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Abstract

In this work, we deal with the problem of coordinating a set of autonomous
agents equipped with cameras whose goal is to obtain a panoramic image.
To this end, we optimize a multiple-objective cost function that accounts for
the number of matched points between the images, the distance between the
agents or the distance from the visual central point. Some solutions for this
problem are presented considering two different approaches: centralized and
distributed coordination of the agents. For each one of them, the results are
obtained using optimization methods and heuristic methods. The compar-
isons between all of them are done from the simulations of the algorithms
developed.
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Resumen

En este proyecto se trata el problema de la coordinación de un conjunto de
agentes autónomos, cada uno de ellos equipado con una cámaras, cuyo obje-
tivo es la obtención de una imagen panorámica. Para este fin, se optimiza una
función objetivo de costes múltiples que representa, por ejemplo, el número
de puntos emparejados entre las imágenes, la distancia entre los agentes o la
distancia hasta el punto central de visión. Se presentan algunas soluciones
para de problema basándonos en dos enfoques diferentes: las coordinaciones
centralizada y distribuida de los agentes. Para cada uno de ellos, los resul-
tados se obtienen utilizando tanto métodos de optimización como métodos
heuŕısticos. Las comparaciones entre todos los resultados obtenidos se reali-
zan a partir de las simulaciones de los algoritmos que se desarrollan durante
este proyecto.
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Chapter 1

Introduction

The main problem to be solved is the coordination of a series of robots
equipped with a camera with the goal of generating a global panoramic im-
age with certain properties based on the local images [32]. This is an issue
with an enormous practical interest due to the results of this research pro-
ject can be transferred for its implementation in fleets of Unmanned Aerial
Vehicles (drones), which currently enjoy an enormous popularity because of
its numerous applications, e.g., messenger service [10] and geographic inform-
ation systems among many others. In addition, this topic presents a research
challenge that has been already identified by the scientific community [27].

Nowadays, panoramic image generation has become a standard feature
in most commercial cameras. As it has been indicated in the previous para-
graph, this is achieved by means of a procedure known as image stitching,
which consists on the combination of multiple images with overlapping fields
of view to generate panoramic images. To this end, the detection of dis-
tinctive features in the set of images is used as a mean to determine the
pixel coordinates between different images that can be related and used to
estimate the corresponding alignments.

In parallel to the consolidation of image stitching techniques, we also
assist to an explosion in the drone market with a myriad of potential ap-
plications, e.g.: surveillance, packet delivery, construction, etc. Hence, it is
straight forward to envisage an application in which several drones collab-
orate to obtain panoramic images. As will be seen throughout this bachelor
thesis, this is a complex problem that can be casted as a multiple object-
ive multi-agent optimization problem. Issues such as how to coordinate the
different agents or how to react in case one of the agents behaves faulty are
important in this context. The autonomous agents should be relocated re-
garding the desired result or in the case of error in any robots. This relocation
will be carried out optimizing a cost function related with the objective. The
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cost function can include aspects as: i) the cost of getting determined points
in common between images; ii) the cost of getting a panoramic image with
an specific number of pixels; or iii) the cost of moving the robots. We believe
that this problem can be interesting in applications such as aerial photo-
graphy or even military applications, where a set of drones can be assigned
to provide the maximum image information from a certain target.

Mainly, the problem is studied supposing the most simple situation, where
the motion of autonomous agents is allowed only in a plane parallel to the
desired panoramic image, i.e., assuming that there are no differences in angles
of captured images between the various cameras. Future studies can get
closer to a real world scenario, e.g, by considering the three space dimensions
of the motions of agents or the difference of angles mentioned before. But
this is not included in the actual project.

Firstly, the issue is studied from a centralized point of view, which mainly
consists of solving the problem of coordination between agents considering
that an external leader has all the information involved in the situation and
makes all the required decisions basing on this information. Next, the same
issue is treated from a distributed point of view, that is, there are agents that
make the decisions and communicate to collect some information; i.e., global
information about the system state is not available for each agent; therefore,
the decisions have to be made by each agent with partial information.

Regarding the development of this project, Matlab will be used as work
tool. Tests will be carried out by this program.

A noteworthy point is that the developments done as a result of this
project may be implemented in a real test bed located at Tokyo. For that
purpose, the involved researchers of the Tokyo Institute of Technology offer
its laboratories, which can be seen in this article [14].

The outline of the rest of the bachelor thesis is divided in the following
manner: Chapter 2 presents some techniques from literature used for Image
Stitching and an algorithm developed to create panoramic images once the
individual images have been captured. Chapter 3 is focused on Centralized
Algorithm Methods to solve the issue of agents coordination, and presents
some algorithms and the corresponding simulations. Chapter 4 presents Dis-
tributed Algorithm Methods, and includes a general vision of how to imple-
ment these methods and examples. Finally, Chapter 5 presents concluding
remarks and hints about future work.

2



Chapter 2

Image Stitching

2.1 Introduction

Image stitching is one of the main problems that we deal with in this work.
Image stitching is the name used to describe the process in which a panor-
ama image is obtained from a set of images. The procedure followed is an
extension of feature based image registration, but instead of registering a
single pair of images, multiple image pairs are successively registered relative
to each other to form a panorama.

Since the beginning of the century, researchers have made efforts to im-
prove the existing methods or even to develop new ways to obtain an image
panorama. All of these methods follow the same general structure, and the
differences between them are principally related to the specific operation used
to get the same objective. For example, in [28], V. Rankov proposed an im-
age stitching algorithm for microscopic images based on the clinical necessity
of acquiring an image of large regions but retaining microscopic resolution.
With this purpose, the method is focused on overcoming both intensity dis-
crepancies and geometric misalignments between the stitched images. An-
other example can be shown in [26], where the possibility of stitching image
with the presence of moving objects is studied. The technique uses heuristic
seam selection in the intensity and gradient-domains to choose which pixels
to use from each image.

In general, image stitching comprises two steps: image matching and
image blending. Image matching consists of the operations performed to
obtain the connection between images. In order to achieve this operation,
there are two different ways: direct method [33, 21], and feature detection
method [7, 25].

The reason of the name ‘direct methods’ is due to the direct minimiza-
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IMAGE STITCHING
Step 1: Image matching

Option A: Direct method Option B: Feature detection method
1. Feature extraction
2. Feature correspondence
E.g.: SIFT and SURF Features

Step 2: Image blending

Table 2.1: Image Stitching Procedure

tion of the image-based misregistration measure, without special algebraic or
geometric transformations, and because they are usually based on the direct
minimization of intensity errors [33]. Using direct methods, it is possible to
achieve very accurate registration because they use all the available image
data [5], but it has the disadvantage that a high quality image is always
needed [22]. In most cases, this type of images is difficult to achieve, and
because of that, feature detection method is often used.

Feature detection methods have the aforementioned advantage, but they
also possess the problem that invariance properties are needed to enable re-
liable matching of an arbitrary panoramic image sequence [5]. Generally,
feature detection involves two procedures: feature extraction and feature
correspondence. Many image segmentation techniques are used for feature
extraction, such as the Canny operator in [30] or the classification method
in [34]. Feature correspondence is the most challenging problem at present,
and its performance depends in the characteristics of the features detected.
As it is explained in [9], a robust algorithm to establish control-point corres-
pondences is one of the most important tasks in automated image registra-
tion, and some of the existing feature-matching algorithms are referenced in
that article as well.

A variety of algorithms are used for feature detection, but two of them,
based on SIFT and SURF features, which are both broadly explained in next
section, are the most commonly used for feature detection because of their
robustness. Firstly, SIFT was developed in 1999 for object recognition [23],
and in 2004 presented for image stitching [24]. SURF appeared two years
later as an improvement of SIFT applied to image matching [2].

The second part of image stitching is blending. The purpose of these
methods is to reduce the difference of intensities in the connection of the
images by making the edges invisible [28]. Ideally, this step would not be
necessary, but in practice the edges of the overlapping images can be distin-
guished. For this reason, the choice of a good blending strategy improves
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(a) Original images

(b) Panorama image

Figure 2.1: Example of panorama image with bad blending technique.
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the quality of the final panorama image. As it is shown in Figure 2.1, where
a image panorama is obtained from some images using Matlab, the edges
of the images in the panorama are clearly visible. This is the reason why
the selection of a good blending algorithm is essential to avoid the situation
represented in the figure.

There are many algorithms used for image blending, e.g.: watersheds
blending [18], multi-band blending [5, 4], multi-resoluion spline blending [26]
or gradient domain blending [28]. A discussion of some of these and other
techniques is given by R. Szeliski in [32].

To sum up, the principal steps and procedures of image stitching have
been collected in Table 2.1.

2.2 Feature detection methods

These kind of methods are used in order to solve the task of finding corres-
pondences between two images of the same scene or object. As it has been
said in the previous section, most of feature detection methods require two
main steps. Firstly, feature extraction, which refers to the detection of the
features of all the images. Feature are represented by a vector that collects
the relationship between each element and its neighbourhood. These ele-
ments usually represent the interest points of the image, which are selected
by its location, e.g., high-contrast regions of the image, such as object edges.
Feature vectors have to be distinctive and, at the same time, robust to noise,
detection errors, and geometric and photometric deformations, in order to
ease Feature correspondence, which is the next step. It consists of matching
features by finding the relation between feature vectors of all the involved
images. This matching is often based on the distance between vectors. More
information about feature detection methods can be found in [20] and [17].

There are many techniques used to carry out these steps, and there are
some complete methods that collect all of them. In the following sections, two
famous methods of feature detection, SIFT and SURF, are broadly explained.

2.2.1 SIFT

SIFT corresponds to the abreviation of “Scale-invariant feature transform”,
as it transforms image data into scale-invariant coordinates relative to local
features. SIFT is one of the most famous algorithms used in computer vision
to detect and describe local features in images. SIFT was developed for
object recognition applications by Lowe in [23], but some years later, the
same author included a new application for SIFT: image matching [24].
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The principal characteristic of SIFT features is that they are invariant
to uniform scaling and orientation, and also partially invariant to affine dis-
tortion and illumination changes. These points are relevant for the goal of
matching images, because these invariations are essential for searching the re-
lation between features of different images. It also has the appealing property
of being distinctive and relatively fast, which is crucial for on-line applica-
tions. However, its drawback appears when high dimensionality is required
along with short processing time. In these occasions, other methods have to
be introduced to solve the problem but sacrificing some of the requests.

SIFT mainly includes four major stages: scale-space extrema detection,
keypoint localization, orientation assignment and calculation of keypoint
descriptors [24]. Basically, the algorithm computes a histogram of local ori-
ented gradients around the interest point, the so-called keypoints, and store
them in a 128-dimensional vector [2]. One of the image feature generation
methods most used is Lowe’s one [24], because it transforms an image into
a large collection of feature vectors, and ensure that the keypoints are more
stable for matching and recognition. SIFT descriptors are obtained by con-
sidering pixels around a radius of the keypoints [24].

The principal drawback of this method is the velocity required to get the
result. This is the reason why SURF is implemented in some works, where
the time requirements are most relevant than accuracy [22, 20].

2.2.2 SURF

Speeded-Up Robust Features, SURF, is a feature detection method based
on SIFT presented by Herbert Bay and his coworkers in 2006 [2]. As it is
detailed in that article, the goal of their work was to develop a new method
focusing on scale and image rotation invariant detectors and descriptors,
which is a compromise between feature complexity and robustness to deform-
ations. A novel detector-descriptor method was developed and designated as
SURF. The detector is known as Fast-Hessian Detector and is based on the
Hesian matrix and integral images. The SURF descriptor represents the dis-
tribution of Haar-wavelet responses within the interest point neighbourhood,
taking only 64 dimensions, and hence involving a reduction of computation
time compared to SIFT. In mathematics, the Haar wavelet is a sequence of
rescaled ”square-shaped” functions which together form a wavelet family or
basis. Wavelet analysis is similar to Fourier analysis in that it allows a tar-
get function over an interval to be represented in terms of an orthonormal
basis [19].

Both, detector and descriptor, are based on integral images in order to
reduce computation time. An integral image, which can be placed at any

7



location, represents the sum of all pixels in the image of a rectangular region
formed by the origin and the point of its location. Having these results, the
time required for calculating the sum of the intensities is reduced [2].

The descriptor is based on SIFT, but it takes two steps. First, orientation
assignment, where a reproducible orientation of the interests points is detec-
ted in order to be invariant to rotation. Then, the components of the SURF
descriptor are extracted from a square region centered around the interest
point and aligned to the selected orientation.

