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A procedure to optimize the isothermal calorimetric data of very slow transformation 

processes of metastable systems is proposed. The method uses an experimental baseline 

to identify the transitory effects due to the equipment. Moreover, the combined use of 

isothermal and non-isothermal results is shown to be effective to overcome the intrinsic 

problems of low signal and signal drift for such processes. The procedure has been 

applied to the analysis of the nanocrystallization kinetics of the Fe60Co18Nb6B16 alloy at 

different devitrification stages. Based on microstructural observations, an instantaneous 

growth approach was assumed and a phenomenological expression of the dependence of 

the nucleation frequency with both the transformed fraction and the temperature was 

obtained. 
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1. Introduction 

 

Nowadays, metallic alloys in a metastable state, as amorphous, nanocrystalline, or 

quasicrystalline systems, are used in a wide spectrum of technological applications due 

to the improvement of physical (e. g. mechanical, magnetic) and chemical (e. g. 

corrosion resistance) properties with respect to those in a thermodynamically stable 

state (e.g. [1,2] and references therein). The study of the kinetics of the transformations 

producing or destroying such structures is, therefore, an important task in order to 

optimize these materials and to control their microstructure.  

 In the particular case of nanocrystalline alloys obtained by controlled 

crystallization of a precursor amorphous alloy, nanocrystallization is a primary 

crystallization process in which very small crystallites of phases rich in the main 

element of the composition (e. g. -Fe in Fe based alloys [1], -Al in Al based alloys 

[2]) are embedded in a residual amorphous matrix which is progressively enriched in 

the elements with low solubility in the crystalline phase. A common feature in these 

alloy compositions is the presence of elements enhancing the glass forming ability of 

the system, in order to achieve the precursor amorphous alloy (normally close to 

eutectics of binary alloys with the main element of the composition: Fe-B, Al-Ni), and 

other elements with very low diffusivity, which constraint the growth of the crystallites 

to a nanometric scale (Nb, Zr, Hf [1], Y, Lanthanides [2]). In some cases, small addition 

of some other elements has been shown to enhance the nucleation phenomenon, refining 

the nanocrystalline microstructure [3,4]. 

 The nucleation and growth theories of crystallization are developed for 

isothermal conditions [5,6], although, as it will be shown later, some approaches can 

extend their validity to non-isothermal regimes. However, the use of isothermal records 
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is always desired as the thermal dependence of several parameters can be ignored. In 

order to obtain the transformed fraction as a function of time at a constant temperature, 

it is possible to measure it from microstructural observations (X-ray diffraction, electron 

microscopy). However, the process must be stopped to acquire the data and results from 

several experiments must be combined. Therefore, in situ measurement, although 

indirect, are very suitable to study the transformation kinetics. Several experimental 

techniques have been used to follow in situ the devitrification process of amorphous 

alloys, among them: calorimetry (e.g. [7]), electrical resistivity measurements (e.g. [8]) 

or magnetization measurements when the forming phase is ferromagnetic (e.g. [9]). 

Calorimetric methods link the transformed fraction with the enthalpy developed in the 

process. However, nanocrystallization process is widely extended in time for isothermal 

experiments and, therefore, some problems arise inherent to the equipment stability for 

very long times as well as in the transient time affected by the way the isothermal 

regime  is achieved. The aim of this work is to analyze these effects in order to optimize 

the reliability of the data extracted from isothermal transformations of metastable 

systems. The proposed procedure was applied to the nanocrystallization process of a 

Fe60Co18Nb6B16 amorphous alloy. 

 

2. Theoretical models 

  

Crystallization kinetics of metallic glasses is usually studied in the frame of the 

Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory [10,11,12,13,14]. This theory 

supplies a relationship between the actual transformed volume fraction, X(t), and the 

extended transformed volume fraction, Xext(t), which is the volume transformed without 

taking into account that one region already transformed can not be transformed again. 
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The following expression, introduced by Johnson and Mehl [10], Avrami [11,12,13] and 

Kolmogorov [14], considers the probabilistic character of a certain volume of the 

sample to be suitable for transformation as the transformation progresses, the so-called 

geometrical effect [6,11,12,13,15]. 

