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Infrastructure-Assisted Smartphone-based ADL Recognition in Multi-Inhabitant
Smart Environments

Nirmalya Roy∗, Archan Misra†, Diane Cook∗
∗School of Electrical Engineering and Computer Science, Washington State University

† School of Information Systems, Singapore Management University
nroy@eecs.wsu.edu, archanm@smu.edu.sg, cook@eecs.wsu.edu

Abstract—We propose a hybrid approach for recognizing
complex Activities of Daily Living that lie between the two
extremes of intensive use of body-worn sensors and the use
of infrastructural sensors. Our approach harnesses the power
of infrastructural sensors (e.g., motion sensors) to provide
additional ‘hidden’ context (e.g., room-level location) of an
individual and combines this context with smartphone-based
sensing of micro-level postural/locomotive states. The major
novelty is our focus on multi-inhabitant environments, where
we show how spatiotemporal constraints can be used to
significantly improve the accuracy and computational overhead
of traditional coupled-HMM based approaches. Experimental
results on a smart home dataset demonstrate that this approach
improves the accuracy of complex ADL classification by over
30% compared to pure smartphone-based solutions.

Keywords: multi-modal sensing, context recognition

I. INTRODUCTION

Research on activity recognition in smart environments

(e.g., homes or assisted-living facilities) traditionally falls

into two extremes:

• Body-worn: In the wearable computing paradigm, mul-
tiple body-worn sensors (such as accelerometers, sound,

gyro sensors) are placed on an individual’s body to help

track their locomotive and postural movements at a very

fine-granularity (e.g., [18]).

• Infrastructure-based: In this alternate model, the envi-
ronment itself is augmented with a variety of sensors,

such as RF readers, object tags, video cameras, or

motion sensors mounted in different rooms.

Unfortunately, the evidence of the last decade of research

suggests that these two extremes both face steep operational

and human acceptability challenges. In particular, individu-

als (even elderly patients [2]) appear reluctant to continually

wear multiple sensors on the body. In addition, such sensors

are often susceptible to placement-related artifacts. On the

other hand, embedding sensors on myriad objects of daily

living, such as microwaves and kitchen cabinets [9] or

mounting them on the ceiling has challenging operational

costs and battery-life issues. Video sensors are also simply

too intrusive to be acceptable in assisted living homes due

to privacy concerns.

Driven by these observations, we ask a basic question:

does there exist a middle ground for sensing in smart

environments, especially one that can combine an everyday
personal device (the smartphone) with low-cost, coarse-
grained infrastructural sensors? If so, what advances in
activity recognition and learning algorithms do we need to

jointly harness the power of these diverse sources of sensor

data? Our research is motivated by the emergence of the

smartphone as a de-facto pervasive and personal device,
and its demonstrated use for detecting basic low-level activ-

ities (such as sitting, walking etc.) through simple feature-

based classification of smartphone-embedded accelerometers

(e.g., [7], [11]). Likewise, simple infrared based occupancy

or motion sensors are now widely deployed, and accepted by

consumers, in many indoor environments (often to automate

simple tasks such as lighting control).

While this idea of combining body-worn and infrastruc-

tural sensing certainly is not new, our unique differentiator

lies in the fact that we explicitly consider multi-inhabitant
settings, where multiple individuals simultaneously occupy
the smart environment and engage in individual and col-

lective Activities of Daily Living (ADLs). In this case, the
key challenge is to effectively disambiguate the association

between the infrastructure sensor observations and each in-

dividual, especially when the infrastructure sensors measure

ambient conditions that are inherently non-person specific.
For example, when individual phone-mounted accelerome-

ters suggest that both persons A and B are walking around,

and occupancy sensors indicate that both the kitchen and

living room are occupied, how do we map individuals to

specific locations–i.e., decide if A is located in the kitchen,

and B is in the living room, or vice versa? Resolving such

location context, as an exemplar, in a multi-inhabitant envi-

ronment, is key to more accurately profiling and classifying

the activities of each individual, for various applications,

such as wellness monitoring, timely in-situ reminders (e.g.,

medication reminder when sitting down for dinner) and

lifestyle recommendations [2].

In this paper, we consider the challenge of discerning such

‘hidden’ or ‘ambiguous’ individual context, by appropriately

combining both low-level person-specific individual context

and person-independent ambient context. At a high-level,

we model each individual’s activity context as a multi-
dimensional set of attributes, some of which are observable
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from the smartphone (e.g., whether the individual is walking,

standing or sitting) and some of which are ‘hidden’ (e.g.,

is the person in the kitchen vs. living room, is she alone

or with other occupants?). The temporal evolution of each
person’s activity is jointly modeled as a coupled Hidden

Markov Model (CHMM); our unique innovation lies in the

specification of a set of constraints to this model, arising

from the presence of a combination of mobile and ambient

sensing data. The constraints are both intra-personal (an
individual is more or less likely to follow a certain activity

pattern) and inter-personal (different individuals are more
or less likely to have certain ‘hidden context’ concurrently).

