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Abstract 
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1 Introduction 

Phase transformation kinetics affects numerous working fields in Materials Science as 

solid state transformations usually imply changes in the properties and characteristics of the 

systems. In some cases, these changes can be advantageous (e.g. in order to use the material as a 

sensor), however, in other cases, phase transformations must be avoided to keep the specific 

microstructure responsible for the desired properties. This is particularly important in the case 

of metastable systems (such as crystallization of amorphous alloys [1,2,3,4,5], polymers [6,7,8] 

and other glasses [9,10]), for which the metastable state should not be easily recovered once the 

transformation occurs. Therefore, understanding the mechanisms affecting the transformation 

kinetics is a key point in order to optimize the systems or to establish a comparison on the 

performance and perspectives of lifetime of a certain device. In this sense, it is particularly 

interesting the use of simple kinetic models based on average behaviors, which describe the 

main features of the transformation using only a few parameters. This can explain the success of 

using the classical theory based on nucleation and growth.  

The development of the classical crystallization model (JMAK theory) can be ascribed 

to the works of Johnson and Mehl [11], Avrami [12] and Kolmogorov [13] at the middle of the 

XXth century. This theory, developed for isothermal processes, describes the variation of the 

transformed fraction with the annealing time based on simple laws of nucleation and growth. In 

order to be described by JMAK theory, a transformation should fulfill the five postulates of 

Kolmogorov [14]:  

1 Initially, a parent phase exists, which is progressively substituted by the product phase; 

2  the volume of any formed grain is much smaller than the whole volume of the system;  

3  the nucleation is random;  

4  the shape of the new crystals is convex; and  
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5  the linear growth can be expressed as a product of a time dependent function and a 

direction dependent function.   

The two latter postulates can be assumed if isotropic growth of spherical crystals is 

considered. In this sense, potential laws can be used to describe the nucleation and growth rates 

as: I(t)=I0t
b and G(t)=G0t

a, respectively, where I0, G0, b and a are constants and t is the time. 

Neglecting the geometrical impingement [15], the extended transformed fraction, X*, in three 

dimension growth processes can be obtained as the integration from time 0 to t of the relative 

volume growth by each grain formed at time t’: 

      
3

3
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0 '
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* ' '
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t t
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      
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 
   (1) 

where C is a function of the parameters a and b. The prefactors can be considered together and a 

simpler relation is finally obtained: 

  *
n

X kt  (2) 

where k is the frequency factor and the parameter n is the Avrami exponent, which contains 

information about the type of nucleation and growth processes implied in the transformation: 

n=nI+3·nG, where nI corresponds to nucleation and nG to growth. Decreasing and increasing 

nucleation rates have been considered in the previous analysis (b<0 and b>0, respectively), 

although the way it changes is fixed along the transformation by the power law. Moreover, the 

theory of crystallization describes diffusion controlled growth processes with nG=1/2 and 

interface controlled growth processes with nG=1 [16]. 

As the transformation proceeds, the different transformed regions might overlap and this 

will lead to an overestimation of the transformed fraction described by X*. However, the 

extended transformed fraction is still very helpful by using statistical criteria to correlate it with 

the actual transformed fraction, X: 
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*

1
dX

X
dX

   (3) 

Considering that X*=0 implies X=0, from integrating Eq. (3) we obtain: 

  *1 expX X  
 (4) 

And the well-known JMAK equation is obtained substituting Eq. (2) in Eq. (4) 

 
  1 exp

n
X kt  

 (5) 

A stronger impingement than that purely geometrical reflected by Eq.(3) can be considered 

using a general equation instead of Eq. (3) [17]: 

  11
*

cdX
X

dX

   (6) 

Where the impingement parameter c=1 will lead to the Austin-Rickett equation [16]. A general 

solution for c0 can be found in Ref. [18]. 

 All this theory is developed to describe simple crystallization processes, where a single 

phase is formed. However, JMAK theory as well as the Avrami exponent are extensively used 

to describe and compare different types of experimental transformations. In this paper, we 

explore how the application of JMAK analysis to multiple processes necessarily implies 

deviations in the experimental Avrami exponents with respect to the actual values and we 

propose a method to extract these actual values. The present analytical method can be of interest 

particularly for researchers working in the field of solidification and crystallization modelling. 