To identify the elements of the descriptor, the selected region is split
up into smaller 4 x 4 square sub-regions. For each one, a four dimensional
descriptor vector is defined as: the first and second elements are the sum
of the Haar wavelet response in horizontal and vertical respectively, and the
other two elements are the sum of these absolute values, in order to have
information about the polarity of the intensity changes. After computing
all these vectors for the four sub-regions, the result is a SURF descriptor of
length 64, as mentioned before.

Many modifications of SURF have also been carried out, e.g., in [22],
where a modified SURF is combined with other methods such as K-NN and
RANSAC to achieve the final panorama image.

In the work considered in this thesis, SURF features are going to be
used, due to the fact that better results are obtained in agreement between
computing speed and accuracy. Note that all of these methods are included in
Matlab and hence the real implementation of this algorithm is not necessary
for this work, and not included in this document. See [2, 22, 20] for more
information about these methods.

Using these functions included in Matlab, it is possible to check the be-
haviour of the algorithm explained for SURF features. One of the results
obtained from Matlab is shown in the Figure 2.2, where the tested images
are slightly different. As it is seen is that figure, there is a good quantity of
matching points. The other example performed consists of the comparison of
an image its rotated version. The resulting image, represented in Figure 2.3,
allows us to check that the SURF features are invariant to rotation, getting
similar results than the previous example without rotation.

2.3 Algorithm for Image Stitching

In this section, we define the algorithm used to generate the panoramic im-
ages with the robots considered in this bachelor thesis. As it was said, the
functions used in the algorithm are included in Matlab’s library and no at-
tention is paid to them.
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(a) Original images

(b) Selected matched features in images

(c) Overlapped images with matched features

Figure 2.2: Example of matching SURF Features of similar images
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(a) Original images

(b) Selected matched features in images

(c) Overlapped images with matched features

Figure 2.3: Example of matching SURF Features of rotated images
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The algorithm created is divided in two parts: the first one dedicated
to search matched points between images, and the second one, to join them
using these matched points. The steps followed by the algorithm used are
now detailed:

1. Search matched points:

(a) Initialize all the transforms to the identity matrix using the Matlab
function projective2d.

(b) For each agent, find the neighbor with the highest number of
matching points.

i. Using the Matlab function matcheFeatures, calculate the num-
ber of matched points between the corresponding images, and
record it only in the case of being greater or equal than 20.
Otherwise, set the number of matching points to zero and
discard the neighbor as a candidate for matching.

ii. Calculate the average matched points, and discard the images
with a lower number of matched points. Order the remaining
agents in ascending order of matched points.

iii. Look for the agent with highest number of matched points
that has not been previously selected. In the case of all the
agents has been selected already, select that with the max-
imum number of matched points.

(c) Once a pair of agents is matched up, the transformation between
both images is estimated using the Matlab function estimateGeo-
metricTransform.

(d) Finally, when all the agents have been matched up, calculate the
transformation final matrix as the multiplication of the corres-
ponding image and the images of the previous agents.

2. Combine single images:

(a) Compute the output limits for each transformation in X and Y
axis using the Matlab fuction outputLimits and find the image
that is in the center of each axis.

(b) Apply the center image’s inverse transform to all the others for X
and Y axis.

(c) Initialize the panorama as an empty panorama image. Use the
outputLimits method to compute the minimum and maximum
output limits over all the transformations. These values are used
to automatically compute the size of the panorama.
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(d) Create the panorama, combining the images one by one:

i. Create a 2D spatial reference object by defining the size of
the panorama, using the Matlab function imref2d.

ii. Transform the image considered into the panorama and create
the mask for the overlay operation converting it to a binary
image. Use for both operations the Matlab function imwarp.

iii. Overlay the image onto the panorama. Use the Matlab
functions step and vision.AlphaBlender to overlay images to-
gether.

Finally, Algorithm 1 presents the program used for the simulations of
the next chapters:

Algorithm 1: Image Stitching

1: Initialize all the objects for each robot and its image, including its SURF
features and points;

2: Initialize all the tforms;
3: Initialize id robMP as 0.
4: for n = 1, ..., Nrobots do
5: for id prue = 1, ..., Nrobots do
6: if id prue 6= n then
7: indexPairs prue = matchFeatures(R(n).features,
R(id prue).features);

8: total MP = size(indexPairs prue);
9: if total MP < 20 then total MP = 0;

10: end if
11: end if
12: end for
13: Calculate average of total MP ;
14: possible = total MP > average;
15: total possible = sum(possible);
16: if total possible = 1 then
17: for id prue = 1, ..., Nrobots do
18: if possible(id prue) = 1 then id selecc = id prue;
19: end if
20: end for
21: else
22: total MP = possible. ∗ total MP ;
23: Keep in possible min max, total MP in ascending order;
24: Initialize id selecc = 0 and i = 0;
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25: while id selecc = 0 and i < total possible do
26: id prue = possible min max(Nrobots− i);
27: if selecc(id prue) = 0 then id selecc = id prue;
28: end if
29: Update i = i+ 1;
30: end while
31: if i = total possible then
32: id selecc = possible min max(Nrobots);
33: end if
34: end if
35: Update selecc(id selecc) = selecc(id selecc) + 1;
36: Update information of R(n)
37: tforms(n) = estimateGeometricTransform(R(n).SURFpoints,

R(id selecc).SURFpoints);
38: end for
39: Update tforms.T = tforms(R.id robMP ).T ∗ tforms.T for all the ro-

bots;
40: Calculate xlim, ylim for all tforms;
41: Calculate centerImageIdx and centerImageIdy;
42: Calculate Tinvx and Tinvy as the center image’s inverse transform
43: Apply Tinvx and Tinvy to all the tforms;
44: Calculate xMin, xMax, yMin, yMax as the limit over all tforms;
45: Initialize panorama
46: Initialize blender
47: for n = 1, ..., Nrobots do
48: warpedImage = imwarp(Image, tforms);
49: warpedMask = (imwarp(ones(size(Image), tforms)) >= 1;
50: panorama = step(blender, panorama,warpedImage, warpedMask);
51: end for
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Chapter 3

Centralized Algorithm Methods

In this chapter we deal with the problem of coordinating multiple agents.
The multi-agent coordination problem requires to integrate the movements
of several agents, with the goal of maximizing their overall performance [16].
The concept of agent makes reference to any mobile device whose movement
is monitored. Some examples can be found in [29]: mobile robots, unmanned
air vehicles (UAVs), autonomous underwater vehicles (AUVs), satellites, air-
craft, etc. The principal question that has to be solved is: How can groups
of agents be intelligently coordinated with this purpose?

Many researchers have worked on this topic. For example, T. Siméon
presented in 2002 a geometry-based approach for multiple mobile robot mo-
tion coordination [31]. In that article, the author tried to solve the problem of
coordinating the motion of several robots that move along fixed independent
paths to avoid mutual collisions. In contrast, various researchers investig-
ated on what autonomous mobile robots can do in distributed coordination
problems [13]. Another different example can be found in [27], where the
collaboration is studied between a group of UAVs (microdrones), principally
for cooperative aerial imaging based for disaster managements applications.

Robot coordination is necessary for water, earth and aerial robots and
can be carried out in indoor or outdoor environments. In many situations,
it is necessary to build maps of the environment, simultaneously with the
use of a position estimator such as Extended Kalman Filter (EKF) [8]. In
contrast, outdoor applications typically use the technique known as SLAM,
(Simultaneous Localization and Mapping). SLAM deals with the problem
of placing a mobile robot at an unknown location in an unknown environ-
ment and incrementally building a consistent map of this environment while
simultaneously determining its location within this map. More information
about SLAM method can be found in [1, 11].

In this paper, we work with UAVs. The principal benefit of using several
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drones is the possibility of achieving an image of a large area with high
resolution. There are many applications in which aerial views can be really
helpful, e.g., disaster situations, due to the overview of the environment
achieved with this coordinated system [27].

There are other advantages of using such multiple drone setting [27]: i)
Firstly, the possibility of covering a much larger area; ii) more information
can be gathered if necessary; and iii) the possibility of failing is lower because
the system is formed by various elements, i.e., the system is more redundant
and robust against failures.

For this project, we assume that the UAVs control techniques are known
and available to use. Hence no attention is paid to this topic. It is also
considered that the drones are equipped with enough sensors and actuators
to achieve the desired goals [27]. Therefore, the rest of the thesis is mainly
dedicated exclusively to the way of coordinating the agents of the system
considered in our work. There are two different approaches for multi-agent
coordination: the centralized and distributed. This chapter deals with cent-
ralized coordination and the next one with distributed coordination.

As its name indicates, Centralized Coordination consist of a central oper-
ator that has complete information about all the system, and it is the same
operator that makes the decisions about each drone movements. This central
operator can be one of the elements of the system, and it is also called the
leader. It is the responsible for sending to each element the corresponding
information about the motion [6].

Therefore one of the principal drawbacks of centralized coordination is
the lack of robustness when there are failures in the communication and/or
incorrect operations of the leader [12]. It is possible to solve this problem
by using a different kind of centralization, but remaining it. One option is
explained by A. Farinelli in [12], who weakly expounds centralized systems,
characterized by the fact that the leader is not chosen a priori, but it is
selected dynamically during the mission depending on the current situation
of the team and the environment.

3.1 Problem setting

We assume that there is a set N = {1, . . . , N} of mobile agents, each one
equipped with a camera. For simplicity, in this work, we assume that the
agents can move only in the XY plane. In addition, it will be assumed that
all the cameras have the same orientation perpendicular to the XY plane,
and takes images of the same fixed size.

The objective of the agents is to create a panoramic image from the images
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that each one provides. To this end, they can move freely in the XY plane
and exchange information. Notice that there are different ways in which this
objective can be achieved. For example, one possibility is to promote the
minimization of the distance between the agent position and the selected
area as more relevant, or the distance between the agent position and the
previous agent position. Likewise, the minimization of the overlap between
the images can be another goal, but in that case, the number of matched
points between images has to be considered too. Moreover, robustness is
another relevant characteristic in the generation of the panoramic image: a
certain level of redundancy eases the redistribution of the agents in case of
agent failures. Therefore, to cover these and other possibilities we propose
the optimization of the following cost:

J(x, y) = α
∑
i∈N

∑
j∈N

MP(i, j) + βNP(x, y) + γDP(x, y) + θDR(x, y).

where x and y are vectors that aggregate the corresponding local coordinates,
i.e., x = [xi]i∈N and y = [yi]i∈N ; MP(i, j) stands for the matching points
between agents i and j; NP(x, y) represents the number of pixels of the
panoramic image; DP(x, y) represents the distance in relation to the vision
central point and DR(x, y) the distance to the previous agent. Finally, α, β,
γ and θ are weights that can be tuned according to the designer goals.

The main idea is the following: define a hot region in the image, so that
those pixels have priority to be targeted. Likewise, it is possible to define
a time stamp for the distinctive points found in each image. Time stamps
can be used to determine which agent has the preference to remain in its
current position (older time stamps). But in this project, time stamp is not
considered.

3.2 Algorithms

The principle of this approach has been explained: there is a single operator
that has global information about the system state and who is the responsible
for the movements of each agent.

In this section, we offer two different approaches to solving the proposed
problem, both considering centralized coordination between agents. In the
first place, we show an algorithm whose result leads to the optimum robots
positions. Next, we present another possible algorithm based on heuristic
methods, i.e., the solution found may not be the optimum one.
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3.2.1 Optimal algorithm

The main idea of this algorithm resides on the fact that all the agents are
located at the same time, finding the combination of the coordinates of all
the agents that minimizes the cost function. The number of variables of
the optimization problem increases by two each time a new agent is con-
sidered. Each position is formed by two coordinates, x and y, for the height
(coordinate z) is maintained constant. For simplicity, the number of agents
considered in here is two. Therefore, the number of variables involved in the
optimization problem is 4, which is the minimum for this purpose.

The incentive that generates the motions of the agents looking for a better
result is that there is a visual central point defined where more attention has
to be given. This point is selected by the user, so it is always considered as
an initial parameter in our work. Regarding this point, a matrix represents
the available area and each element holds a value referred to the distance
between this point and the visual central one.

The cost function is calculated as the addition of some elements, which
are obtained each time a new option is evaluated. These elements are:

- The addition of the values of both images depending on the distance
to the visual central point.

- The absolute value of the distance between both agents.

- The inverse of the total number of matched points between images
captured by both agents.

The algorithm created for searching the optimum of our problem can seem
very simple, but as it will be seen in the section of results, the computational
time required is excessive, making this solution not very suitable for our
purpose. The steps followed in the algorithm are provided below:

1. Initial definition of required parameters:

a) Size of the total available area of movements.

b) Size of captured image by agents.

c) Number of agents involved in the situation and an object in Matlab
for each one to save all its information.

d) Definition of the central vision point.

