main phase at room temperature is -Fe in all the studied cases, thus the - 

transition might be the candidate for this endotherm. A possible slow recrystallization of the 

-Fe phase corresponding to broad peaks at temperatures higher than 1000 K and which are 

weak enough to prevent their detection by DSC could be another possible explanation of the 

absence of a clear - transition in these Ge-free alloys. 

The melting behavior of the alloys can be divided in two different groups: the alloys 

with Ge present a clear two-peaks structure, meanwhile the alloys without Ge show a strong 

single peak preceded by a tiny feature at about 1500-1550 K. The onset of the melting 
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increases in the same sense as the onset of the nanocrystallization does: Co20Ge5 < Co5Ge5 

< Co5Ge0 < Co0Ge0 (see Table I). 

 

3.2 Microstructure 

As-cast samples of the different alloys were heated at 10 K/min up to different 

temperatures, TA, in the range from 573 to 1073 K, and immediately cooled down, in order to 

study the evolution of the microstructure along the crystallization process. At low TA, only the 

amorphous halo is detected. The diffraction maxima corresponding to the -Fe type phase 

appear for samples heated above 782, 782, 757 and 732 K for the Co0Ge0, Co5Ge0, Co5Ge5 

and Co20Ge5 alloys, respectively, in agreement with the observed onsets of the first 

crystallization stage. During this process, a nanocrystalline microstructure develops as a two-

phase system consisting of -Fe type nanocrystals embedded in a residual amorphous matrix. 

As TA increases, the diffraction maxima of the crystalline phase increase and the intensity of 

the amorphous halo decreases. After annealing at temperatures above 923-973 K, the 

amorphous halo disappears and new crystalline peaks appear. 

For the nanocrystalline samples, a deconvolution procedure was applied to the (110) 

maximum and the amorphous halo in order to extract more information from the XRD 

patterns. A Lorentzian function was used to fit the crystalline peak, assuming that the small 

crystalline size is the main reason for the broadening of the diffraction maximum. The 

amorphous halo was fitted using a Gaussian function. After this deconvolution process, the 

evolution of both residual amorphous and crystalline -Fe type phases could be studied in 

detail. 

 

3.2.1 Amorphous phase. 

The as-cast samples are fully amorphous. This phase coexists with the nanocrystals of 

-Fe along the first transformation process. The volume fraction of this phase, calculated 
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from the area ratio between the amorphous halo and the (110) maximum, decreases down to 

20-15 % at the end of the nanocrystallization process. After the second crystallization stage, 

the amorphous phase disappears and other intermetallic phases form. The parameters obtained 

from the deconvolution procedure described above and characterizing the amorphous halo 

are: the area, the central position and the full width at half maximum of the halo.  

The area was used to calculate the crystalline volume fraction of the nanocrystals. The 

width of the amorphous halo is ~10 degrees and the simplicity of our fitting model prevents a 

further discussion about this parameter. However, a clear evolution in the position of the 

amorphous halo is observed as TA increases, as it can be seen in figure 2a. For fully 

amorphous samples, the position of the halo is almost constant. However, the amorphous halo 

clearly shifts to lower values of 2 as the nanocrystallization progresses.  

The position of the amorphous halo can be associated with the interatomic distance 

between neighboring atoms as [26]: 

 )sin(8

5


 

 (5) 

where  is the wavelength of the X-rays used, 0.178897 nm. 

 Therefore, a continuous shift of the halo to lower values of 2 implies a continuous 

increase of the average interatomic distance in the amorphous phase. On the other hand, using 

the Goldschmidt atomic radii of the different elements [27], it is possible to calculate a 

theoretical distance between the atoms of the residual amorphous phase as the average 

diameter of the atoms in this phase. In order to do so, it is necessary to know the composition 

of the residual amorphous matrix and its dependence on the crystalline volume fraction. A 

general formula to calculate the concentration of the different elements in the residual 

amorphous phase would be: 

 X

XCC
C CRIA

RA 



1  (6) 
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where CIA, CRA and CCR indicate the concentration in the initial amorphous, the residual 

amorphous and the crystalline phases, respectively, and X is the crystalline volume fraction. 