)1( X
dX
dX

ext   (1) 

In the simplest idea, the transformation involves the complete system and X 

would be 1 only if the whole volume of the sample is transformed (all the atoms in the 

system are suitable to transform into the configuration of the product phase(s)). 

However, we normalized X to the final value of the nanocrystallization process. At that 

stage, the sample is not fully transformed but some amount of residual amorphous 

matrix remains [16] as typically occurs in primary crystallization processes. This fact is 

characteristic of transformations in which the compositions of the product phase(s) and 

that of the parent phase(s) are not the same. In such cases, a compositional change of the 

parent phase(s) occurs during the transformation, due to an enrichment in elements non 

soluble in the product phase (-Fe in the present study), and a soft impingement in the 

nucleation and growth processes is derived from the overlapping of the depleted regions 

generated by the product units during their growth. These facts yield the definition of 

two different regions in the untransformed phase [15], an inert space for the 

transformation, Xinert, which will remain untransformed at the end of the process, and an 

active space, Xactive, suitable to be transformed. In this study, the normalization chosen 

for X (1 at the end of the nanocrystallization process) leads to assume implicitly the soft 

impingement due to the overlapping between Fe depleted regions, being Xinert = 0 [17]. 

In fact, the blocking of the growth of the nanocrystals can be ascribed to the pile up of 

atoms non-soluble in -Fe grains and with a very slow diffusivity in the amorphous 

matrix [18], Nb in the studied alloy. 
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 Equation 1 can be modified to consider a stronger impingement than that only 

due to the geometrical effect considered in the JMAK theory [19]. 

 2)1( X
dX
dX

ext  (2) 

where  is the impingement factor. Other authors describe the same equation in terms of 

the impingement parameter  =1/(1-) [20]. In any case, the values of  are between 0 

and 1.  

In the case of  =1, Eq. 1 is recovered and JMAK theory is applied. Considering 

the functional form of   next ttTKX 0)(  , the well known expression X(t) for JMAK 

theory is found: 

   nttTKX 0)(exp1   (3) 

where K(T) is the frequency factor, n is the Avrami exponent, which can be obtained 

from the slope of the   X 1lnln  vs. the  0ln tt   (JMAK plot) and t0 is the 

induction time. A local value of the Avrami exponent, n(X), can also be obtained for the 

isothermal regimes from: 

   
  0ln
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ttd
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  (4) 

and for the non-isothermal regimes, taking into account the thermal dependence of K(T), 

from [21]: 
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where Q is the effective activation energy, R is the gas constant and To is the 

crystallization onset temperature. 

In the general case of  1, integration of Eq. 2 leads to: 
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which, for the limit value  =0, yields the Austin-Rickett (AR) equation [22]: 
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and non-isothermal regimes: 
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in a similar way as it was done in [21] for the JMAK theory. 

 

3. Experimental 

 

Ribbons (5 mm wide and 20 m thick) of Fe60Co18Nb6B16 alloy were produced by melt-

spinning technique. Kinetics of the nanocrystallization process was studied from 

differential scanning calorimetry (DSC) experiments performed on a Perkin-Elmer 

DSC7 under argon flow. Pb and K2CrO4 standards were used to calibrate the equipment. 

Ribbon pieces were cut and placed into graphite pans. In order to reduce the factors 
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affecting the DSC signal, a several-step procedure was followed without taking the 

sample out of the calorimeter: 

 First, the sample was heated at 20 K/min up to the selected temperature for the 

isothermal treatment. 

 Second, the sample was annealed during 5 h at this temperature. 

 Third, the sample was cooled down to 323 K and stabilized. 

 Fourth, a continuous heating at 20 K/min up to 1000 K was done in order to 

measure the residual enthalpy of the process and to obtain a fully crystalline 

sample which can then be considered inert at the temperature of the isotherm. 

 Fifth, the sample was cooled down and stabilized again. 

 And sixth, first and second steps were repeated with the inert fully crystallized 

sample. The new isothermal signal will be used as a baseline and compared with 

that obtained in the second step. 

Transmission electron microscopy observations were performed on a Philips 

CM20 operating at 200 kV. 