2. Creation of the matrix containing the absolute value of the distance of
each pixel to the central vision point.
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3. Position of the agents in the available area:

a) Define the variables of coordinates for the agents.

b) Using four structures ‘for’ in Matlab, examines all the possible combin-
ations for all the agents positions. Make sure that the captured images
get inside the available area by considering the required margin for
both coordinates (i and j).

c) Calculate the cost function for each combination. If it is less than
the minimum cost value previously recorded, update the solution in-
formation, considering this combination as the new potential optimum
result.

4. Generate the panoramic image using the algorithm detailed in the section
of Image Stitching.

Finally, Algorithm 2 details the program.

Algorithm 2: Centralized method with optimum solution

1: Initialize the size of the area of movements: Mmax and Nmax;
2: Initialize the size of captured images: Mr and Nr;
3: Initialize Nrobots as 2 and the vector R with their respective objects;
4: Define the vision central point (i0, j0);
5: Create the matrix map with values depending on the distance to (i0, j0);
6: for i1 = Mr/2, . . . ,Mmax−Mr/2 do
7: for j1 = Nr/2, . . . , Nmax−Nr/2 do
8: for i2 = Mr/2, . . . ,Mmax−Mr/2 do
9: for j2 = Nr/2, . . . , Nmax−Nr/2 do
10: if |i1− i2| >= Mr/4 and |j1− j2| >= Nr/4 then
11: Calculate V al pixel1 and V al pixel2 from map;
12: V al pixel = V al pixel1 + V al pixel2;
13: Dist rob equal to distance between robots;
14: Capture image1 and image2;
15: Obtain features1 and features2 of image1 and

image2;
16: Calculate numMP between features1 and features2;
17: if numMP >= 20 then, calculate COST ;
18: end if
19: if COST < cost opt then
20: Update cost opt;
21: Update i1 opt, j1 opt, i2 opt and j2 opt;
22: Update information in R(1) and R(2);
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23: end if
24: end if
25: end for
26: end for
27: end for
28: end for
29: Create panorama using Algorithm 1;

3.2.2 Heuristic method

In order to overcome the drawbacks of the previous algorithm, and despite
the solution is the optimum, other algorithm has been developed in order to
improve some of those issues. This algorithm is based on heuristic methods,
meaning that the certainty of obtaining the optimum result is lost, being this
the strongest disadvantage of this new solution.

There are many changes introduced between the previous algorithm and
the new one. Some of the principal differences are following detailed:

• The principal benefit is the possibility of increasing the number of
agents, as well as the size of the total area in which the movement
of agents takes place, maintaining the computational time in a reason-
able range. Hence, the size of the images taken by the agents can also
be enlarged, getting the situation closer to the real world.

• The agents are now positioned one by one, meaning that once an agent
is located, it can not be moved later. Next agents have to find their
best position having all the previous ones positioned.

• The cost function contains now the distance from the position of the
actual agent to the visual central point, instead of the distance between
agents, as it was in the other algorithm.

• The first agent is located in the visual central point and no cost function
is calculated for this agent. The rest of the agents are positioned around
it.

• A new map is created in order to account for the positions that have
already been captured. At the beginning of the program, the map is
completely defined as not captured positions; and every time a new
agent is positioned, the points captured by this agent are selected as
occupied.
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• Another novelty incorporated is related with the overlapping degree.
Given that the agents are located one by one, the overlapping between
images has to be considered.

• Excluding the first agent, the rest of the agents are positioned following
the same idea. Each agent examines the neighboring positions of the
area in the map selected as occupied, i.e., the area already captured
by previous agents. Moreover, for each one of these positions, all the
possibilities of overlapping are studied, selecting the degree of overlap-
ping that gives the best results regarding cost function. At the end,
the final position is selected between all the possibilities in accordance
with the one that optimizes the cost function.

• The neighboring positions are selected from the sharp curve around the
occupied area in the map, separated by a distance equal to half of the
size of the image captured by an agent, from the line that differentiates
both zones. The positions are recorded going across this line with an
increase equal or less of the size of the image captured by an agent.
After all the neighbored positions are selected, the agent moves around
each one modifying the overlapping degree, in order to find the one
that optimizes the cost function.

• Once all the agents are positioned, the panorama image is created by
merging all the captured images using the same technique of image
stitching of the previous algorithm.

Having into account all of these considerations we proceed to outline the
steps followed by this algorithm:

1. Initial definition of the required parameters:

a) Size of the total area of movements.

b) Size of the captured image by agents.

c) Number of agents involved in the situation and an object in Matlab
for each one to save all its information.

d) Initialize the matrix where localize the already captured pixels.

e) Initialize the vectors including the overlapping degrees that are going
to be studied.

f) Definition of the central vision point.

2. Creation of the matrix containing the absolute value of the distance of
each pixel to the central vision point.
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3. Positioning of all the agents in the available area:

a) Initial positioning of all the agents in the edges of the area.

b) Position the first agent in the vision central point, capture its grayscale
image, update the matrix of captured pixels and extract its SURF
features.

c) Position the rest of agents following the same steps:

i. Find the position of the previous agent.

ii. Using the matrix of captured pixels, find the sharp curve around
the occupied area in the map, separating it from the line that
differentiates both zones, a distance equal to half of the size of the
image captured by an agent.

iii. Go through the curve selecting the neighbor positions with an in-
crease between them equal or less of the size of the image captured
by an agent.

iv. Initialize all the required structures to examine all the neighbor
positions: vector with position coordinates for each one, vector to
save the overlapping degree that generates the best result for each
one, the value of cost function as infinite, and some elements of
the object defined for each robot.

v. For each neighbor position, examine all the possibilities of over-
lapping degree, calculating the value of the cost function and at
the end, save the one that minimizes its value.

vi. Select between all the neighbor positions with the best overlapping
degree, the one that optimizes the value of the cost function.

vii. Each time a new agent is located: capture the image, extract
its SURF features, update the new information in the matrix of
captured pixels and also the one of distance dividing the value of
pixels captured by the overlapping degree.

4. Generate the panoramic image using the algorithm detailed in the section
of Image Stitching.

Finally, Algorithm 3 presents the program used for the purpose explained.

Algorithm 3: Centralized method using heuristic method

1: Initialize the size of the area of movements: Mmax and Nmax;
2: Initialize the size of captured images: Mr and Nr;
3: Initialize Nrobots and the vector R with their respective objects;
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4: Initialize the matrix map pos as 0;
5: Define the vision central point (i0, j0);
6: Define the vectors ki and kj with overlapping degrees;
7: Create the matrix map with values depending on the distance to (i0, j0);
8: Position the Nrobots in the edges randomly;
9: Position robot 1 in (i0, j0) and update information in R(1);

10: Update matrix map pos;
11: for robot = 2, . . . , Nrobots do
12: Update i ant and j ant from R(robot− 1);
13: Calculate the matrix im edg containing the dilated edges of map pos;
14: Make sure that im edg contains a single pixel wight sharp curve;
15: Find i1 and j1 from the curve of im edg;
16: while i 6= i1 and j 6= j1 do
17: Find i next or j next by increasing until Mr and Nr pixels fol-

lowing the curve of im edg;
18: Update matrix P including the new positions (i next, j nex);
19: end while
20: Calculate Nvec from vector P ;
21: for case = 1, . . . , Nvec do
22: for all possibilities of overllaping do
23: Calculate V alpixel from map;
24: Dist rob equal to (i0, j0);
25: Capture image;
26: Obtain features of image;
27: Calculate numMP between features and R(robot −

1).features;
28: if numMP >= 20 then, calculate COST ;
29: end if
30: Update matrix mat cost with COST ;
31: end for
32: Keep in vector ij(:, case) the position with minimum value in

mat cost;
33: Keep in COST case(case) the minimum one obtained;
34: end for
35: Select case min of vector ij with minimum COST case;
36: Update information in R(robot);
37: Update matrix map pos;
38: end for
39: Create panorama using Algorithm 1;
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KEY PERFORMANCE INDICATORS
Computational Time Number of pixels Distance to central point

2384.645 s 111600 1.5623x107

Table 3.1: Key Performance Indicators of the simulation of the optimal cent-
ralized algorithm described in Algorithm 2 (results in Figure 3.2).

After testing this algorithm in simulations, its advantages are clearly veri-
fied, but some disadvantages are also discovered, e.g., the increase of compu-
tational time when the number of agents raises. However, some modifications
have been introduced to improve these drawbacks, and they will be discussed
and assessed in next section.

3.3 Simulation results

3.3.1 Results of the algorithm with optimum solution

The algorithm has been applied to just two agents, as it has been mentioned
in the Section 3.2.1. Firstly, all the possible combination of the positions of
the two agents were checked. However, due to the long computational time
required, it was decided to decrease the number of possibilities by increasing
the coordinates in 10 units each time a new combination needed to be tested.
Therefore, the result obtained is closer to the optimum with the accuracy big
enough for our purposes.

The value of the initial parameters defined for the simulation were the
followings: 2 agents, the size of the area was 397x483, the size of captured
images was 200x200 and the visual central point is located in i = 250 and
j = 250, as shown in Figure 3.1.

Some Key Performance Indicators (KPIs) have been calculated in each
simulation. Three KPIs have been defined in this project: i) computational
time, ii) the total number of pixels of the generated panoramic image, and
iii) the addition of the distances from all the captured pixels to the visual
central point.

The results obtained from the simulation are shown in Figure 3.2. The
corresponding values of KPIs are presented in Table 3.1. These results will
be used for comparison with the algorithm that will be shown in the next
section.
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Figure 3.1: Central vision point for simulation of the optimal algorithm.

3.3.2 Results of the heuristic algorithm

The results of this algorithm are shown and compared to others. In order to
clarify its benefits and drawbacks, some of them are already outlined.

First, the comparison is made with the optimal results, pointing out the
differences between both algorithms with the same initial value of the para-
meters. Next, the initial values of the algorithm are changed to make the
results closer to a real world implementation and compared with those ob-
tained by modifying some parts of this algorithm.

Comparison between the algorithm and the optimal solution

The first simulation has been done with the same initial parameters: 2 agents,
the size of the area 397x483, the size of captured images 200x200, and the
same visual central point shown in Figure 3.1. With this algorithm, it is
necessary to define the overlapping degree range for the simulation. In this
case, set it in the percent range [10,70], but the increase have been chosen of
1% and 10% in two different simulations.

The results obtained for both simulation considering the two increase of
overlap range are exactly the same, and only one is presented in Figure 3.3.
Its values of KPIs are different, so both are presented in Table 3.2, together
with the ones of the optimal solution.
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 3.2: Result of the optimal centralized algorithm described in Al-
gorithm 2.
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained stitching images captured.

Figure 3.3: Result of the centralized heuristic algorithm described in Al-
gorithm 3.
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KEY PERFORMANCE INDICATORS
Comp. Time No. of pixels Distance

Optimal solution 2384.645 s 111, 600 1.5623x107

Heuristic solution 1 81.806 s 60, 893 6.4129x106

Heuristic solution 2 4.655 s 60, 893 6.4129x106

Table 3.2: Key Performance Indicators of the simulation of the optimal cent-
ralized algorithm described in Algorithm 2, compared with the simulations of
heuristic centralized algorithm described in Algorithm 3 (results in Figure 3.2
and 3.3).

The difference between optimum and heuristic solutions is clearly seen
at a glance if we compare both panoramic images, represented together in
Figure 3.4. The first one, corresponding to the optimum result, is centered
around the visual central point. However, the second one obtained by heur-
istic methods is only centered on that point the image captured by the first
agent, instead of the whole panoramic image. But if we look at the values of
the KPI referred to the distance of pixels to the center, it seems the opposite.
However, this difference is due to the lower number of pixels of the panoramic
images obtained by the heuristic method. This decrease of pixels necessarily
causes a decrease in the sum of distances. Therefore, the comparison between
both panoramic images is the best evidence that the heuristic methods do
not converge to the optimum.

Another meaningful difference between both algorithms is the KPI re-
lated to the computational time required. The algorithm based on heuristic
methods is between 29.15 and 512.27 times faster than the optimum one
depending on the overlap range set.

Comparing the KPIs of both results of the heuristic method, the only
difference is the computational time required. In this case, the decrease
in the overlap range causes a huge increase in computational time, giving
exactly the same result. Therefore, for next simulation in this section, the
overlap range will be the second, i.e., using the increase of 10%.