We then build such a CHMM through appropriate mod-

ifications to the standard Expectation Maximization (EM)

algorithm, and use a modified Viterbi algorithm during the

testing phase to determine the most likely temporal evolution
of each person’s activity.

Our investigations in this paper address several key re-

search questions. First, given the reality of an indoor multi-

inhabitant environment with cheap infrastructural sensors,

what sort of constraints, both inter-personal and intra-

personal, arise due to the combination of mobile sensing and

ambient environmental data? Second, how can we combine

such constraints across multiple users, across both time
and space, to infer the ‘hidden context attributes’ of each

individual, in a computationally efficient fashion? Finally,

how much quantitative improvement do we observe in our

ability to infer complex ADLs via such ‘hidden context’,

as compared to alternatives that rely solely on the mobile

sensing or the ambient observations?

We believe that our innovations and results provide strong

preliminary evidence that such a hybrid model, where mobile

sensing is augmented with ambient context from cheap ev-

eryday sensors, can prove to be an attractive and practically

viable alternative. Specifically, we show how the set of

viable ‘hidden context states’ is associated with a set of

possible spatial and temporal constraints, generated as a

consequence of the available combination of mobile and
ambient sensing. Besides a generic formulation, we specif-

ically combine smartphone-based activity recognition with

motion/occupancy sensor-based ambient monitoring to help

identify the indoor location or space inhabited by different
users. Such location context is crucial to correctly classifying

ADLs, and this overcomes a challenge of indoor localization

in smart homes (as opposed to commercial spaces blanketed

by Wi-Fi APs). In addition, we develop a modified coupled

HMM to express the temporal evolution of the context

of multiple individuals subject to such constraints, and

then present a computationally-efficient, modified Viterbi

algorithm to determine the most likely temporal evolution

of each individual’s context. We provide results that show

that this approach can be viable at least for multi-inhabitant

environments, such as assisted living facilities, where the

number of individuals is relatively small (e.g., ≈ 5). Finally,

we use test data, generated by appropriately synthesizing

real-life activity traces, to quantify the performance of our
algorithms and show that the intelligent fusion of such mo-

bile plus ambient context data can improve the accuracy of

‘hidden’ context estimation by over 70%, and the accuracy

of ADL classification by ≈ 30%.

II. RELATED WORK

Much existing work on multi-user activity recognition

relies primarily on video data. HMMs and CHMMs for

modeling and classifying interactions between multiple users

have been addressed [14], [18], while others [6] have devel-

oped a dynamically multi-linked HMM model to interpret

group activities. Activity recognition in smart environments

using unsupervised clustering of data collected by a rich

set of wearable sensors has been explored [4]. The recent

proliferation of sensor-equipped smartphones suggests that

a vast amount of individual-specific data can be collected

via the phone’s microphone, accelerometer, gyro, and mag-

netometer [7], [11].

Sensor-based activity recognition strategies can be cat-

egorized into static and temporal categories [22]. Naive

Bayes [13], Decision Trees [13], K-Nearest Neighbors [8]

and SVM [8] have been used extensively as static classi-

fiers; temporal classification approaches infer the values of

hidden context states using approaches such as HMMs [12],

Dynamic Bayesian Networks [15], Conditional Random

Fields [10] and CHMMs [18]. SAMMPLE [21] utilizes

a layered approach, where the lower layer classifies low-

level micro-activities and the higher level uses micro-activity

based features to classify complex ADLs. We believe our

approach is distinct from these approaches, in its judicious

combination of available smartphone sensors and simple

infrastructural sensors.

The notion of using infrastructural sensors to infer individ-

ualized context in a multi-inhabitant smart environment was

first studied by Wilson [19], which uses a particle filtering

approach to infer the evolution of coupled HMMs based on

events generated by multiple infrastructure-embedded sen-

sors. Unlike earlier work [19], we exploit the pervasiveness

of body-worn smartphone sensors to infer person-specific

context; additionally, while previous approaches focus only

on inferring whether an individual is moving or stationary,

our focus is on inferring complex ADLs.

III. THE CONSTRAINED MULTI-USER ACTIVITY MODEL

We first mathematically describe the evolution of the

context state of an individual, and then consider the various

spatiotemporal constraints associated with the combination
of smartphone-based and ambient sensing observations. We

also outline how these ‘micro-context’ observations and

inferences can then be used to derive the higher-layer ADLs,

using a variant of the two-tier SAMMPLE approach [21].
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Consider a smart environment (such as an assisted living

facility) with N distinct individuals. The ith individual’s

micro-context, at a given time instant t, is captured by a M-
dimensional tuple Contexti(t) = 〈ci1(t), ci2(t), . . . , ciM (t)〉,
where each of the M elements of the tuple corresponds

to a specific type of context attribute. In the canon-

ical case considered in this paper, context is viewed

as a 〈microactivity, location〉 tuple, where microac-

tivity refers to an individual’s postural state (such as

{walking, sitting, standing, . . . , }) and location can as-
sume values such as {bedroom, bathroom, kitchen, . . .}. In
general, assuming time to be discretely slotted, an individual

i’s activity pattern may be represented by a micro-context
stream, i.e., Contexti(t), Contexti(t+1), . . .. An important
characteristic of our model is that a subset of theM elements

are ‘observable’. They may be inferred (with varying levels

of estimation error) using solely the sensors embedded

within individual’s body-worn and personal mobile device.