 

4. Results 

 

4.1 Baseline and transitory effects 

 

[Insert Figure 1 about here] 

Isothermal signals obtained at different temperatures for as-cast and fully crystallized 

samples, respectively, are shown in figure 1. The inset shows the signal for times below 

30 s. A huge peak (at short times after the annealing temperature is reached) is generally 

found for all the samples, independently of the isothermal temperature and the 
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microstructural state of the sample. This peak can be ascribed to transitory effects of the 

equipment due to the change from non-isothermal to isothermal regime in the data 

acquisition. The fully crystalline sample can be considered as an inert sample at the 

isothermal annealing temperature; however, the signal is not a horizontal line but shows 

some drift even at long times, which can be ascribed to the equipment and depends on 

the specific conditions of the experiment (e.g. the mass of the sample) and slightly 

evolves for very long times (in the time order of days). This signal will be considered as 

a baseline for the corresponding signal obtained in the previous isotherm in the same 

DSC run. In our experiment, the separation in time between the acquisitions of the two 

isotherms is minimized as the experiments run without interruption. Another possibility 

to obtain a baseline would be to perform an isotherm without any sample. However, if 

the mass of the sample changes, its thermal inertia would be affected and, therefore, the 

present procedure of baseline acquisition is considered a better approach. In particular, 

once the signal is represented in power/mass units, the magnitude, shape and time 

position of the huge peak below 15 s is constant for different samples. The very good 

reproducibility of this maximum between the signal registered for one sample during 

the first (as-cast sample) and second (fully crystalline sample) isotherms enables the 

subtraction of the baseline to obtain an isothermal signal free from transitory effects for 

every temperature. The resulting curves are shown in figure 2.  

[Insert Figure 2 about here] 

Finally, it is worth noting the shift of the initial dH/dt value of the signal for the 

isotherm of the as-cast sample with respect to that of the fully crystalline one. This shift 

is a measure of the transformation rate at which the isotherm starts. This can be clearly 

observed in figure 3, where the shift (dH/dt) is represented as a function of the 

isothermal temperature and along with the dH/dt DSC signal registered for an as-cast 
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sample at 20 K/min, which was the heating rate used to reach the isothermal 

temperature. 

[Insert Figure 3 about here] 

 

The registered signal, dH/dt, can be linked with the transformation rate, dX/dt. 

The simplest way is to assume a relationship of proportionality between the enthalpy 

and the fraction of the nanocrystallization process. Although the validity of this 

assertion has been questioned, especially for the final stages of the process [23], it can 

be considered a fairly good approximation, widely used for both isothermal and non-

isothermal kinetic analyses.  

 

4.2 Information extracted from non-isothermal scans 

 

It has been shown that the isothermal annealing below the onset temperature of the 

nanocrystallization, To, is not able to complete, in a reasonable time, the 

nanocrystallization process but a residual exothermic peak remains even for very long 

annealing times [7,24,25]. Consequently, the total fraction of transformation 

(normalized to 1) can not be obtained directly from the enthalpy released in the 

isotherm, because the process is only partially completed during this treatment. 

Therefore, in order to complete the nanocrystallization process, a non-isothermal DSC 

scan must be used.  

[Insert Figure 4 about here] 

The total enthalpy involved in the nanocrystallization process of an as-cast 

sample heated at 20 K/min can be used to normalize the fraction of the 

nanocrystallization process. However, as it can be seen in figure 3, a small overlapping 
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between the nanocrystallization process and the second transformation stage occurs for 

the studied composition. In order to properly measure the value of the enthalpy of the 

whole nanocrystallization process, the enthalpy of the second peak must be subtracted 

from the enthalpy of both overlapped peaks. Figure 4(a) shows the DSC scans at 20 

K/min performed after each isothermal treatment. The scan of the as-cast sample is also 

shown. It can be observed that the second DSC peak is not altered by any isothermal 

annealing performed in this study. The integration of each DSC signal taken at 20 

K/min generally shows a two step increase of the absolute value of the enthalpy 

corresponding to the two processes detected, except for the non-isothermal scan 

performed after the isotherm at 853 K, indicating that the nanocrystallization is 

practically finished after this isotherm and only the second exotherm is detected (see 

Fig. 4(a)). Therefore, the integration curve of the DSC scan after annealing at 853 K has 

been subtracted to all the others and the resulting values of enthalpy have been 

normalized taken into account that the final value corresponds to X=1 (completed 

nanocrystallization process). On the other hand, the initial X value depends on the 

isothermal annealing previously performed and can be calculated from the residual 

enthalpy, Hres, under the DSC curves of Fig. 4(a) as 1-Hres/HTotal. The resulting 

curves are plotted in figure 4(b). The curves collapse as expected for an isokinetic 

process. 