Finally, it is necessary to make some comments about the results that we
would obtain in the case of considering more than 2 robots in both cases.
Based on the results obtained, we can expect that the difference in compu-
tation time would become more relevant each time a new agent is included
mainly because the first algorithm adds two new variables each time a new
agent is included, and consequently there is a combinational explotion in the
search space of the solution. However, the centralization around the visual
central point is worse in Algorithm 3, while in Algorithm 3 remains constant.
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(a) Central vision point for simulations.

(b) Panoramic image obtained with optimal algorithm described in Algorithm 2.

(c) Panoramic image obtained with heuristic algorithm described in Algorithm 3.

Figure 3.4: Comparison between panoramic images obtained with optimal
and heuristic algorithms.
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The designer has to evaluate which characteristics are more relevant for the
application being considered and choose the most suitable algorithm.

Simulation with various agents

The relevant drawback of the optimal algorithm, as it has been discussed in
the previous point, is the long computational time when the agents are more
than two.

Due to the characteristics involved in our project, the precision of the
solution is not as important as the speed in which the solution is obtained.
Our real scheme is composed of various agents, more than two, flying through
an area with huge dimensions, and capturing images with size larger than
the one considered before. Therefore, the optimal algorithm is not valid for
our purpose, and the algorithm selected is the one based on the heuristic
approach.

Next, we test this algorithm with more agents and increasing the size of
the image. Some of the solutions obtained are collected and presented here.

The new values of the parameters are the following: the size of the area
was 4000x6016, the size of captured images 1400x1400, and the central point
was i = 2100 and j = 2100, as shown in Figure 3.5. The overlapping range
available for the simulations is defined as in the first case: it goes from 10%
to 70%. The increase is selected of 10% due to the reasons explained in the
previous part.

The algorithm has been simulated with 2, 3, 4, 5, 6, 7, and 8 agents, and
their results are presented in Figures ??, and 3.12 respectively. The available
area is the same for all the cases, and it is only presented in Figure 3.6 in the
image (a). There is a small difference between the simulations with 2 agents
to 4 and those with 5 agents to 8, because in order to get a continuous pan-
oramic image, the weight of the cost function elements was changed, giving
more relevance to the distance to the visual central point when the number
of elements is higher. This can be clearly appreciated when comparing the
captured images of 4 agents with those of 5 agents. Moreover, for simplicity,
for the simulation of 6 agents to 8 we only present the images captured by all
the agents and the panoramic image i.e., the images containing the matched
features are omitted for those cases.

The KPIs of all of these results are shown in Table 3.3. The values of
the three KPIs considered increase at the same time that the number of
agents is also increased. It was evident that the total sum of distance to the
center would become higher for two reasons: i) the total number of pixels
has to be increased when using more agents, and ii) when more agents are
considered some of them have to be necessarily positioned farther to the
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Figure 3.5: Central vision point for simulation of the heuristic algorithm with
higher dimensions situation.

center. Therefore, the results obtained are as it was expected.
From this information, it is possible to make a comparison between the

simulations of the previous section with this algorithm with 2 agents but with
smaller dimensions than here. In Table 3.4 the values of the KPIs of both
simulations are presented. Considering the difference between both values
of computational time, we conclude that, although the algorithm based on
heuristic methods is better for our purpose than the optimal one, it is still
needed to introduce some improvements in order make it suitable for our
necessities, i.e., short computational time for real-time applications.

Therefore, the main drawback of this algorithm is the increase of the
computational time required when the dimensions involved in the application
are considerably high. In order to solve this problem, some modifications
have been introduced. We have performed some simulations for the sake of
comparison.

Comparison with some modification of this algorithm

The first modification of the algorithm is focused on the idea of minimizing
the number of searching positions to be examined. In this case, the problem
is solved ignoring the area of the map selected as captured pixels. Before, this
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(a) Available area represented by the whole image in grayscale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 3.6: Result of centralized heuristic algorithm described in Algorithm
3 using 2 agents.
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 3.7: Result of centralized heuristic algorithm described in Algorithm
3 using 3 agents.
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 3.8: Result of centralized heuristic algorithm described in Algorithm
3 using 4 agents.
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 3.9: Result of centralized heuristic algorithm described in Algorithm
3 using 5 agents.

34



(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.10: Result of centralized heuristic algorithm described in Algorithm
3 using 6 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.11: Result of centralized heuristic algorithm described in Algorithm
3 using 7 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.12: Result of centralized heuristic algorithm described in Algorithm
3 using 8 agents.
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KEY PERFORMANCE INDICATORS
Comp. Time No. of pixels Distance

2 agents 204.739 s 3, 037, 862 2.2461x109

3 agents 456.272 s 4, 038, 720 3.3788x109

4 agents 713.848 s 5, 231, 801 4.8042x109

5 agents 913.295 s 6, 343, 962 6.1594x109

6 agents 1105.306 s 7, 123, 200 7.4157x109

7 agents 1281.992 s 7, 713, 160 8.3081x109

8 agents 1477.277 s 8, 379, 840 9.3428x109

Table 3.3: Key Performance Indicators of the simulation of the simulations
of the heuristic centralized algorithm described in Algorithm 3 (results in
Figures from 3.6 to 3.12).

KEY PERFORMANCE INDICATORS
Comp. Time No. of pixels Distance

Small dimensions 4.655 s 60, 893 6.4129x106

High dimensions 204.739 s 3, 037, 862 2.2461x109

Table 3.4: Key Performance Indicators of Algorithm 3 results with 2 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.13: Result of simulation of the first modification of Algorithm 3
using 4 agents.

area was considered to create the sharp curve in which the neighbor positions
were selected. Now, the map of captured pixel is not created. Therefore, the
neighbor positions are selected in another way.

The simplification consists of each time a new agent has to be positioned,
the neighboring positions to examine are only the eight that are around
the area captured by the previous agent. This way, the previous agent area
captured is the only one that has to be considered, decreasing the information
to be recollected each time a new agent needs to be positioned.

This new algorithm was tested and simulated with 4, 6 and 8 agents,
maintaining all the initial parameters with the same value as in the previous
one. The results are shown in Figures 3.13, 3.14 and 3.15 respectively.

The values of the KPIs of the results are presented in Table 3.5 together
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.14: Result of simulation of the first modification of Algorithm 3
using 6 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.15: Result of simulation of the first modification of Algorithm 3
using 8 agents.
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KEY PERFORMANCE INDICATORS
Comp. Time No. of pixels Distance

Results of Algorithm 3
4 agents 713.848 s 5, 231, 801 4.8042x109

6 agents 1105.306 s 7, 123, 200 7.4157x109

8 agents 1477.277 s 8, 379, 840 9.3428x109

Results of the first version of Algorithm 3
4 agents 164.135 s 5, 840, 800 5.8548x109

6 agents 233.243 s 9, 643, 200 16.4220x109

8 agents 291.686 s 11, 309, 200 20.0690x109

Table 3.5: Key Performance Indicators of the results obtained with the ori-
ginal version of Algorithm 3 and its first modification simulated with 2, 6
and 8 agents.

with the ones of the previous part. The principal benefit of this version is the
great decrease of computational time, comparing with the previous algorithm
results for 4, 6 and 8 agents. But in consequence, the sum of the distances to
the center increases in a higher proportion than the number of pixels does.
This fact can be translated in a loss of accuracy, i.e., the agents are more
aleatory distributed in all the available area, not around the vision central
area. Therefore, as it can be also verified in Figure 3.16, the final panorama
image is not continuous using the modified algorithm. This problem takes
more relevance when the number of agents increases, as it is possible to see
in the same Figure 3.16.

The other simplification made is related to the overlapping degree and
consists of setting it as an initial parameter defined by the user. The neigh-
boured positions are only the eight considered in the previous simplification.
By this way, the total number of studied positions is decreased even more
than before, because of each position has only one possibility of overlap in
contrast to the initial algorithm, where several overlaps are considered for
each position and selected the one that optimizes the cost function. This
algorithm just studies the eight neighboured positions considering only the
overlapping degree indicated at the beginning.

The algorithm has been tested using 4, 6 and 8 agents, and the results
obtained from simulations are shown in Figures 3.17, 3.18 and 3.19 respect-
ively. The overlapping degree is set in 40% for all the simulations. Regarding
the cases of 4 and 6 agents, it would be possible to choose a lower percent-
age, but it is not the case for 8 agents because a higher number of matched
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Original algorithm First simplification algorithm

(a) Panoramic images with 4 agents.

(b) Panoramic images with 6 agents.

(b) Panoramic images with 8 agents.

Figure 3.16: Comparison of panoramic images obtained with original version
of Algorithm 3 and its first modification.
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points between images is necessary to join with the rest the captured images
by agent 7 and 8. Therefore, it has been selected 40% in order to set the
same overlap for all the simulations. This is one of the main drawbacks of
this simplification, that all the captured images have to consider the same
overlapping degree.

If we compare the panoramic images obtained with 8 agents using the
three algorithms, presented in Figure 3.20, it is obvious to state that the
improvement in computational time implies a worsening in the characteristic
of the panoramic image obtained. It can seem that the second modification
gives a panoramic image with better characteristics, but in fact, it is worse
because the overlapping degree is fixed, so the captured images taken are
always the same, independently of the scene in which the agents are moving.
Therefore there are probably some better solutions that are disregarded in
this algorithm.

In Table 3.6 the values of KPIs of all the results of the 3 algorithms have
been gathered to make possible the comparison. Looking at these values, the
affirmation done in the previous paragraph can be based on them. Regarding
the computational times, this solution is by far the one which most reduces
the computational time required. But if we consider the total distance to the
center related to the total number of pixels, the last results are better than
the previous ones but not than the ones of Algorithm 3. In this point the
main drawback of the last version done has to be considered, that makes it
not as good as it can seem as it has been explained previously.

Having reached this point, the decision of which one choosing belongs
to the designer once more time, depending on its necessities for the specific
application and evaluating which one is the most important.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.17: Result of simulation of the second modification of Algorithm 3
using 4 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.18: Result of simulation of the second modification of Algorithm 3
using 6 agents.
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(a) Images captured by the agents.

(b) Panoramic image obtained.

Figure 3.19: Result of simulation of the second modification of Algorithm 3
using 8 agents.
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(a) Panoramic image of original version of Algorithm 3.

(b) Panoramic image of first modified algorithm.

(c) Panoramic image of second modified algorithm.

Figure 3.20: Comparison between panoramic images obtained with original
version of Algorithm 3 and its first and second modifications using 8 agents.
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KEY PERFORMANCE INDICATORS
Comp. Time No. of pixels Distance

Results of Algorithm 3
4 agents 713.848 s 5, 231, 801 4.8042x109

6 agents 1105.306 s 7, 123, 200 7.4157x109

8 agents 1477.277 s 8, 379, 840 9.3428x109

Results of the first version of Algorithm 3
4 agents 164.135 s 5, 840, 800 5.8548x109

6 agents 233.243 s 9, 643, 200 16.422x109

8 agents 291.686 s 11, 309, 200 20.069x109

Results of the second version of Algorithm 3
4 agents 32.285 s 5, 488, 000 5.2551x109

6 agents 41.971 s 7, 369, 600 7.7868x109

8 agents 57.289 s 10, 192, 000 14.736x109

Table 3.6: Key Performance Indicators of the results obtained with the ori-
ginal version of Algorithm 3 and its first and second modifications simulated
with 2, 6 and 8 agents.
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Chapter 4

Distributed Algorithm
Methods

In the virtual world, it can seem that centralized coordination is the easi-
est way to achieve our goal, but it is really unlikely having a system with
those characteristics in the real world. Therefore, distributed coordination
is the technique commonly use for real applications, and its principal dif-
ference between centralized coordination is that instead of having a leader
who receives all the information from the agents and makes all the decision,
each agent receives some information from its closer area and only makes the
decision referred to itself.

Most articles found in the literature are related to this type of coordin-
ation and specifically focused on the way of how to solve the problems that
it involves, which are no a few ones. For example, in the article [29], Ren,
Beard and Atkins discuss problems appeared when the algorithm designed
is applied to the real systems of UAVs, e.g. communication delays, relative
information uncertainty or equilibrium state of the solution. In [13], the sys-
tem studied is formed by a set of autonomous mobile robots which have only
programmed their behaviors as a set of laws that guides the robot to react
to environmental stimulus so that there is no explicit goal programmed in.
The cooperation and the goals simply emerge as the computation goes on,
and also the robots have no memory from the past. Therefore the instant
visibility of each agent takes relevance, and the authors of this article studied
the problem of having unlimited or limited visibility, comparing both results.