The -Fe crystalline phase formed in the Co0Ge0 alloy is expected to be close to pure 

Fe, due to the low solubility of the rest of the elements in this lattice. This fact largely 

simplifies the calculations, being CCR = 100 for Fe and 0 for the other elements. Therefore, the 

following discussion will be referred to the Co0Ge0 alloy, the amorphous matrix of which is 

enriched in B and Zr and impoverished in Fe as the nanocrystallization progresses. 

Once the composition of the residual amorphous matrix has been calculated for every 

value of X, it is straightforward to calculate the average distance between atoms using 

Goldschmidt atomic radii. If B atoms were taken into account, the average distance between 

atoms would continuously decrease due to the strong enrichment in B of the amorphous 

matrix, differing from the experimental result. However, the observed trend is reproduced if 

the contribution of the B atoms to the amorphous halo profile is neglected. This light element 

has the lowest scattering factor of all the elements in the alloy (For sin/ ~2.4 nm-1
, since 

2 ~50° and  ~0.178897 nm, the atomic scattering factors are ~2 for B, ~20 for Fe, Co, Ge 

and Cu, and ~30 for Zr [28]). For this reason, only the metallic atoms will be taken into 

account, considering B in interstitials-like positions, and the enrichment of the amorphous 

matrix in Zr as the nanocrystallization progresses would yield an increase of the distance 

between metallic atoms. Figure 2b shows the evolution of the experimental distance 

calculated from the position of the amorphous halo for the Co0Ge0 alloy. The average values 

of the interatomic distance calculated in both cases, when B atoms are considered or 

neglected, are also shown. Although the approximation is quite vague, it would be worthy to 

note that the consideration of B atoms would yield a continuous shift of the amorphous halo 

position to higher 2 values, in contradiction with the observed experimental trend. Therefore, 

it might be inferred that the amorphous halo position mainly depends on the distances 

between metallic atoms without considering the distance between B atoms and their nearest 
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neighbors. For the other three alloys, after assuming a constant composition for the -

Fe(Co,Ge) phase, which allows the use of expression (6), it is also observed that the 

agreement is better if B atoms are not considered to contribute to the amorphous halo 

position. 

 

3.2.2 Nanocrystals 

As it was said above, the area ratio between the (110) maximum and the amorphous 

halo was used to obtain the crystalline volume fraction, X, for the nanocrystalline state. The 

lattice parameter of the -Fe type phase, a, was obtained from the position of the (110) and 

the (200) maxima and the average grain size, <D>, was calculated from the broadening of the 

(110) maximum using the Scherrer formula. Figure 3 shows the evolution of the crystalline 

volume fraction against the difference between the treatment temperature and the 

crystallization onset temperature (TA-TX) and figure 4 shows the grain size and the lattice 

parameter against X for the annealed samples of the four studied alloys. 

The nanocrystalline microstructures developed in the alloys are very similar. Both X 

and <D> increase monotonously, the former up to a saturation value of about 80-85 % and 

the latter up to ~10 nm at the end of the nanocrystallization process. From these two 

parameters, the number density of nanocrystals, NV, can be obtained as: 

 
3

6




D

X
NV   (7) 

For values of the crystalline volume fraction higher than 30 %, this value is almost 

constant considering the error bars, ~2*10-3 nm-3. This implies that the nucleation process is 

limited to the early stages of the nanocrystallization. 

The lattice parameter of the -Fe phase shows a continuous decrease as the 

nanocrystallization progresses, independent on the composition of the alloy. In fact, this 

cannot be associated only with compositional changes of the crystallites during the 



Acta Materialia. Vol. 53. Núm. 4. 2005. Pag. 1241-1251 
http://dx.doi.org/10.1016/j.actamat.2004.11.018 

 13

nanocrystallization. For example, in the Co0Ge0 alloy, the expected composition is 100 % Fe, 

since Zr and B have such low solubility in -Fe that they are expected to be rejected from the 

crystalline phase completely. For this alloy, a continuous increase of the grain size is observed 

as the crystalline volume fraction increases. On the other hand, there are studies indicating a 

dilatation of the unit cell in nanocrystalline systems with respect to the equilibrium value due 

to the small size of the crystallites. Zhao et al. [29] reported that the unit cell volume increases 

in nanocrystalline Se with respect to the microcrystalline value. It is established in that paper 

that the ratio between the nanocrystalline unit cell volume and that of the microcrystalline 

system ranges from 1.001 to 1.007 as the grain size reduces from 70 to 13 nm [29]. Therefore, 

this effect might be also considered to contribute to the observed decrease of the lattice 

parameter in our alloys. On the other hand, the two alloys with Ge show higher values of a 

than those observed for the alloys without Ge. This could be due to the presence of Ge within 

the nanocrystal, because Co has no effect on the lattice parameter of -Fe below 20 at. % and 

a higher content even yields a reduction of a [30]. The maximum solubility of Ge in -Fe, 