Finally, it must be considered the value of the fraction of the nanocrystallization 

process completed before the isotherm, as some of the isotherms were performed at 

temperatures above the onset of the nanocrystallization process. This value can be 

clearly obtained from the integration curve of the DSC scan at 20 K/min of the as-cast 

sample, as this was the procedure followed to reach the isothermal temperature in every 

case. 
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Summarizing, the isotherms involve a fraction of the transformation, X(t,T), 

from a initial value )(TX ISO
initial  0 (from the enthalpy released up to T measured from a 

20 K/min DSC scan of the as-cast alloy) to a final value )(TX ISO
final  1, which can be 

obtained as 1-Xres(T), where Xres(T) is the fraction of the nanocrystallization process, 

measured from a DSC scan at 20 K/min performed after the isothermal annealing. Table 

1 shows the values corresponding to the different isotherms performed.  

[Insert Table 1 about here] 

 [Insert Figure 5 about here] 

The value of ISO
initial

ISO
final

ISO XXTX )(  could be, a priori, also approached from 

the area below the DSC isothermal signal. Figure 5 shows a comparison between the 

HISO values directly measured from the isotherms and the values calculated from non-

isothermal runs as: resinitialtotal
ISO
calc HHHH  , where totalH  is the total enthalpy 

of the nanocrystallization process, initialH  is the enthalpy of the process completed 

before the onset of the isotherm and resH  is the enthalpy of the residual peak detected 

in the DSC scan at 20 K/min after the isotherm. A linear relationship can be observed 

but ISOISO
calc HH  in all cases. The specific heat must contribute to the non-isothermal 

DSC signal and not to the isothermal one, but this fact can not explain the difference 

found. The process studied is exothermic and the specific heat contribution is 

endothermic; therefore, it would even increase the observed difference. In fact, the 

problem arises due to intrinsic errors in measuring the area under the isothermal DSC 

curve. Although the integration has been extended up to the time at which the 

isothermal plot reaches a saturation value, some process could occur at the long tails of 

the isothermal scans being so weak and extended in time that the deviation from the 

baseline could not be conveniently observed but jeopardized by the effects of baseline 
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drifts (not completely avoided after baseline subtraction) and the resolution of the 

equipment (~ ± 0.005 W/g, which is larger than the shift of the baseline necessary to 

compensate the difference between ISO
calcH  and ISOH , ~0.002 W/g for a 5 h isotherm). 

In order to estimate the relative importance of the enthalpy developed at the tails of the 

isotherms, some of them were repeated but only up to 2000 s. Figure 6 shows the 

residual non-isothermal DSC exotherms after 2000 s and 18000 s annealing along with 

the DSC signal of the as-cast sample for two different temperatures. No significant 

difference can be observed for the isotherm at 743 K, indicating that the transformation 

enthalpy between 2000 and 18000 s can be neglected. However, the isotherms 

performed at 813 K, which start with ~50 % of the process completed, show 77 % and 

81 % of completion of the nanocrystallization process for annealing times of 2000 and 

18000 s, respectively. It is worth noting that, at this temperature, the process is slowed 

down as it corresponds to the long tails of the DSC signal observed at the final stages of 

the nanocrystallization (low values of the transformation rate). The difference found in 

H between both 813 K experiments is only of 6 J/g and a shift of the baseline of only 

0.0003 W/g (one order of magnitude lower than the resolution of the equipment) could 

account for this difference extending the integration up to 18000 s. All these intrinsic 

problems in the analysis of the isothermal signals yield a more accurate approach to use 

non-isothermal experiments for measuring the enthalpies. Although, for non-isothermal 

scans, the error in dH/dt is the same, data are acquired in a significantly shorter time 

thus the relative error is much smaller. Moreover, the enthalpy values must be 

normalized to the value of the total enthalpy involved in the nanocrystallization process 

and this value can only be measured from a non-isothermal experiment; therefore, the 

XISO values used were those calculated from non-isothermal runs. The fact that the 

contribution of the specific heat to the heat flow might be considered in non-isothermal 
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regimes and can be ignored for isothermal ones is not affecting the calculations as the 

only values used to normalize the data were extracted from non-isothermal scans. 