Distributed coordination has many fields of application, not only the one
explained here for aerial robots. One example of mobile robot coordination
can be found in [31], where the coordination is required in order to make
possible the movement of many robots in the same space. Each robot has
defined fixed independent paths, and the problem is to coordinate these mo-
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tions to avoid collisions, i.e. path coordination. However, the article [27]
is dedicated to the applications of aerial robots: environmental monitoring,
surveillance, disaster management or mission planning among others. One
of the fields cited in that paper is the cooperative aerial imaging, that is the
same as we focus in this project.

In addition, some authors have solved this problem of coordination by
applying some mathematical functions in order to get a determined geometric
figure formed by the positions of the robots, as a simple line [15] or a circular
shape [3]. More details of the processes can be found in the indicated articles.

4.1 Problem Setting

We assume that there is a set N = {1, . . . , N} of mobile agents with the
same characteristic than the ones explained in Section 3.1. The unique dif-
ference between the problem set in that Section and the one here is that some
information about the system state is unknown at the moment of making a
decision by each agent. There is no a unique operator, each agent is respons-
ible for itself. Therefore, the agents have to reappraise the cost function each
time a new information is exchanged with another robot.

The cost function considered for distributed approach has to be related
to each agent, i.e., no global cost function can be calculated as a complete
function, but each agent calculates its own cost function. Therefore, the
elements involved in that function can only be referred to the information
that each agent can obtain from its proximities.

Therefore, regarding these considerations we propose the optimization of
the following cost:

J(x, y) = α
∑
i∈N

∑
j∈N

MP(i, j) + βNR(x, y) + γDP(x, y) + θDR(x, y).

where x and y are vectors that aggregate the corresponding local coordinates,
i.e., x = [xi]i∈N and y = [yi]i∈N ; MP(i, j) stands for the matching points
between agents i and j; NR represents the number of agents found in its
proximities; DP(x, y) represents the distance between the actual agents and
all the other agents found by it; and DR(x, y) the sum of the captured pixels
values calculated as the distance from the central visual point. Finally, α, β,
γ and θ are weights that can be tuned according to the designer goals.
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4.2 Algorithm

The principle of this approach is different to the centralized one. In the cent-
ralized coordination, there was a single operator that had global information
about the system state and who was the responsible for the movements of
each agent. Whereas, in the distributed approach, there is not only a single
operator, i.e., each agent is the unique responsible for its motion, and there-
fore, the one who makes the required decisions. This way, the agents involved
in the distributed algorithms exchange its own information with the others,
in order to get the most complex information of the situations as possible.

In this section, we offer two different distributed approaches to solving
the proposed problem. The algorithms done are similar to the ones presented
in Section 3.2 but referred to distributed coordination. In Subsection 4.2.1
an algorithm close to the optimal one is presented, and in Subsection 4.2.2
the algorithm developed is based on heuristic methods.

4.2.1 Optimal Algorithm

The original idea of creating this algorithm was to develop a general pro-
gram whose result were the optimum. But considering distributed approach,
this algorithm involves more complexity, and even some impossibilities some-
times. Regarding these considerations, this algorithm has been developed as
similar as possible to the optimal one, although it is called the optimum in
order to differentiate it with the one of the next subsection.

Two agents are only involved in the algorithm. Once both has been
found by the other, their goal is to find the position that minimizes the cost
function by starting to exchange information and calculating in both the
value of the cost function each time a robot is moved. For this purposes,
the agents are fitted with the required sensors to detect the presence of
other agents in a determined space range and with the necessary system to
exchanging information with the previously detected agents. Once the agents
can communicate to each other, a coordination of motions is started in order
to examine the cost each time an agent moves.

The algorithm is divided into two general parts. The first one is focused
on the goal of looking for other agents in its proximities. The progress of the
agent motion is forward the visual central point and this motion is stopped
when the image captured by the agents can be merged. Then the second part
starts, which tries to remove the agents looking for the combination with the
lowest value of the cost function. The algorithm ends when none of the
neighborhood combination of the studied positions of agents can minimize
more the cost function. Therefore the actual combination is considered as
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the optimum.
The cost function is calculated as the addition of some elements, in the

same way of in the distributed algorithms. These elements are:

- The addition of the values of both captured images depending on the
distance to the visual central point and considering increase of the
values of the pixels recorded by the other agents.

- The absolute value of the distance between both agents.

- The inverse of the total number of matched points between images
captured by both agents.

Each element is multiplied by a weight. Varying these value of possible
to transform all the elements to the same number of integer digit in order to
give the same important to all of them, or to give more relevance to just one
element.

The algorithm just explained follows the steps outlined below:

1. Initial definition of the required parameters:

a) Size of the total area of movements.

b) Size of the captured image by agents.

c) Number of agents involved in the situation and an object in Matlab
for each one to save all its information.

d) Initialize the matrix that represents the available space for simulation.

e) Definition of the central vision point.

f) Definition of the initial positions of agents (in opposites corners).

2. Simultaneously positioning of the agents in the available area:

a) Initialization point:

i. Define initial values of the coordinates variables of the agents.

ii. Mark in the matrix of the space the initial positions of agents using
their identifiers.

iii. Creation of the matrix containing the absolute value of the distance
of each pixel to the central vision point for each robot.

b) Part 1: Motion of agents until their captured images can be merged:

i. Each agent inspects its close area and records it.

ii. Mark if any agent has been found in its close area:
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A. If the agent is found:

- Capture images by each agent, and continue only if their
sizes are equal (in the other case they can not be merged
with Algorithm 1). Extract the features of both images.

- Update the values of the matrix that contains the value de-
pending on the distance to the central point. Consider the
position of the new agent found, varying gradually the value
of the captured pixel by this agent: highest value for the ones
of the center of the images, and the lowest for the edges.

- Try to merge images. Only in the case of possible, calculate
the value of cost function.

- If the images can not be merged, update the position of both
agents continue going through the central point. Keep the
actual values as the previous one before changing. Update
also the information in the matrix of the space, changing
the old positions by the new ones.

B. If no agents are found: update the coordinate values in the
same way as in the previous point when the merge of images
has not been possible.

iii. Repeat these points the necessary times until the images can be
merged. In this case, continue with next part.

c) Part 2: Look for the optimal solution:

i. Keep the actual position that is going to be tested as the previous
values.

ii. Define the vector with possible position around the actual one for
each agent. Consider only the actual position and the four ones of
its neighborhood that only change one of the two coordinates an
already defined increase. Therefore each vector contains 5 pairs of
coordinates.

iii. Considering the vectors of neighborhood positions, calculate the
value of the cost function for each one of the 25 possibilities, fol-
lowing the same steps as in the previous part for trying to merge
images.

iv. If one of the possibilities studied obtains a lower value of the
cost function than the original one, the values of coordinates are
changed to these ones, and the steps repeated but for this new
solution. In the case of the value of the cost function of the ori-
ginal position is the lowest, the optimum solution is this one and
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no more calculations are done, updating the information contained
by each robot.

3. Generate the panoramic image using Algorithm 1 detailed in Section 2.3.

Finally, Algorithm 4 details the program.

Algorithm 4: Distributed method with optimum solution

1: Initialize the size of the area of movements: Mmax and Nmax;
2: Initialize the size of captured images: Mr and Nr;
3: Initialize Nrobots as 2 and the vector R with their respective objects;
4: Initialize the matrix of real space mat map as zeros.
5: Define the vision central point (i0, j0);
6: Set R(1).Pos ini and R(2).Pos ini in opposite corners.
7: Initialize value of i1, j1, i2, and j2 as initial positions of agents.
8: Localize the agents in mat map with identifiers 1 and 2.
9: Create the matrix R(1).mat val ori and R(2).mat val ori with values

depending on the distance to (i0, j0);
10: while flag = 0 do
11: Define vision limits i minV , i maxV , j minV , and j maxV for both

agents.
12: Store in R(1).Map rob and R(2).Map rob the visible area of each

agent. Functions for calculate R(1).Num vec and R(2).Num vec are
defined in the robot objects.

13: if R(1).Num vec > 1 then
14: Obtain image1 and image2, and Im size1 and Im size2
15: if Im size1(1) = Mr and Im size1(2) = Nr and Im size2(1) =

Mr and Im size2(2) = Nr then
16: Extract features1 and features2 from image1 and image2.
17: Update in R(1).Mat val prue and R(2).Mat val prue the val-

ues of pixel captured by the other robot considering the distance to the
central pixel of respective image.

18: Try to match features1 with features2 and obtain numMP .
19: if numMP >= 10 then
20: Set id enlace = 1.
21: Calculate COST .
22: end if
23: end if
24: if id enlace = 0 then
25: Set i1 prev = i1; j1 prev = j1; i2 prev = i2; j2 prev = j2.
26: Update i1, j1, i2, and j2.
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27: Update mat map.
28: end if
29: else
30: Set i1 prev = i1; j1 prev = j1; i2 prev = i2; j2 prev = j2.
31: Update i1, j1, i2, and j2.
32: Update mat map.
33: end if
34: if id enlace = 1 then
35: Set flag = 1.
36: end if
37: end while
38: Initialize P vec1, P vec2, SOLUTIONS, C vec.
39: Define incre i and incre j.
40: Set case = 1.
41: while flag = 0 do
42: Set i1 prev = i1; j1 prev = j1; i2 prev = i2; j2 prev = j2.
43: Define vectors P vec1 and P vec2 for each robot.
44: for r1 = 1, . . . , 5 do
45: Set i1 = P vec1(1, r1) and j1 = P vec1(2, r1).
46: for r2 = 1, . . . , 5 do
47: Set i2 = P vec2(1, r1) and j2 = P vec2(2, r1).
48: Update mat map.
49: Define vision limits i minV , i maxV , j minV , and j maxV

for both agents.
50: Store in R(1).Map rob and R(2).Map rob the visible area of

each agent. Functions for calculate R(1).Num vec and R(2).Num vec
are defined in the robot objects.

51: Obtain image1 and image2, and Im size1 and Im size2
52: if Im size1(1) = Mr and Im size1(2) = Nr and

Im size2(1) = Mr and Im size2(2) = Nr then
53: Extract features1 and features2 from image1 and

image2.
54: Update in R(1).Mat val prue and R(2).Mat val prue the

values of pixel captured by the other robot considering the distance to
the central pixel of respective image.

55: Try to match features1 with features2 and obtain
numMP .

56: if numMP >= 10 then
57: Set id enlace = 1.
58: Calculate COST .
59: end if
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60: end if
61: Update mat map.
62: Set C vec(case) = COST .
63: Set SOLUTIONS(:, caso) = [i1; j1; i2; j2].
64: Update case.
65: end for
66: end for
67: Set cost min = Inf .
68: for case = 1, . . . , 25 do
69: if C vec(case) < cost min then
70: Set cost min = C vec(case).
71: Update i1, j1, i2, and j2.
72: end if
73: end for
74: if i1 = i1 prev and j1 = j1 prev = and i2 = i2 prev and j2 =

j2 prev then
75: Set flag = 1.
76: else
77: Initialize P vec1, P vec2, SOLUTIONS, C vec.
78: Set case = 1.
79: end if
80: end while
81: Store final information in R(1) and R(2).
82: Create panorama using Algorithm 1;

Regarding the algorithm is possible to check that the result obtained can
not be the optimum. The real optimal solution would be found if all the
possible combinations are studied. In the case of the centralized algorithm,
explained in Subsection 3.2.1, all the possible combinations of positions were
tested due to a global operator directed the motions. But in the case of this
distributed algorithm, doing the same is more complicated. This process
designed as the optimum considers the possible combinations around a po-
tential solution, searching if any of these combinations have a better solution
than the already found. Therefore, this is not a real optimal algorithm even
calling it as the optimal algorithm.

4.2.2 Heuristic method

The optimum algorithm has only been created for 2 agents due to the increase
in complexity involved when we use more agents. In order to make possible
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the study of a system with more than 2 agents, an algorithm based on the
heuristic method has been developed. Using the heuristic method implies
that the result obtained may not be the optimum one, but usually, its solution
is good enough for a specific application.

There are some differences between the optimum algorithm detailed in
Section 4.2.1 and the heuristic one developed in this Section. The main ones
are the following:

• Now, the agents are located one by one, instead of simultaneously.
Therefore, each agent is positioned exchanging information with the
agents previously located.

• There is the possibility that one agent image merges with more than
one images of already positioned robots. Therefore, the number of
agents found is included in the cost function.

• Each time an agent can merge its image with any other, it continues
moving through the central points looking for other position with a
lower cost value.

Therefore, regarding these considerations the algorithm developed follows
the next steps:

1. Initial definition of the required parameters:

a) Size of the total area of movements.

b) Size of the captured image by agents.

c) Number of agents involved in the situation and an object in Matlab
for each one to save all its information.

d) Initialize the matrix that represents the available space for simulation.

e) Definition of the central vision point.

f) Initially positioning of the agents in the edges of the area randomly.