~10 at. % [25], allows the presence of Ge inside the nanocrystals. The lattice parameter of -

Fe increases by ~1.7 10-13 m per at. % of Ge [31], which implies a shift in the 2 value of the 

diffraction maxima of the -Fe type phase obtained with Co-K radiation of about 0.03 and 

0.06 degrees per at. % of Ge for the (110) and (200), respectively. These values are of the 

order of the step scan of the data acquisition program (0.05 degrees) and therefore, it must be 

considered as a limit to the sensitivity of the experiment. Therefore, the difference observed at 

the end of the nanocrystallization can be explained by a Ge content of about 2 at. % for the 

Co5Ge5 alloy and of about 4-5 at. % for the Co20Ge5 alloy. These values, although lower 

than the nominal concentration of Ge in the as-cast alloy, should indicate a worsening of the 

preferential partitioning of Ge to the amorphous matrix as the Co content increases in the 

alloy. The tendency of Ge to enrich in the amorphous matrix was explained in terms of the 
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lower heat of mixing between Ge and Zr (-60 kJ/mol) [32] compared to that between Ge and 

Fe (-3 kJ/mol) [32], which provokes that Ge will follow the rejected Zr atoms from the 

crystalline phase to the matrix [10,33]. However, the heat of mixing between Ge and Co (-9 

kJ/mol) [32] is slightly more negative than that between Fe and Ge and, consequently, could 

affect the partitioning behavior of Ge in the nanocrystalline state. 

The microstructure of the nanocrystallized samples was also studied by TEM. Figure 5 

shows the bright field images as well as the selected area diffraction pattern (inset) for 

samples of Co5Ge5 and Co20Ge5 alloys annealed at 873 K. As it can be observed, this 

technique confirms the microstructure derived from XRD data. Both compositions exhibit a 

similar microstructure in which nanocrystals of -Fe type phase, of about 10 nm diameter, are 

embedded in a residual amorphous matrix.  

 

3.2.3 High temperature phases 

 Figure 6 shows the XRD patterns of the four alloys heated up to 1073 K, beyond the 

completion of the second transformation stage. The main peaks appearing in each pattern 

correspond to the -Fe phase. In order to have an idea of the evolution of the -Fe(Co,Ge) 

phase after the second crystallization process, the area of the (110) maximum was compared 

to the full area of the pattern ranging from 30 to 70 degrees of 2. This calculation showed 

that the area ratio between the (110) maximum and the whole range (which for 

nanocrystalline samples was approached to the crystalline volume fraction) slightly decreases 

for the Co0Ge0 alloy (from ~0.8 to ~0.75), although for the other alloys the decrease is more 

evident (down to ~0.65). This indicates a stronger tendency to the recrystallization of the -Fe 

phase when there is some Co dissolved in it, involving a reaction of the amorphous matrix 

with some of the nanocrystals to form other crystalline phases. In fact, previous studies 

showed that a recrystallization process occurs during the second crystallization stage of Fe-

Co-Nb-B-Cu alloys, which is enhanced as the Co content increases in the alloy [34].  
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In the case of the Co0Ge0, Co5Ge0 and Co5Ge5 alloys, the lattice parameter of the -

Fe phase of fully crystallized samples does not significantly change with respect to the 

samples annealed at the end of the nanocrystallization. However, a clear decrease of a was 

observed in fully nanocrystallized samples of Co20Ge5 alloy (0.2865 nm) with respect to the 

value of a at the end of the nanocrystallization process (0.2872 nm). As it was pointed above 

in the Calorimetry section, this decrease should indicate a rejection of Ge from the -Fe(Co) 

phase to new intermetallic phases such as Fe23Zr6, only detected for the Co20Ge5 alloy after 

the second crystallization stage. The rejection of Ge from the -Fe(Co) crystals would assure 

the presence of the allotropic - transition, clearly observed for this alloy by DSC techniques 

as an endothermic peak at ~1225 K (see fig. 1), which is suppressed for a Ge content higher 

than 4 at. % [25]. 