 

2 Aplication of JMAK analysis to multiple transformation processes 

Although the requirements for using JMAK theory are strict, its extension beyond these 

limits is generally used. In this sense it is worth noticing that the transformations can imply the 
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formation of different product phases and, therefore, two possibilities arise for calculation of the 

total transformed fraction [19]: 

a) The transformations can be independent between them, i.e. the product phases do not 

compete for the same type of atoms and the actual transformed fraction is just the 

addition of the contributions of each phase:  

     01 exp in

i i i i iX f X f k t t       (7) 

where 1if  , being fi the maximum transformed fraction of the total volume of the 

sample corresponding to the i process and ki, t0i and ni being the frequency factor, the 

induction time and the Avrami exponent of the i process, respectively. 

b) The transformations can be dependent and the progress of one of the product phases 

depends on the degree of transformation of the others. In this case the extended 

transformed fraction is obtained by addition of the individual ones: 

 
* *

iX X  (8) 

and thus the actual transformed fraction is obtained applying equation (5) to this total 

extended transformed fraction: 

   01 exp in

i iX k t t
     
 
  (9) 

This expression implies that the final phase fraction depends on the annealing 

conditions (for isothermal treatments) or the heating rate (for non-isothermal treatments) and 

cannot lead to decoupled processes [19], because the available untransformed volume for each 

product phase is shared with the others. Therefore, the first transformation to occur will 

progressively decrease the available volume and if the other processes are sufficiently delayed 

(e.g. due to a high activation energy and a high heating rate) they might not occur at all. This 
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possibility was explored in a previous paper [19], finding some relationships between the 

activation energies and the heating rate dependence of the local Avrami exponent.  

In this work we will describe the dependence of the effective local Avrami exponent, 

n*, with the transformed fraction, X, in multiple processes leading to the formation of non-

competitive product phases, which can be described using Eq. (7) and where: 

 

  
 

  
  

  
 * *

0 0

ln ln 1 ln ln 1 ln ln 1
*

ln ln 1ln ln
i

i i

d X d X d X
n

d Xd t t d t t

     
 

  


 (10) 

where t0
* is the effective induction time (which should correspond to the induction time of the 

earlier process). In a first approximation, for two non-overlapped processes, the transformed 

fraction can be described as: 

 
 

1

2

if

1 if

fX X f
X

f f X X f

    
 (11) 

where f is the maximum transformed fraction achieved by the first process. Under this 

approximation, the value of the effective local Avrami exponent of the complete transformation, 

n*, can be obtained in two independent X ranges by differentiating ln(-ln(1-X)) with respect to 

ln(t) (consider that the corresponding induction times are very small with respect to the 

annealing time) for X<f and X>f . Figure 1a shows, for f=0.6, the local values of the effective 

Avrami exponent for two processes with different values of n1 and n2. The n*(X) curves are 

proportional to the corresponding Avrami exponent while their shape is independent. Changes 

in f should lead to a shift of the kink point to n*(f)=0.  

The previous analysis can be easily generalized to N>2 non-overlapped processes: 



International Journal of Thermal Sciences 88 (2015) 1-6 

7 
 

 

1 1 1

1 1

1 1 1

1 1 1

1 1 1

if

...

if

...

1 if

m m m

i m m i i
i i i

N N N

i i N i
i i i

f X X f

X f f X f X f

f f X X f

 

  

  

  


 


   




       

  

  

 (12) 

The value of n*(X) can be obtained by differentiating ln(-ln(1-X)) with respect to ln(t) in 

the different X ranges as: 
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Figure 1b shows the effective local Avrami exponent obtained for three non-overlapped 

processes for different values of individual ni. Several features should be mentioned: 

1) Only for the earlier process n1 can be directly identified as the value towards which n* 

tends at X=0. However, for the processes occurring in successive steps, the 

corresponding ni values are not evident.  

2) For an intermediate process, the effective value of the local Avrami exponent, n*(X), 

increases with the increase of the corresponding ni value. However, n*(X) remains 

always below ni. The value of the actual Avrami exponent of the m process, nm, is 

related to the local maximum of the effective Avrami exponent, n*max, and the total 

transformed fraction at this maximum, Xm: 
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3) Finally, in the case of the last process, we can observe that the slope dn*/dX of the 

n*(X) curve increases as the corresponding nN increases and its value can be obtained 

as: 

    *
* 1 ln 1N

dn
n n X X

dX
     (15) 

On the other hand, when Eq. (13) is derived with respect to X in this range, we obtain: 

       21 *
ln 1 ln 1N

N

dn
f X X

n dX
       (16) 

Therefore, combining Eq. (15) and (16), it is possible to obtain both the Avrami 

exponent of the last process and its corresponding fraction fN.  