[Insert Figure 6 about here] 

 

5.  Discussion 

 

Following Eqs. 4 and 8, the JMAK and AR plots are shown in figure 7. The values 

t0=85 and 54 s were measured for the isotherms at TISO=743 and 753 K, respectively 

(TISO<To=769 K, nanocrystallization onset temperature at 20 K/min) and t0=0 s was 

imposed for the isotherms performed at temperatures above To considering an initial 

value of X(0)0 (the process is already started). No much difference can be observed 

between both theories. The JMAK plot of the isotherm below To roughly exhibits two 

slopes and although, in some cases, AR theory can fit this kind of two-slope JMAK 

plots with a single straight line [5] this result is not achieved in the present case.  

[Insert Figure 7 about here] 

A further discussion can be done calculating the local values n(X) and n*(X) 

(JMAK and AR theories, respectively). Figure 8 shows the local values of the two 

exponents for different isotherms and compared with the values obtained from a non-

isothermal scan at 20 K/min. While isothermal regimes supply values of n and n* in a 

certain range of X, from ISO
initialX  to ISO

finalX , non-isothermal regimes (using the approach 

described on [21] for JMAK theory and extended to AR theory in the present work) are 

able to give a general view of the process from X=0 to 1. A good agreement can be 

found, supporting the isokinetic behaviour of the nanocrystallization of the 

Fe60Co18Nb6B16 alloy described from the study of the process at different heating rates 

[21], independently of the theory employed (JMAK or AR). No big differences can be 
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found between the results obtained by both theories and the use of the expression (2) 

would not support any extra result as the values must lay between the two limit cases 

studied: 0< <1.  

[Insert Figure 8 about here] 

The value of the Avrami exponent is ~1-1.5 at the early stages of 

nanocrystallization and decreases below 0.5 as the nanocrystallization progresses. These 

values are in agreement with those obtained from thermomagnetic gravimetry [26] and 

other non-isothermal approaches as Gao-Wang and Ozawa methods [16,21]. The 

decrease of n as X increases has also been observed for the nanocrystallization process 

of other alloys (e.g. [27,28]). However, values of n below 1.5 (which theoretically 

should indicate no nucleation and three dimensional diffusion controlled growth [6]) 

have no sense in the JMAK theory considering growing crystallites. In this theory, for 

three dimensional growth, n=ni+3ng, where ni refers to nucleation (1 if it is constant and 

0 if it is absent) and ng refers to growth (1 if it is interface controlled and ½ if it is 

diffusion controlled). Although AR theory accounts for another impingement factors 

besides the geometrical one, the values of n* are still too low to give more than just a 

qualitative interpretation of a possible strongly hindered growth process, increasing the 

impingement as the crystalline volume fraction increases. However, as it will be shown 

below for the studied alloy, Avrami exponent below 1 could be also interpreted if the 

growth process is neglected after assuming an instantaneous growth approximation. In 

this case, n=ni. 

[Insert Figure 9 about here] 

 In the case of JMAK theory, the use of equation (3) (or Eq. (7) in the case of AR 

theory) implies some assumptions on the transformation kinetics. However, it has been 

shown that nanocrystallization process of FINEMET alloys can be described if a 
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derived form of JMAK equation is used (Eq. (1)) [15]. In this sense, some 

approximations can be done to simplify the calculations if the nanocrystalline 

microstructure developed is taken into account. Figure 9 shows a bright field 

transmission electron microscopy image of a nanocrystalline sample of the studied 

composition. Unlike FINEMET [24,29] and FeCoNbBCu alloys [30], which can be 

characterized by regularly shaped nanocrystals, the studied alloy shows very irregular 

crystallites which can be described as an agglomeration of orientationally related 

smaller ones (~5 nm in diameter). This is evidenced in figure 4 of reference [30] from 

the comparison of a bright and a dark field image of the same nanocrystal. A similar 

microstructure has also been observed in Cu-free NANOPERM alloys [3] and Zr-

containing HITPERM alloys [31].  