The simplest XRD patterns after fully crystallization are those of the Ge-free alloys. 

However, the observed peaks cannot be unambiguously indexed. Although a possible 

candidate would be the Fe2Zr phase, it must be taken into account that the B content of the 

residual amorphous matrix at the end of the nanocrystallization is as high as 50 at. % and, 

therefore, a metastable B containing phase could be the responsible for the diffraction 

maxima.  

The alloys with Ge show an extra diffraction maximum at ~42 degrees. Nevertheless, 

no Ge containing phase was found exhibiting any strong maximum around this value. This 

peak could correspond to a Zr rich phase, even -Zr phase. The lower B content of these 

alloys with respect to the Ge-free alloys could be responsible for the formation of this Zr rich 

phase. For Ge-free alloys, the ratio between B and Zr content is 10/6 in at. %, whereas this 

ratio decreases down to 5/6 in Ge-containing alloys. The amount of B in the residual 

amorphous matrix could not be large enough to absorb all the Zr atoms and therefore these 

atoms may form another phase. In the case of the Co20Ge5 alloy, new peaks appear with 
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respect to the XRD pattern of the Co5Ge5 alloy, which can be associated to a Fe23Zr6 type 

phase. 

 

3.3 Magnetic properties 

3.3.1 Curie temperature. 

Figure 7 shows the evolution of the saturation magnetization, MS, with the temperature 

for as-cast samples of the studied alloys. The Curie temperature, TC, was calculated from the 

intersection of the steepest slope of the curve with the abscissa axis. In the case of Co20Ge5 

alloy, the decrease of MS due to the ferro-paramagnetic transition of the amorphous phase 

slightly overlaps with the increase due to the formation of the -Fe(Co,Ge) nanocrystals. The 

partial substitution of Co for Fe clearly increases TC from 445 K (Co0Ge0 alloy) up to ~520 K 

and up to >700 K for the alloys with 5 and 20 at. % of Co, respectively. However, partial 

substitution of Ge for B seems to have almost no effect on the Curie temperature (TC slightly 

decreases from Co5Ge0 alloy to Co5Ge5 alloy), although partial substitution of Ge for Fe was 

proposed as a promising way for the enhancement of high temperature applications of 

nanocrystalline alloys [10]. However, it might be noticed that both B and Ge substitution for 

Fe increase the Curie temperature of amorphous Fe-B alloys [35]. Therefore, although partial 

substitution of Ge for Fe is effective for enhancing TC of the amorphous phase for Fe-Zr-B-Cu 

alloys [10], the partial substitution of Ge for B is not. A direct measurement of the Curie 

temperature of the residual amorphous phase is only possible for a low nanocrystalline 

volume fraction. For the alloys with 5 at. % of Co a detailed studied was performed on the 

evolution of the Curie temperature with the annealing temperature and an increase of about 

20-30 K was observed for both alloys after partial nanocrystallization [36]. 

From this point of view, although the partial substitution of Co for Fe is a good 

candidate to enhance the high temperature applications of nanocrystalline alloys, as it was 

shown for other nanocrystalline compositions [6,7,13], the partial substitution of Ge for B 
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seems to be ineffective. However, as it was demonstrated elsewhere [36], the nanocrystalline 

state formed in Co5Ge5 alloy shows an enhancement of about 10 % of the saturation 

magnetization with respect to the Co5Ge0 alloy. In general, for samples annealed up to the 

end of the nanocrystallization, this magnitude is larger for Ge-containing alloys (155-160 

emu/g) than for Ge-free alloys (135-145 emu/g). In fact, the substitution of Ge for B in 

amorphous Fe-B alloys enhances the magnetic moment per Fe atom [35]. On the other hand, 

at high crystalline volume fractions, a strong enhancement of TC
AM might be expected due to 

the polarizing effect of the ferromagnetic nanocrystals [37]. 

 

3.3.2 Coercivity 

Room temperature coercivity values, HC, were obtained for samples heated up to 

different temperatures, TA. The evolution of HC is closely related to the microstructural 

changes.  

At temperatures below the onset of crystallization, HC generally decreases due to the 

relaxation of the internal stresses, which provokes a decrease in the magnetoelastic 

anisotropy. However, the Co20Ge5 alloy exhibits a totally opposed behavior and HC increases 

as TA increases below the onset temperature of crystallization. In this alloy, the annealing 

temperatures are lower than the Curie temperature of the amorphous system. Therefore, the 

increase of the temperature provokes a stabilization of the domain walls, which increases the 

coercivity of the material, as it was observed in other nanocrystalline systems [9]. 