 

3 Comparison to experimental data 

In order to test the viability of the proposed analysis, crystallization of two amorphous 

Fe90Zr10 and (Fe0.7Co0.3)90Zr10 ribbons was studied by differential scanning calorimetry (DSC) 

using a Perkin-Elmer DSC7 calorimeter at different heating rates. Samples were submitted to 

continuous heating at 10, 20, 40 and 80 K/min from room temperature up to 993 K. Two 

standards (melting points of lead and K2CrO4) were used to calibrate the calorimeter in a broad 

temperature range from room temperature to 1000 K at 40 K/min. The effect of the thermal 

inertia was corrected by measuring the standard samples also at those heating rates different to 

the one used for calibration. Amorphous ribbons were prepared by melt-spinning technique 

using an Edmund Bühler SC in argon atmosphere. Both alloys show two slightly overlapped 

transformations (figure 2) which correspond to the formation of bcc Fe-type nanocrystals and a 

Zr-rich intermetallic as shown by X-ray diffraction and transmission electron microscopy. 

Microstructure and magnetic properties of these alloys can be found elsewhere [20]. 

In order to obtain the n*(X) values (figure 3), a direct approach to non-isothermal 

processes of the JMAK theory is applied [21,19]. This approach allows us to obtain the local 



International Journal of Thermal Sciences 88 (2015) 1-6 

9 
 

values of the Avrami exponent from a single non isothermal DSC scan but it requires an 

estimation of the activation energy (which was obtained using Kissinger method [20]). This 

approach is based on the following approximation: 

      
0

'
0

'
t

t

T T
k T dt k T




  (17) 

where  is the heating rate. It is worth mentioning that the best approximation is obtained for 

T0’~Tp/2 [19] instead of the onset temperature [21], being Tp the peak temperature. If the correct 

value of T0’ is not used, the major deviations can be found at very low transformed fractions. It 

is also important to point out that using T0’=0 K yields only small deviations at very low 

transformed fractions [19]. It is worth noting that for very small and very high X values the 

effects of errors in the baseline are more important and, moreover, deviations from the 

relationship of proportionality between X and the enthalpy registered by DSC can occur at high 

X values [22]. Therefore, we have excluded these values from our study. 

Concerning the earlier process, the trend for the data above X=0.1 as X is reduced 

indicates values of n1~1.75 and 2.5 for the Co-free and the Co-containing compositions, 

respectively. In the case of the Co-containing alloy, this value should indicate a constant 

nucleation and three dimensional growth controlled by diffusion for the earlier process 

(formation of -Fe phase), whereas in the case of the Co-free alloy, the presence of quenched in 

nuclei could explain a lower value of n1. 

More information can be obtained after applying Eq. (19) and (20) to the second 

transformation process. Results from these equations (n2 and f2, respectively) would be 

meaningful only in the range where there is no overlapping between the two transformations. 

Figures 4a and 5a show dX/dT vs. X plots corresponding to the Co-free and the Co-containing 

alloys where the vertical lines mark the corresponding X ranges for which nearly constant values 

of n2 and f2 are obtained (ranges shown in the lower panels b and c of figures 4 and 5, 

respectively). As X increases approaching X~0.9, the calculated values diverge and thus, as 
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commented above, we have not considered very high values of X in the analysis. Therefore, 

n2=1.740.16 and 1.820.06 and f2=0.400.04 and 0.350.01 for the Co-free (from X=0.75 to 

0.85) and the Co-containing (from X=0.8 to 0.85) alloy, respectively (the corresponding range 

analyzed for X2 is between ~0.4 and ~0.6). 