2. Position the agents one by one following the same :

a) Initialization point:

i. Define the initial values of the coordinates of the agent.

ii. Creation of the matrix containing the absolute value of the distance
of each pixel to the central vision point for each robot.

b) Motion of the agent until its captured image can be merged with other
with minimum cost:
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i. The agent inspects its close area and stores it.

ii. Mark if any agent has been found in its close area, and store them.

iii. If any agents are found, or the position studied is one of the neigh-
borhood:

A. Capture image, and continue only if its size is equal to the
standard (in the other case it can not be merged using Al-
gorithm 1). Also, extract the features of the image.

B. In the case of any agents have been found, and for each of
them:

- Update its own map of the space with the position of the
new agent found

- Update the values of the matrix that contains the value de-
pending on the distance to the central point. Consider the
position of the new agent found, varying gradually the value
of the captured pixel by this agent: highest value for the ones
of the center of the images, and the lowest for the edges.

- Try to merge images. Only in the case of possible, calculate
the value of cost function.

C. In the case of not studying neighborhood position and if the
image has been merged with any other, start examining the
four position of its neighborhood (up and down, and left and
right positions) considering a fix pixels increase. All the previ-
ous steps are repeated for each one of these positions. Finally,
the position of the agents is updated to the one of minimum
cost.

D. If the image can not be merged with anyone, update the po-
sition of the agents by continuing going through the central
point, or going back if it has captured an already captured
pixel by another agent. Keep the actual values as the previous
one before changing.

iv. If no agents are found: update the coordinate values in the same
way as in the previous point when the merge of images has not
been possible.

v. Repeat these points the necessary times until the robot can not
move to a position with minimum cost in its neighborhood.

c) Update the information of the matrix that represents the real space.

d) Update the information of the actual robots.

3. Generate the panoramic image using Algorithm 1 detailed in Section 2.3.
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Finally, Algorithm 5 details the program.

Algorithm 5: Distributed method with heuristic method

1: Initialize the size of the area of movements: Mmax and Nmax;
2: Initialize the size of captured images: Mr and Nr;
3: Initialize Nrobots and the vector R with their respective objects;
4: Initialize the matrix of real space mat map as zeros.
5: Define the vision central point (i0, j0);
6: Set R(1).Pos ini and R(2).Pos ini in the edges randomly.
7: for robot = 1, . . . , Nrobots do
8: Initialize value of i and j as the initial position of the agent.
9: Initialize its own map of the available space, map surround.

10: Create the matrix mat val with values depending on the distance to
(i0, j0);

11:

12: Initialize P vec, C vec, and Enl vec.
13: Define incre i and incre j.
14: Set neighb = 0, cost min = Inf and id enlace = 0.
15: while flag = 0 do
16: Define vision limits i minV , i maxV , j minV , and j maxV .

Store in map rob the visible area of the agent.
17: Calculate num vec and vector id robs.
18: if num vec >= 1 or neighb 6= 0 then
19: Obtain image and Im size.
20: if Im size(1) = Mr and Im size(2) = Nr then
21: Extract features from image
22: if num vec >= 1 then
23: for case = 1, . . . , num vec do
24: Update map surround and mat val if necessary.
25: Try to match features with

R(id robs(case)).features and obtain numMP .
26: if numMP >= 10 then, Set id enlace = 1.
27: end if
28: end for
29: if id enlace = 1 then
30: Calculate sum val.
31: if sum val = Inf and neighb = 0 then, Set

flag val inf = 1.
32: end if
33: Calculate COST .
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34: end if
35: end if
36: end if
37: if flag val inf = 0 then
38: if neighb = 0 and id enlace = 1 then
39: Calculate elements of P vec.
40: Update i prev and j prev, i and j, cost min and

neighb.
41: else if neighb = 1 then
42: Update i and j, C vec(neighb), Enl vec(neighb) and

neighb.
43: else if neighb = 2 then
44: Update i and j, C vec(neighb), Enl vec(neighb) and

neighb.
45: else if neighb = 3 then
46: Update i and j, C vec(neighb), Enl vec(neighb) and

neighb.
47: else if neighb = 4 then
48: Update C vec(neighb) and Enl vec(neighb).
49: Calculate sum enl and look for minimum value in

C vec.
50: Update i and j, and neighb.
51: end if
52: end if
53: if flag val inf = 1 then
54: Set i prev = i and j prev = j.
55: Update i and j.
56: Set flag val inf = 0 and id enlace = 0.
57: else if (neighb = 0 and id enlace = 0) or (neighb = 5 and

sum enl = 0) then
58: Set i prev = i and j prev = j.
59: Update i and j.
60: end if
61: if neighb = 5 then
62: Initialize P vec, C vec and Enl vec.
63: Set neighb = 0 and sum enl = 0.
64: end if
65: else if neighb = 0 then
66: Set i prev = i and j prev = j.
67: Update i and j.
68: end if
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69: if (i=i0 and j=j0) or (i=i prev and j=j prev) then
70: Set flag = 1.
71: end if
72: end while
73: Store final information in R(robot).
74: end for
75: Create panorama using Algorithm 1;

4.3 Simulation results

4.3.1 Results of the algorithm with optimum solution

The algorithm has been developed for 2 agents, as it has been mentioned in
Section 4.2.1. The values defined for the initial parameters are maintained
the same as in Section 3.3.2 when using more than 2 agents, except the size
of the captured images, which is smaller. This drop in the image size is due
to more available motion space is needed in this algorithm to allow more
possibilities of locations. All the values set are shown below:

- The size of the area: 4000x6016.

- The size of captured images: 500x500.

- The central point: i = 2100 and j = 2100, the same of Figure 3.5.

The agents considered for this process can exchange information with
other. These agents have to be inside the visual area of the other agent
to allow the communication. For these simulations, the size of this area is
considered as double of the size of captured images: 8000x12032.

Some Key Performance Indicators (KPIs) have been calculated in each
simulation. They are the same defined in the previous Chapter: i) computa-
tional time, ii) the total number of pixels of the generated panoramic image,
and iii) the addition of the distances from all the captured pixels to the visual
central point.

The results of the simulations are different if the weight of the elements
included in the cost function change. If they are set in order to give the same
importance to all the elements, the result obtained is presented in Figure 4.1
and its KPIs in Table 4.1. However, if the weights are set in order to give
more importance to the total number of matched points between images, the
result presented in Figure 4.2 differs to the previous one. Its KPIs are shown
in Table 4.2.
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 4.1: Result of the optimal distributed algorithm described in Al-
gorithm 4 (first simulation).
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 4.2: Result of the optimal distributed algorithm described in Al-
gorithm 4 (second simulation).
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KEY PERFORMANCE INDICATORS
Computational Time Number of pixels Distance to central point

140.160 s 485720 1.5269x108

Table 4.1: Key Performance Indicators of the first simulation of the optimal
distributed algorithm described in Algorithm 4 (results in Figure 4.1).

KEY PERFORMANCE INDICATORS
Computational Time Number of pixels Distance to central point

227.853 s 459470 1.4389x108

Table 4.2: Key Performance Indicators of the second simulation of the op-
timal distributed algorithm described in Algorithm 4 (results in Figure 4.2).

Comparing the results obtained from both simulations, and specifically
the value of its KPIs, it is possible to check that in the second case, the
panoramic image obtained contains a lower number of pixels than the first
one, i.e., more overlap is obtained using the second cost. This can be a benefit
if considering the case of relocation when an agent faults or a disadvantage
if considering the highest magnitude of the panoramic image as possible.
Therefore, the weights of elements in the cost function have to be designed
depending on the specific application necessities.

4.3.2 Results of the algorithm with heuristic method

Comparison between the algorithm and the optimal solution

Firstly, the heuristic algorithm has been tried using just two agents in order
to compare its result with the optimum. The values of the initial parameters
are the same of in the previous subsection. The initial position of the agents
is supposed to be randomly, but in this case, is set always at the same points
in order to make possible the comparison. These positions are:

- Robot 1: i = 1733; j = 6016.

- Robot 2: i = 1; j = 5097.

Two simulations have been done changing the values of weight in the cost
function, as it has been done with the optimum algorithm. The result ob-
tained giving the same importance to all the elements of the cost is presented
in Figure 4.3. And the result of the second one where more importance is
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KEY PERFORMANCE INDICATORS
Comp. Time No. pixels Distance

Optimal solution 1 140.160 s 485720 1.5269x108

Heuristic solution 1 64.144 s 480650 1.6007x108

Table 4.3: Key Performance Indicators of the first simulation of the heur-
istic distributed algorithm described in Algorithm 5 (results in Figure 4.3)
compared with Table 4.1.

KEY PERFORMANCE INDICATORS
Comp. Time No. pixels Distance

Optimal solution 2 227.853 s 459470 1.4389x108

Heuristic solution 2 66.576 s 461192 1.5389x108

Table 4.4: Key Performance Indicators of the second simulation of the heur-
istic distributed algorithm described in Algorithm 5 (results in Figure 4.4)
compared with Table 4.2.

given to the number of matched points is presented in Figure 4.4. Their
KPIs are shown is Tables 4.3 and 4.4 respectively, including also the values
corresponding to the optimal result.

Regarding the obtained values of KPIs of each simulation, the difference
between computational times of heuristic and optimum algorithms is the
most significant in both tables, being lower the corresponding to the heur-
istic algorithm. The values of the other two KPIs are very similar to both
algorithm, even obtained different panoramic images with each one.

One notable aspect of the heuristic algorithm is that the computational
time is maintained similar in the two simulations, whereas in the optimum
algorithm there is an important increase of time when considering the number
of matched points as more relevant for the cost. This is an advantage of the
heuristic method: the time required to simulate is maintained in a short
range no matter the cost function selected.

Simulation with various agents

The heuristic method developed has the advantage of considering the situ-
ations with more than 2 agents involved. Therefore, some simulations have
been done increasing the number of agents to test its functionality. The
initial positions of the agents are selected randomly, so each simulation con-
siders the agents initially located at different points of the area edges. The
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 4.3: Result of the heuristic distributed algorithm described in Al-
gorithm 5 (first simulation).
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(a) Available area represented by the whole image in gray scale and in color.

(b) Images captured by the agents.

(c) Matched features between images.

(d) Panoramic image obtained.

Figure 4.4: Result of the heuristic distributed algorithm described in Al-
gorithm 5 (second simulation).
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KEY PERFORMANCE INDICATORS
Comp. Time No. pixels Distance

2 agents 64.925 s 782, 192 1.8108x108

3 agents 80.713 s 726, 739 3.1880x108

4 agents 93.929 s 920, 715 3.8338x108

5 agents 115.171 s 1157, 045 6.5399x108

6 agents 124.288 s 1372, 443 10.7400x108

Table 4.5: Key Performance Indicators of the heuristic distributed algorithm
described in Algorithm 5 using different number of agents.

other parameters are set with the same values as before.
The cost function considered for all the simulation done is only the one

that gives the same relevance to all the elements. No other cost has been
tested due to the difference found in previous part between the two cost
functions considered is not very relevant.

The results obtained are presented in Figures 4.5, 4.6, 4.7, and 4.8 for
3, 4, 5, and 6 agents respectively. And in Table 4.5 all the KPIs have been
compiled together for all the cases studied, includying the case of 2 agents
develop in the previous part.

Analyzing the results by looking at 4.5, the most relevant KPIs may be
the sum of the distances of all the pixels to the central point. From the
simulation of 5 agents, this value increases in a higher proportion than in
previous ones. This increase could be due to the increase of the total number
of pixel. However, considering also the panoramic images obtained in each
case, it is possible to conclude that this higher increase may be because the
last agents located are positioned farther from the visual central point. The
other two KPIs maintain its values in a logical range when the number of
agents increases.

Looking at the panoramic images of Figures 4.7 and 4.8, it is clearly seen
that the heuristic algorithm developed is not very efficient in the case of hav-
ing more than 3 or 4 agents. The agents move forward the visual central point
direction and usually stop going when another agent is found. The initial
position of the agents takes relevance in this algorithm because depending on
this position, each agent will be moved in one direction. These positions are
chosen randomly at the beginning, therefore the final panoramic image varies
from each simulation, e.g., the panoramic image in Figure 4.8 looks like some
robots have been initially positioned in close points, but other panoramic im-
ages would have been produced in case of father initial positions. Therefore,
regarding this principal drawback of the heuristic algorithm developed, some
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 4.5: Result of the heuristic distributed algorithm described in Al-
gorithm 5 using 3 agents.
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 4.6: Result of the heuristic distributed algorithm described in Al-
gorithm 5 using 4 agents.
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(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 4.7: Result of the heuristic distributed algorithm described in Al-
gorithm 5 using 5 agents. 72



(a) Images captured by the agents.