A peak of the HC values is detected in all the studied alloys at temperatures close to 

the observed onset of crystallization. At the early beginning of the nanocrystallization, 

isolated nanocrystals do not interact and, therefore, the magnetic anisotropy is not averaged 

out. 

After this peak, an almost constant value of HC is observed for each alloy. This value 

is ~40-50 A/m for the Co20Ge5 alloy and ~10 A/m for the other alloys, values much lower 
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than those obtained for alloys with a high Co concentration [6,9]. The higher values observed 

for the Co20Ge5 alloy cannot be explained in terms of the microstructure (similar values of X 

and <D> with respect to the other alloys, see fig. 3 and fig 4) but must be due to an increase 

of the magnetoelastic anisotropy due to a higher value of the magnetostriction. In fact, the 

saturation magnetostriction constant, S, of -Fe increases from –9 ppm, for pure Fe, to 30 

ppm for a Co content of 20 at. % [38].  

The values of S were experimentally obtained using SAMR method for as-cast 

samples as 11, 15, 18 and 36 ppm for the Co0Ge0, Co5Ge0, Co5Ge5 and Co20Ge5 as-cast 

alloys, respectively. It can be observed that the partial substitution for Fe increases S of the 

amorphous alloy, at least up to 20 at. % of Co content, in agreement with the observed trend 

for Fe-Co-B alloys [38]. The partial substitution of Ge for B also increases the value of S for 

the amorphous samples. Unfortunately, the SAMR method could not be applied to 

nanocrystalline samples because they become very brittle after the thermal treatment. 

Nevertheless, it is possible to have an idea of the evolution of S as the nanocrystallization 

progresses assuming a composition of the nanocrystals based on a homogeneous distribution 

of Co throughout the amorphous matrix and the crystalline phase [14,15] and neglecting the 

effect of the possible presence of Ge inside the nanocrystals. Therefore, the values of S 

would be -9 ppm, for the Co0Ge0 alloy, ~0 ppm, for both alloys with 5 % of Co, and ~30 ppm 

for the Co20Ge5 alloy [38]. Thus, it can be easily understood that the magnetostriction value 

of the whole system, obtained as an average between the values of the crystals and the 

amorphous matrix, can be only cancelled out when S of the -Fe phase is negative, as it 

occurs for Co0Ge0. However, although a cancellation of the magnetostriction of the whole 

system is not possible when S of the crystalline phase is positive, a reduction can be achieved 

if S of the forming phase is smaller than the value of the amorphous phase, as it occurs for 

the alloys with 5 at. % of Co. Finally, if the value of S of the crystalline phase is larger than 
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that of the amorphous system, an increase on the overall magnetostriction might be expected, 

as occurs for the Co20Ge5 alloy. 

 After annealing at higher temperatures, a severe hardening is observed for all the 

studied alloys up to 6-7 kA/m, which corresponds to the formation of intermetallic (Zr and B 

containing) phases. The formation of these phases marks an irreversible temperature limit for 

the application of these alloys as soft magnets. 

  

4. Conclusions 

From the present study, several conclusions can be drawn: 

 The partial Co substitution for Fe decreases the thermal stability of the as-cast 

amorphous system. The partial substitution of Ge for B also produces the same effect 

and strongly affects the melting process of the alloy. The kinetic parameters of the first 

crystallization stage (Q = 3-4 eV, n~1) are typical for nanocrystallization processes. 

 The position of the amorphous halo in the XRD pattern shifts to lower values of 2 as 

the nanocrystallization progresses even if a high enrichment of B in the amorphous 

matrix is expected. This should indicate that this parameter is mainly related with the 

average distance between neighbor metallic atoms, due to the low scattering power of 

B atoms. 

 During the first crystallization stage, a similar nanocrystalline microstructure is 

developed for all the studied alloys (<D>~10 nm and a maximum X~0.80-0.85). Ge 

substitution increases a with respect to the Ge-free alloys, indicating the presence of 

some Ge content in the nanocrystals, although lower than the average concentration in 

the alloy. A continuous decrease of a as the nanocrystallization progresses is observed 

even for samples with an expected pure Fe composition of the crystalline phase. The 

lattice dilatation could be an effect of the very small grain size, as it was observed for 

other nanocrystalline systems. 
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 The XRD patterns of fully crystallized samples are more complex for Ge-containing 

alloys, for which an extra Zr-rich phase appears. The Fe23Zr6 phase has been detected 

for the Co20Ge5 alloy but not for the other alloys. 