This microstructure has been qualitatively explained as resulting from a 

competition between two different nucleation phenomena and a strongly hindered 

growth process [32], which constraints the maximum size of the small crystalline units 

to 5 nm. The two nucleation phenomena correspond to the formation of nuclei in either 

isolated regions or in contact with a previously formed nanocrystal. The former 

mechanism has the advantage of a richer Fe content in the surroundings as the region is 

far from other nanocrystals and not depleted in Fe. The latter mechanism has the 

advantage of a reduced interface energy. Therefore, a possible approximation of the 

nanocrystallization kinetics of the studied alloy could be to consider an instantaneous 

growth of the small crystalline units up to their maximum size (~5 nm in diameter). It is 

worth mentioning that the second mechanism cannot exist since the very beginning of 

the crystallization process, as it needs the presence of crystallites. This could explain the 

n values above 1, which would indicate an increasing nucleation rate at the early stages 

of the nanocrystallization. 
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Assuming an instantaneous growth in equation (12) of reference [15], the 

extended transformed volume fraction can be written as: 

)0()(
6

1

0

3
ext

t

C

ext XdI
d

x
X 


  

 (10) 

where xC is the crystalline volume fraction at the end of the nanocrystallization process 

(~0.54), <d> is the average size of the small spherical crystalline units forming the 

agglomerates and I is the nucleation frequency. Combining equation (1) and (10) it is 

possible to obtain the nucleation frequency as: 

 T
dt

dX

Xd

x
TXI C




1

16
),(

3
 (11) 

The resulting curves are plotted in figure 10. The X dependence of the I(X,T) 

curves can be interpreted in the frame of the above described hypothesis of two 

nucleation processes: At the beginning of the nanocrystallization, the only possible 

process is the formation of isolated nuclei. As these nuclei are formed, the second 

nucleation process can occur and, therefore, the nucleation frequency increases. As the 

nanocrystallization progresses, the depletion of Fe content in the amorphous matrix 

affects both nucleation mechanisms and the nucleation frequency decreases for high 

crystalline volume fraction. 

[Insert Figure 10 about here] 

 In order to explore the thermal dependence of the nucleation frequency, an 

Arrhenius functional form has been proposed and for fixed values of X, ln[I] vs 1/TISO 

plots have been fitted to straight lines: 

   
RT

Q
AI  lnln  (12) 

 The Q values obtained, 2.5-6 eV, are of the order of those obtained from 

different experiments [16,21,26]. Besides the experimental errors, other factors could 
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explain the differences observed between the activation energies obtained from different 

approaches and techniques. Non-isothermal approaches [16,21] supply averages values 

of Q. On the other hand, it has been shown that the superparamagnetic behaviour 

exhibited by the studied alloy at the very early stages of crystallization provokes an 

important magnetic field dependence of the crystallization onset detected by 

thermomagnetic techniques [33]. Figure 11 shows the X dependence found for ln[A] and 

Q. A linear relationship has been found between these two parameters as it is also 

represented in Fig. 11: 

  QA )2(1.16)9(3.15ln   (13) 

 This linearity has been previously reported in the devitrification of amorphous 

alloys [34], ascribed to the presence of a distribution of microprocesses during 

devitrification [35]. Combining equations (12) and (13) it is possible to obtain a 

phenomenological expression for the nucleation frequency during the 

nanocrystallization process of the Fe60Co18Nb6B16 alloy as: 





 


T

T
R

XQ
ITXI




)(
exp),( 0  (14) 

 where =7219 K and I0~2·10-7 s-1nm-3 (with an error of the order of 10-7 s-1nm-3). 

[Insert Figure 11 about here] 

 There is a change in the behaviour of ln[A] and ln[Q] for X>0.5, being constant. 

This change can be also observed in the local Avrami exponent, which reaches an 

almost constant value for high crystallization fractions (see Fig. 8). This change could 

be ascribed to a change in the nucleation mechanisms. 