(b) Matched features between images.

(c) Panoramic image obtained.

Figure 4.8: Result of the heuristic distributed algorithm described in Al-
gorithm 5 using 6 agents.
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improvements could have been carried out in order to make it more suitable
for various agents.

74



Chapter 5

Conclusions

In this work, we have presented some algorithms to achieve panoramic im-
ages from some images captured by individual coordinated agents. We have
considered a system that consists of many aerial mobile agents, each one
equipped with cameras, whose motions are restricted to XY plane. The
main issue studied in this project has been the location of the agents in
the available area in order to get the panoramic image with some specific
characteristics.

Firstly, some algorithms have been developed using centralized coordin-
ation between the agents. Principally two results have been compared, the
optimal and the heuristic results, concluding that the second one could be
more suitable for our project due to the short computational time required.
Some modifications of the heuristic algorithm have been done with the goal
of continue decreasing the computational time, but finding that some char-
acteristics had been gotten worse, e.g., centralization in the center point.

Secondly, the same problem has been solved using distributed coordina-
tion. The optimal and heuristic results have been compared in the same way
of in centralized algorithm, even though the optimal algorithm developed was
not exactly the optimum. Considering the specific characteristics required,
different results have been obtained, concluding that for general purposes,
the heuristic algorithm supplies better results than the optimal one if high
accuracy is dispensable.

Future work

New algorithms for distributed coordination. In the real life, ro-
bots are generally coordinated using distributed approach. Therefore, future
work on this topic would be interesting to bring the situation closer to real-
world characteristics.
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3D Systems. Another interesting point to be investigated is to transform
all the work done for 2D to 3D system. The agents could move in XYZ space,
including the new coordinate Z for each agent, and therefore, a new variable
to be considered. Moreover, the change in the orientation of the cameras can
be considered, allowing the agents rotation.

UAVs control. Before bringing this results to the real world, it would
be necessary to research more about the way of controlling UAVs. In the
present work, this point has been considered as known by the designer, and
no attention has been paid to it.

Real Implementation. The final objective of this project would be the
implementation of all the developed algorithms in a real test bed. This real
implementation would be the crowning point of this project.
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Resumen

En este proyecto se trata el problema de la coordinación de un conjunto de
agentes autónomos, cada uno de ellos equipado con una cámaras, cuyo obje-
tivo es la obtención de una imagen panorámica. Para este fin, se optimiza una
función objetivo de costes múltiples que representa, por ejemplo, el número
de puntos emparejados entre las imágenes, la distancia entre los agentes o la
distancia hasta el punto central de visión. Se presentan algunas soluciones
para de problema basándonos en dos enfoques diferentes: las coordinaciones
centralizada y distribuida de los agentes. Para cada uno de ellos, los resul-
tados se obtienen utilizando tanto métodos de optimización como métodos
heuŕısticos. Las comparaciones entre todos los resultados obtenidos se reali-
zan a partir de las simulaciones de los algoritmos que se desarrollan durante
este proyecto.
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3 Métodos basados en algoritmos centralizados 10

4 Métodos basados en algoritmos distribuidos 12

5 Conclusión 14

2



Caṕıtulo 1

Introducción

El principal problema que se pretende resolver en este proyecto es la coordi-
nación de una serie de robots, cada uno de ellos equipado con una cámara, con
el objetivo de generar una imagen panorámica global con ciertas propiedades
en función de las imágenes locales [29]. Este es un tema de enorme interés
práctico debido a que los resultados de este proyecto de investigación pueden
ser transferidos para su implementación en las flotas de veh́ıculos aéreos no
tripulados (drones), que actualmente gozan de una gran popularidad debi-
do a sus numerosas aplicaciones, por ejemplo en servicios de mensajeŕıa [10]
y en sistemas de información geográfica, entre muchos otros. Además, este
tema representa un reto de investigación que ha sido ya identificado por la
comunidad cient́ıfica [24].

Hoy en d́ıa, la generación de imágenes panorámicas se ha convertido en
una caracteŕıstica estándar en la mayoŕıa de las cámaras comerciales. Co-
mo se ha indicado en el párrafo anterior, esto se consigue por medio de un
procedimiento conocido como fusión de imágenes, que consiste en la combi-
nación de múltiples imágenes con campos de visión superpuestos para generar
imágenes panorámicas. Con este fin, la detección de rasgos distintivos en el
conjunto de imágenes se utiliza como un medio para determinar las coorde-
nadas de ṕıxeles entre imágenes diferentes que pueden estar relacionados y
utilizados para estimar las alineaciones correspondientes.

En paralelo a la consolidación de las técnicas de fusión de imágenes, tam-
bién asistimos a una explosión en el mercado de aviones no tripulados con
una gran variedad de aplicaciones potenciales, por ejemplo: vigilancia, en-
trega de paquetes, construcción, etc. Por lo tanto, esto conlleva a imaginar
una aplicación en la que varios aviones no tripulados colaboran para obtener
imágenes panorámicas. Como se verá a lo largo de este proyecto de investi-
gación, es un problema complejo que puede ser moldeado como un problema
de optimización multi-agente con objetivos múltiples. Cuestiones tales como
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la forma de coordinar los diferentes agentes o cómo reaccionar en caso de
que uno de los agentes se comporte defectuosamente son importantes en este
contexto. Los agentes autónomos deben ser reubicados en relación con el re-
sultado deseado o en el caso de error en cualquier robots. Esta reubicación se
llevará a cabo mediante la optimización de una función de costes relacionados
con el objetivo. La función de coste puede incluir aspectos como: i) el coste
de conseguir determinados puntos en común entre las imágenes; ii) el coste
de conseguir una imagen panorámica con un número espećıfico de ṕıxeles; o
iii) el coste de mover los robots. Desde nuestro punto de vista, este problema
puede ser interesante en aplicaciones tales como la fotograf́ıa aérea o incluso
aplicaciones militares, en donde un conjunto de aviones no tripulados pue-
de ser utilizado para proporcionar ela máxima información posible de una
imagen con un cierto objetivo.

Principalmente, el problema se ha estudiado suponiendo la situación más
simple, donde se permite el movimiento de agentes autónomos sólo en un
plano paralelo a la imagen panorámica deseada, suponiendo que no exis-
ten diferencias en los ángulos de las imágenes capturadas entre las distintas
cámaras. Los estudios futuros pueden estar destinados al acercamiento de la
situación estudiada al mundo real, por ejemplo, teniendo en cuenta las tres
dimensiones espaciales de los movimientos de los agentes o la diferencia de
ángulos de giro mencionados antes. Sin embargo, no están considerados en el
proyecto actual.

En primer lugar, el tema es estudiado desde un punto de vista centraliza-
do, que consiste principalmente en la solución del problema de coordinación
entre los agentes considerando que un ĺıder externo tiene toda la informa-
ción requerida de la situación actual y es quien toma todas las decisiones
necesarias basándose en esta misma información. A continuación, el mismo
problema se trata desde un punto de vista distribuida, lo que quiere decir
que en este caso son agentes quienes toman las decisiones y se comunican
entre ellos para recoger alguna información: la información global sobre el
estado del sistema no está disponible para cada agente.Por tanto, las deci-
siones tienen que ser tomadas por cada agente con información parcial del
sistema global.

En cuanto al desarrollo de este proyecto, se utilizará Matlab como herra-
mienta de trabajo. Las simulaciones también se realizarán en este programa.

Otra caracteŕıstica importante de este proyecto es que todos los desarro-
llos que se lleven a cabo pueden ser implementados en un laboratorio real
ubicado en Tokio. Para ello, los investigadores involucrados del Instituto de
Tecnoloǵıa de Tokio ofrecen sus laboratorios, los cuales se pueden ver en este
art́ıculo [14].

Los temas que se tratan a continuación en este proyecto se dividen de
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la siguiente manera: El Caṕıtulo 2 presenta algunas técnicas encontradas en
la literatura utilizados para la fusión imágenes y el algoritmo desarrollado
para la creación de imágenes panorámicas una vez que las imágenes indivi-
duales han sido capturados. El caṕıtulo 3 se centra en métodos basados en
algoritmos centralizados para resolver el problema de la coordinación de los
agentes móviles, y presenta algunos algoritmos desarrollados para este fin y
las simulaciones correspondientes. El caṕıtulo 4 presenta métodos basados
en algoritmos distribuidos, e incluye una visión general de cómo poner en
práctica estos métodos y ejemplos. Por último, el caṕıtulo 5 presenta las ob-
servaciones finales y sugerencias para posibles ĺıneas de investigación futuras.

5



Caṕıtulo 2

Fusión de imágenes

La fusión de imágenes es uno de los principales problemas que se tratan en
este proyecto. Image stitching es el nombre en inglés usado para describir el
proceso en el que se obtiene una imagen panorámica a partir de un conjunto
de imágenes. El procedimiento seguido es una extensión de la búsqueda de
puntos caracteŕısticos similares de las imágenes, pero en lugar de trabajar
con un solo par de imágenes, se ponen en relación sucesivamente varios pares
de imágenes mediante estos puntos similares previamente encontrados para
formar una panorámica entre todas.

Desde principios de siglo, los investigadores han hecho muchos esfuerzos
para mejorar los métodos existentes o incluso para desarrollar nuevas formas
de obtener una imagen panorámica. Todos estos métodos siguen la misma
estructura general, y las diferencias entre ellos están principalmente relacio-
nadas con la operación espećıfica utilizada para conseguir el mismo objetivo.
Por ejemplo, en [25], V. Rankov propuso un algoritmo de fusión de imágenes
para imágenes microscópicas teniendo como base la necesidad cĺınica de la
adquisición de una imagen de grandes regiones, pero conservando resolución
microscópica. Para este propósito, el método se centra en la superación de
las discrepancias de intensidad y desalineaciones geométricas entre las imáge-
nes fusionadas. Otro ejemplo se puede encontrar en [23], donde se estudia la
posibilidad de la unión de imágenes con la presencia de objetos en movi-
miento. La técnica utiliza la selección heuŕıstica de intensidad y el dominio
de gradientes para seleccionar qué ṕıxeles son mejores de cada imagen.

En general, la fusión de imágenes comprende dos etapas: emparejado de
imágenes y mezclado de imágenes. El emparejado de imágenes consiste en
unas operaciones realizadas para obtener la conexión entre las imágenes. Hay
dos maneras diferentes para calcular esta conexión: el método directo [30, 18],
y el método de detección de caracteŕısticas [7, 22].

El motivo del nombre de ‘métodos directos’ se debe a la reducción a la
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FUSIÓN DE IMÁGENES
Step 1: Emparejamiento de imágenes

Opción A: Método directo Opción B: Método de detección de caracteŕısticas
1. Extracción de caracteŕısticas
2. Correspondencia entre caracteristicas
E.g.: Caracteŕısticas SIFT y SURF

Step 2: Mezclado de imágenes

Cuadro 2.1: Proceso para fusión de imágenes

directa minimización de la medida de los errores de registro en las imágenes,
sin transformaciones algebraicas o geométricas especiales, y debido a que por
lo general se basan en la minimización directa de errores de intensidad [30].
Usando métodos directos, es posible conseguir un registro muy preciso, ya
que utilizan todos los datos de la imagen disponibles [5], aunque tiene la
desventaja de que requiere siempre de una imagen de alta calidad [19]. En la
mayoŕıa de los casos, este tipo de imágenes es dif́ıcil de conseguir, y es por
eso por lo que a menudo se utiliza el método de detección de caracteŕısticas.

Los métodos de detección de caracteŕısticas tienen la ventaja ya mencio-
nada, pero también poseen el problema de que son necesarias propiedades
de invarianza para conseguir un emparejamiento de sucesivas imágenes pa-
norámicas de forma fiable [5]. En general, la detección de caracteŕısticas
implica dos procedimientos: extracción de caracteŕısticas y correspondencia
entre estas caracteŕısticas. Muchas de las técnicas de segmentación de imáge-
nes se utilizan para la extracción de caracteŕısticas, tales como el operador
de Canny [27] o el método de clasificación [31]. La correspondencia entre
caracteŕısticas es el problema más dif́ıcil de resolver en la actualidad, y su
rendimiento depende de las propiedades de las caracteŕısticas detectadas.
Como se explica en [9], una de las tareas más importantes en el registro
automatizado de imágenes es la obtención de un algoritmo robusto para es-
tablecer correspondencias de puntos de control es, y algunos de los algoritmos
usados para el emparejamiento de caracteŕısticas son mencionados también
en dicho art́ıculo.