 Partial Co substitution for Fe is clearly efficient for enhancing the Curie temperature 

of the amorphous phase, although Ge substitution for B seems to have no effect on 

TC
AM. However, Ge-containing alloys have a higher saturation magnetization for 

samples annealed up to the end of the nanocrystallization. 

 The coercivity of nanocrystalline samples is clearly larger for the Co20Ge5 alloy than 

for the other studied alloys, which is due to the higher magnetostriction of the two 

phases present in the nanocrystalline microstructure. 

Finally, the Co5Ge5 alloy can be considered the optimum composition among the 

studied alloys in this work. The Curie temperature of the initial amorphous phase is enhanced 

only by ~70 K with respect to the Co- and Ge-free alloy. However, the nanocrystalline 

microstructure achieved is stable up to ~1000 K and the soft magnetic properties are 

characterized by a high MS ~150 emu/g (~1.4 T) and a low coercivity at room temperature 

HC ~10 A/m.  
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Figure captions 

Figure 1. DSC scans of as-cast samples of all studied alloys obtained at 20 K/min: Tp1, Tp2 and 

- indicate the temperature of the first and the second crystallization processes and the 

allotropic transition from -Fe to -Fe, respectively. The deviation of the DSC signal above 

1250 K is an artifact due to the baseline. 

Figure 2. 2 position of the amorphous halo, xC
AM(2), after deconvoluting from the (110) 

maximum of -Fe against annealing temperature (a) and average distance between atoms, , 

as a function of crystalline fraction (b) obtained from the 2 position of the halo (squares) and 

calculated as the average diameter of all the atoms in the residual amorphous matrix 

(triangles) and excluding B from this averaging (crosses). 

Figure 3. Crystalline volume fraction, X, as a function of the difference between the annealing 

temperature and the onset of nanocrystallization, TA-TX. 

Figure 4. Average grain size, <D>, (a) and lattice parameter, a, (b) against the crystalline 

volume fraction of -Fe nanocrystals. 

Figure 5. TEM bright field images and corresponding selected area diffraction patterns (inset) 

for samples of Co5Ge5 (up) and Co20Ge5 (down) heated up to 873 K. 

Figure 6. XRD patterns of samples heated up to 1073 K (fully crystallized samples). () -Fe, 

() diffraction maxima appearing for Ge-free alloys, () new maximum appearing for Ge-

containing alloys (Zr-rich phase) and () Fe23Zr6 phase. 

Figure 7. Saturation magnetization, MS, versus temperature for as-cast alloys. The arrows 

indicate the Curie temperatures. 
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Table I. Relevant parameters of the devitrification and melting process of the alloys obtained 

at a heating rate  = 20 K/min. TX, crystallization onset temperature; TPi, peak temperature of 

the ith process; Hi, enthalpy of transformation of the ith process; Tm, onset temperature of the 

melting. 

Alloy 
TX 

 2 K 

TP1 

 1 K 

H1 

 5 % 

TP2 

 1 K 

H2 

 5 % 

Tm 

 10 K 

Fe83Zr6B10Cu1 783 807 71 1002 36 1270 

Fe78Co5Zr6B10Cu1 773 796 73 997 38 1260 

Fe78Co5Zr6B5Ge5Cu1 758 779 73 1007 37 1220 

Fe63Co20Zr6B5Ge5Cu1 737 757 80 1000 37 1185 
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Table II. Kinetic parameters of the nanocrystallization process obtained by non-isothermal 

approximations. 

Alloy 
Q ( 0.2 eV) n ( 0.2) 

Gao-Wang Kissinger Gao-Wang Augis-Bennett 

Fe83Zr6B10Cu1 3.9 4.1 4.3 1.2 

Fe78Co5Zr6B10Cu1 3.6 3.7 4.1 1.0 

Fe78Co5Zr6B5Ge5Cu1 3.2 3.3 3.4 1.0 

Fe63Co20Zr6B5Ge5Cu1 2.8 2.9 3.2 0.9 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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