 

Conclusions 
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A procedure to optimize the information obtained from isothermal transformation of 

metastable systems has been proposed and applied to the nanocrystallization process of 

an amorphous metallic alloy.  

Nanocrystallization enthalpy information has been extracted from isothermal 

DSC scans after subtracting a baseline which resembles the transitory effects due to the 

equipment and using enthalpy values obtained from non-isothermal scans performed 

before and after the isotherm. In order to normalize the nanocrystallization fraction to 

the value at the end of the process it is necessary to use non-isothermal scans, as 

isotherms, if the nanocrystallization process would be completed, it would require a 

very long time. Moreover, the measurement of enthalpies in non-isothermal scans is 

more accurate as the integration range is smaller. 

Results have been studied in the frame of Johnson-Mehl-Avrami-Kolmogorov 

and Austin-Rickett theories. Good agreement has been found between isothermal and 

non-isothermal kinetics, supporting the isokinetic character of the nanocrystallization 

process studied. The n and n* values are too low and can not be discussed in the frame 

of these theories, although a qualitative interpretation can be given after TEM 

observations of the very small units (~5 nm diameter) forming the crystalline 

agglomerates: nucleation process is constant at the beginning of the process and 

progressively decreases as nanocrystallization progresses. This would yield, neglecting 

the growth process, an Avrami exponent of ~1 for low crystalline volume fraction, 

decreasing at higher values of X. In this sense, a very simple model based on 

instantaneous growth of these very small units was used to obtain a phenomenological 

dependence of the nucleation frequency with the crystalline volume fraction and the 

temperature. 
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Table 1 

Fraction of the nanocrystallization process completed before, ISO
initialX , after, ISO

finalX , and 

during the isothermal treatment calculated from non-isothermal scans. 

Isothermal 
temperature (K) 

ISO
initialX  ISO

finalX  ISO
initial

ISO
final

ISO XXX   

743 0 0.59 0.59 
753 0 0.65 0.65 
763 ~0 0.78 0.78 
784 0.17 0.85 0.68 
813 0.51 0.91 0.40 
853 0.75 1 0.25 
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Figure caption 

Figure 1: Isothermal DSC scans for as-cast and fully crystalline samples performed at 

two temperatures. 

Figure 2: Enthalpy rate, dH/dt, vs time plots obtained from isothermal DSC signals after 

baseline subtraction. 

Figure 3: Difference between the initial values of the DSC isothermal signals for as-cast 

and fully crystalline samples (each point corresponds to a DSC experiment). A non-

isothermal DSC scan at 20 K/min of the as-cast sample is also plotted for comparison. 

Figure 4: (a) Enthalpy rate, dH/dt, obtained from non-isothermal scans and (b) 

nanocrystallization fraction, X, obtained for samples isothermally annealed 5 hours at 

different temperatures vs. temperature (The corresponding plots of the as-cast sample 

are also shown for comparison). 

Figure 5: Enthalpy involved in the isothermal annealing (calculated from non-

isothermal runs before and after the isotherm) as a function of the enthalpy directly 

measured from the isothermal scan. 

Figure 6:  Comparison between the as-cast and the residual DSC plots at 20 K/min after 

annealing for 2 and 18 ks at 743 and 813 K. Arrows indicate the temperature of the 

previous isotherm. 

Figure 7: Austin-Rickett and Avrami plots: ln[1/(1-X)-1] and ln[-ln(1-X)] vs. ln(t-t0), 

respectively, for selected isothermal treatments. X is the nanocrystallization fraction, t 

the time and t0 the induction time. 

Figure 8: Local Avrami and Austin-Rickett exponents: n(X) and n*(X), respectively, vs 

nanocrystallization fraction, X.  

Figure 9: Bright field TEM image of a sample annealed 750 min at 716 K.  
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Figure 10: Nucleation frequency, I, as a function of X for different isothermal annealing 

temperatures.  

Figure 11: (a) ln[A] and Q as a function of X. (b) Linear dependence of ln[A] with Q. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4  
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Figure 5 
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Figure 6 
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Figure 7  
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Figure 8 
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Figure 9  
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Figure 10  
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Figure 11 
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