En la actualidad se usa una variedad de algoritmos para la detección de
caracteŕısticas, pero dos de ellos, basados en caracteŕısticas SIFT y SURF,
son los más comúnmente utilizado para la detección de caracteŕısticas debido
a su robustez. En primer lugar, las caracteŕısticas SIFT fueron desarrollados
en 1999 para el reconocimiento de objetos [20], y no fue hasta 2004 cuan-
do se presentaron para fusiones de imágenes [21]. Las caracteŕısticas SURF
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aparecieron dos años más tarde como una mejora de las SIFT aplicadas al
empareamiento de imágenes [2].

La segunda parte de la fusión de imágenes es el mezclado. El propósito de
estos métodos es el de reducir la diferencia de las intensidades en la conexión
de las imágenes haciendo principalmente que los bordes sean invisibles [25].
Idealmente no seŕıa necesario este paso, pero en la práctica los bordes de las
imágenes superpuestas suelen ser distinguidos fácilmente. Por esta razón, la
elección de una buena estrategia de mezcla mejora la calidad de la imagen
panorámica final. Como se muestra en la figura 2.1, donde usando Matlab se
obtiene una imagen panorámica a partir de algunas imágenes individuales, los
bordes de las imágenes en la imagen panorámica son claramente distinguibles.
Esta es la razón por la que la selección de un buen algoritmo para el mezclado
final de imágenes es esencial si se quiere evitar el resultado representada en
la figura.

Hay muchos algoritmos utilizados para mezclado de imágenes, por ejem-
plo: ‘watersheds blending’ [17], ‘multi-band blending’ [5, 4], ‘multi-resoluion
spline blending’ [23] o mezclado de gradientes de domino [25]. R. Szeliski
presenta un estudio de algunas de estas y otras técnicas en [29].

Para resumir, se presenta la Tabla 2.1 donde se han esquematizado los
principales pasos y procedimientos de la fusión de imágenes.
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(a) Original images

(b) Panorama image

Figura 2.1: Ejemplo de imagen panorámica usando una técnica de mezclado
básica.
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Caṕıtulo 3

Métodos basados en algoritmos
centralizados

En este caṕıtulo nos ocupamos del problema de la coordinación de múltiples
agentes. El problema de coordinación multi-agente requiere de varios agentes
para integrar los movimientos, con el objetivo de maximizar su rendimiento
general [16]. El concepto de agente hace referencia a cualquier dispositivo
móvil cuyo movimiento sea controlado. Algunos ejemplos se pueden encon-
trar en [26]: robots móviles, veh́ıculos aéreos no tripulados (UAVs), veh́ıculos
submarinos autónomos (AUVs), satélites, aeronaves, etc. Por tanto, la cues-
tión principal que tiene que ser resuelta es: ¿Cómo pueden ser iteligentemente
coordinados los grupos de agentes con este fin?

Muchos investigadores han trabajado sobre este tema. Por ejemplo, T.
Siméon presentó en 2002 un enfoque basado en la geometŕıa de coordinación
de movimientos múltiples en robot móviles [28]. En ese art́ıculo, el autor
trató de resolver el problema de coordinar el movimiento de varios robots
que se mueven a lo largo de caminos fijos independientes para evitar coli-
siones mutuas. Por el contrario, varios investigadores estudiaron lo que los
robots autónomos móviles pueden hacer considerando la coordinación dis-
tribuida entre ellos [13]. Otro ejemplo diferente se puede encontrar en [24],
donde se estudia la colaboración entre un grupo de UAVs (Microdrones), ba-
sadas principalmente en imágenes aéreas cooperativas para aplicaciones de
resolución de desastres.

La coordinación entre robot es necesaria para robots en agua, tierra y
aire, y se puede llevar a cabo en interiores o al aire libre. En muchas situacio-
nes, es necesaria la construicción de mapas del entorno, al mismo tiempo que
el uso de estimadores de posición como ‘Extended Kalman Filter’ (EKF) [8].
Por el contrario, las aplicaciones al aire libre suelen utilizar la técnica co-
nocida como SLAM, (‘Simultaneous Localization and Mapping’). SLAM se
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encarga del problema de la colocación de un robot móvil en un lugar desco-
nocido en un entorno desconocido y de manera progresiva se construye un
mapa coherente del estado presente mientras se determina simultáneamen-
te su ubicación dentro de este mapa. Más información sobre el método de
SLAM se puede encontrar en [1, 11].

En este proyecto, se trabaja con veh́ıculos aéreos no tripulados. El prin-
cipal beneficio de utilizar varios drones es la posibilidad de conseguir una
imagen de una gran área con alta resolución. Hay muchas aplicaciones en las
que las vistas aéreas puede ser realmente útiles, por ejemplo, las situaciones
de desastre debido a la visión general del entorno logrado con este sistema
coordinado [24].

Hay otras ventajas en el uso de esta configuración múltiple de drones [24]:
i) En primer lugar, la posibilidad de cubrir un área mucho más grande; ii)
en caso necesario se puede recoger más información; y iii) la posibilidad de
fallo es menor debido a que el sistema está formado por varios elementos, es
decir, el sistema es más redundante y robusto contra los fallos.

En este proyecto, se supone que las técnicas de control de veh́ıculos aéreos
no tripulados son conocidas y están disponibles para su uso. Por lo tanto,
no se presta más atención a este tema. También se considera que los aviones
están equipados con los sensores y actuadores necesarios para alcanzar los
objetivos deseados [24]. Por lo tanto, el resto del proyecto se centra principal
y exclusivamente a la forma de coordinar los agentes del sistema considerado
en nuestro trabajo. Para la coordinación de múltiples agentes hay dos posibles
enfoques diferentes: el centralizado y el distribuido. Este caṕıtulo se ocupa
de la coordinación centralizada y el siguiente de la coordinación distribuida.

Como su nombre indica, la Coordinación centralizada consta de un opera-
dor central que tiene información completa de todo el sistema, y es el mismo
operador quien toma las decisiones sobre cada uno de los movimientos de los
aviones no tripulados. Este operador central puede ser uno de los elementos
del sistema, y también se le llama ĺıder. Es el responsable de enviar a cada
elemento la información correspondiente sobre su movimiento [6].

Por lo tanto uno de los principales inconvenientes de la coordinación cen-
tralizada es la falta de robustez cuando hay fallos en la comunicación y/o
funcionamientos incorrectos del ĺıder [12]. Es posible resolver este problema
mediante el uso de un tipo diferente de centralización, pero manteniendo su
esencia. A. Farinelli explica una posible opción en [12], en la que débilmente
expone los sistemas centralizados, caracterizados por el hecho de que el ĺıder
no se elige a priori, pero se selecciona de forma dinámica durante la misión
dependiendo de la situación actual del sistema y el entorno.
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Caṕıtulo 4

Métodos basados en algoritmos
distribuidos

En el mundo virtual, puede parecer que la coordinación centralizada es la
forma más fácil de lograr nuestro objetivo, pero es poco probable tener real-
mente un sistema con esas caracteŕısticas en el mundo real. Por lo tanto, la
coordinación distribuida es la técnica de uso común para aplicaciones reales,
y su principal diferencia con la coordinación centralizada es que en lugar de
tener un ĺıder que recibe toda la información de los agentes y toma todas las
decisiones, cada agente recibe alguna información de su área más cercana y
sólo toma decisiones referentes a śı mismo.

La mayoŕıa de los art́ıculos que se encuentran en la literatura están re-
lacionados con este tipo de coordinación y se centran espećıficamente en la
manera de cómo resolver los problemas que conlleva, que no son pocos. Por
ejemplo, en el art́ıculo [26], Ren, Beard y Atkins discuten los problemas que
aparecen cuando el algoritmo diseñado se aplica a los sistemas reales de los
veh́ıculos aéreos no tripulados, por ejemplo retrasos en la comunicación, la
relativa incertidumbre en la información o estado de equilibrio de la solu-
ción. En [13], el sistema estudiado está formado por un conjunto de robots
móviles autónomos que sólo han programado sus comportamientos como un
conjunto de leyes que gúıa el robot para reaccionar a los est́ımulos del entorno
de manera que no hay un objetivo expĺıcito programado. La cooperación y
los objetivos simplemente emergen mientras la el cálculo se lleva a cabo, y
además los robots no tienen memoria del pasado. Por lo tanto toma relevancia
la visibilidad instantánea de cada agente, y los autores de este art́ıculo estu-
dian el problema de tener una visibilidad limitada o ilimitada, comparando
ambos resultados.

La coordinación distribuida posee muchos campos de aplicación, no sólo
el que se explica aqúı con robots aéreos. Un ejemplo de coordinación de robot
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móviles se puede encontrar en [28], donde se requiere esta coordinación con
el fin de hacer posible el movimiento de muchos robots en un mismo espa-
cio. Cada robot tiene definidos y fijados unos caminos independientes, y el
problema es la coordinación de estos movimientos para evitar colisiones, es
decir, la coordinación del camino. Sin embargo, el art́ıculo [24] está dedicado
a las aplicaciones de robots aéreos: la vigilancia del medio ambiente, la vigi-
lancia de seguridad, la resolución de desastres o de planificación de misiones,
entre otros. Uno de los campos citados en ese documento es la captación de
imágenes aéreas de cooperación, que es el mismo campo en el que se centra
este proyecto.

Además, algunos autores han resuelto este problema de la coordinación
mediante la aplicación de algunas funciones matemáticas con el fin de obtener
una figura geométrica determinada formada por las posiciones de los robots,
como una simple ĺınea [15] o una forma circular [3]. Más detalles de estos
procesos se pueden encontrar en los art́ıculos indicados.
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Caṕıtulo 5

Conclusión

En este proyecto, hemos presentado algunos algoritmos para lograr imáge-
nes panorámicas de algunas imágenes capturadas por agentes individuales
coordinados entre śı. Se ha considerado un sistema compuesto por muchos
agentes móviles aéreos, cada uno de ellos equipado con una cámara, cuyos
movimientos están restringidos al plano XY. El principal problema estudiado
en este proyecto ha sido la ubicación de los agentes en el área disponible con
el fin de obtener la imagen panorámica con unas caracteŕısticas espećıficas.

En primer lugar, algunos algoritmos se han desarrollado utilizando una
coordinación centralizada entre los agentes. Principalmente se han compara-
do dos tipos de resultados, los óptimos y los heuŕısticos; concluyendo que el
segundo seŕıa el más conveniente para nuestro proyecto debido al corto tiem-
po computacional requerido. Se han realizado algunas modificaciones del al-
goritmo heuŕıstico con el objetivo de continuar disminuyendo el tiempo total
de cómputo. Sin embargo, se pone de manifiesto que algunas caracteŕısticas,
como la centralización en el punto central, se empeoran.

En segundo lugar, se ha resuelto el mismo problema mediante coordina-
ción distribuida. Los resultados óptimos y heuŕısticos se han comparado de
la misma forma que en el algoritmo centralizado, a pesar de que el algoritmo
óptimo desarrollado no era exactamente el óptimo. Se han obtenido diferen-
tes resultados teniendo en cuenta las caracteŕısticas espećıficas requeridas;
concluyendo que para propósitos generales, los el algoritmo hauŕıstico ofrece
mejores resultados que el óptimo simepre que no sea indispnesable una alta
precisión.

Ĺıneas futuras de investigación

Nuevos algoritmos para la coordinación distribuida. En la vida
real, los robots son generalmente coordinados usando el enfoque distribuido.
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Por lo tanto, pensando en posibles investigaciones futuras sobre este tema,
seŕıa interesante esta ampliación para aproximar las caracteŕısticas del siste-
ma al mundo real.

Sistema en 3D. Otro punto que podŕıa ser investigado es el que consiste
en transformar todo el trabajo realizado para sistemas de 2D a 3D. Los
agentes debeŕıan moverse en el espacio XYZ, incluyendo la nueva coordenada
Z para cada agente, y por lo tanto, una nueva variable para ser considerada.
Por otra parte, también podŕıa ser estudiado el cambio en la orientación de
las cámaras lo que permitiŕıa la rotación de los agentes.

Control de UAVs. Antes de acercar los resultados al mundo real, seŕıa
necesario investigar más sobre la forma de controlar los UAVs. En el proyecto
actual, este punto se ha considerado conocido por el diseñador, por lo que no
se le ha prestado atención.

Implementación real. El objetivo final de este proyecto seŕıa la aplica-
ción de todos estos algoritmos desarrollados en un laboratorio que cuente con
las instalaciones necesarias. Esta aplicación real seŕıa el punto culminante de
este proyecto.
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