Finally, once the final fraction of each process is known after determining f2, it is 

possible to directly obtain the local values of the individual processes in the regions not affected 

by the overlapping. This can be done analogously as for n* but substituting in Eq. (10) X for 

X1=X/(1-f2) or X2=[X-(1-f2)]/f2 to obtain n1 or n2, respectively. Results are shown in figure 6 for 

each alloy, where dash-dotted lines show the effective local Avrami exponent, n*, for 

comparison. When overlapping between the processes is strong, the proposed analysis cannot be 

applied, thus there exists an X range for which no values are obtained. Nevertheless, values of 

the local Avrami exponent are obtained up to X1~0.9 for the first process and from X2~0.3 for 

the second process. The average values of the Avrami exponents (neglecting values below 

X<0.1 and above X>0.9) are <n1>=1.660.14 and 2.360.21 and <n2>=1.680.06 and 

1.730.02, for the Co-free and the Co-containing alloys, respectively. These values are in good 

agreement with the previously estimated ones. Because of TEM images do not show an 

anisotropic growth of the crystallites [20], the Avrami exponents of the first process could be 

explained due to three dimensional growth controlled by diffusion for both alloys but with the 

presence of quenched in nuclei for the Co-free alloy. The low values of the Avrami exponent of 

the second process in both alloys, ~1.7, could be understood as due to the presence of quenched 

in nuclei of the intermetallic phase or to a sudden saturation of the nucleation sites for this 

phase. Moreover, as the total transformed fraction is high along this process, other impingement 

phenomena than the purely geometrical could be also responsible for such values (i.e. soft 

impingement [15]). Further detailed studies as annealing time dependency of the microstructure 

could help to elucidate the processes occurring in this particular case. However, this study is 

beyond the scope of the present paper, where we wanted to show how to recover the actual 

values of the Avrami exponent when JMAK theory is directly applied to a non-single process. 
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5. Conclusions 

 JMAK theory is widely used and applied to describe transformations which do not 

strictly fulfill the required premises. However, in this work we have demonstrated that a careful 

analysis of the local Avrami exponents obtained for transformations implying multiple 

processes can lead to obtaining the actual parameters of the individual processes.  

The predictions of the analysis have been used to describe the crystallization process of 

two Fe90Zr10 and (Fe0.7Co0.3)Zr10 amorphous alloys, which occurs in two overlapped processes 

ascribed to the formation of -Fe(Co) phase and a Zr-rich intermetallic.  

Three dimensional diffusion controlled growth is derived for all the transformations 

involved. Constant nucleation is only inferred for the formation of -Fe(Co) phase in the Co-

containing alloy, whereas a lower Avrami exponent for the Co-free alloy could be due to the 

presence of quenched in nuclei. The low Avrami exponents ascribed to the second 

transformation ~1.7, should indicate the same crystallization mechanism for both alloys, which 

could imply the presence of quenched in nuclei (or a sudden nucleation site saturation) for the 

intermetallic phase or a stronger impingement than the purely geometrical. 
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Figure captions 

Figure 1. Values of the theoretical effective local Avrami exponent derived for (a) two non-

overlapped processes (with f1=0.6 and f2=0.4) and (b) three non-overlapped processes (with 

f1=0.4, f2=0.3 and f3=0.3) as a function of the transformed fraction. The corresponding actual 

Avrami exponents of the first and second processes, n1 and n2, respectively, are indicated. 

Figure 2. DSC scans at 40 K/min of the two studied amorphous alloys.  

Figure 3. Values of the effective Avrami exponents, n*, of the two-process transformation 

observed for the two studied alloys. 

Figure 4. (a) Rate of change of the transformed fraction with temperature as a function of the 

transformed fraction for the Fe90Zr10 alloy. Vertical lines mark the range shown in the lower 

panels. (b) Avrami exponent of the final process calculated from Eq. (19). (c) Maximum 

transformed fraction corresponding to the second process calculated from Eq. (20). 

Figure 5. (a) Rate of change of the transformed fraction with temperature as a function of the 

transformed fraction for the (Fe0.7Co0.3)90Zr10 alloy. Vertical lines mark the range shown in the 

lower panels. (b) Avrami exponent of the final process calculated from Eq. (19). (c) Maximum 

transformed fraction corresponding to the second process calculated from Eq. (20). 

Figure 6. Calculated Avrami exponents for the first and second processes (solid lines) as a 

function of the total transformed fraction for Fe90Zr10 and (Fe0.7Co0.3)90Zr10 alloys. Values of the 

effective Avrami exponent for the double process (dotted lines) are shown for comparison. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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