For example, the determination of postural microactivity can

be made using the 3-axis accelerometer [7], [11] universally

available in modern smartphones. The remaining elements

of each tuple are, however ‘hidden’. The user’s location is

not directly revealed by the smartphone accelerometer data.

The key goal of our research is to propose a technique to

infer these hidden attributes.

Our smart environment is also assumed to posses J
different types of inexpensive infrastructural sensors. As-
sume that the environment has a total of K such sen-

sors, each of which is deployed at a well-known location.

The kth : k = 1, . . . ,K sensors, located at an a-priori
known location Loc(k), is assumed to provide some mea-
sure of ambient context, denoted by ConAmbient(k) for
the ambience. For example, as a canonical exemplar, the

environment consists of K = 10 different motion sensor
(J = 1), each of which is placed in a location such as
{bedroom, bathroom, kitchen, . . .}.
A. Two-Tier Inferencing for Individual/Multiple Inhabitants

Given our formulation above, the evolution of the micro-

activities of the ith user can be represented by a state

transition matrix over Contexti(t). More specifically, we
assume that the evolution of the state is Markovian [17] with

order 1 (higher order Markovian models are conceptually

similar, but mathematically more elaborate), so that the

P (Contexti(t)|;Contexti(t−1)) denotes the likelihood of
the current context state, given the past context state.

Our context extraction process is illustrated in Fig. 1 and

consists of two tiers (similar to the conceptual stages of the

SAMMPLE approach [21]). The first goal of our research

(illustrated in the “lower tier” of Fig. 1) is to infer the

‘hidden states’ (specifically location in our experiments),
given the observable (or directly inferrable) values of pos-
tural activity. In Fig. 1, the smartphone sensor data of an
individual are first transformed into corresponding low-level

‘observable’ context (e.g., using the accelerometer data to

infer the postural states). Note that this transformation is

not the focus of this paper: we simply assume the use

of well-known feature based classification techniques to

perform this basic inferencing. The core contribution of the

paper lies in the next step: inferring the hidden states of
an individual’s low-level context, based on the combination
of phone-generated and ambient sensor data. As shown in
Fig. 1, this lower-tier’s challenge is to infer the ‘hidden

states’ of multiple individuals concurrently, utilizing both
their observable low-level individual context and the non-

personal ambient context.

Figure 1. Illustration of our two-tier approach to combining smartphone
and infrastructural sensor data.

After inferring these hidden states, we now have a com-

plete set of Contexti(t) observations for each individ-

ual. As the next step of the two-tier process (the “higher

tier” in Fig. 1), the entire set of an individual’s context

stream is then used to classify his/her ‘higher level’ (or so-

called ‘complex’) ADLs. More specifically, based on the

inferencing performed in the lower-tier, the joint (postural
activity, location) stream is used to identify each individual’s
complex activity. The interesting question that we experi-

mentally answer is: how much improvement in the accuracy
of complex activity classification do we obtain as a result
of this additional availability of the hitherto ‘unobservable’
location context?

B. Capturing Spatial and Temporal Constraints

Our process for performing the ‘lower-tier’ of context

recognition is driven by a key observation: in a multi-

inhabitant environment, the context attributes of different

individuals are often mutually coupled, and related to the

ambient context sensed by the infrastructural sensors. In

particular, we observe that the ‘unobserved’ components
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of each individual’s micro-level context are subject (prob-

abilistically) to both temporal and spatial constraints. As
specific examples, consider the case of two users occupying

a smart environment, we can see the following constraints

(also shown in Fig. 2):

a) intra-user temporal constraints: For a specific user i, if
Contexti(t−1) = (sitting, livingroom), Contexti(t)
cannot equal (sitting, bathroom); i.e., the user cannot
simply change rooms while remaining in a ‘sitting’

state!

b) inter-user spatial constraints: Given two users i and
j, both Contexti(t) and Contextj(t) cannot be

(sitting, bathroom); i.e., both the users are very un-
likely to be sitting in the bathroom concurrently!

C. Coupled HMM for Multiple Inhabitants

Given our assumption of Markovian evolution of each

individual’s context, and the demonstrated constraints or

‘coupling’ that arise between the various ‘hidden’ contex-

tual attributes of different individuals, we can then model

the evolution of each individual’s ‘low-level context’ (i.e.,

Contexti(t)) as a coupled Hidden Markov Model [3]. To
define this HMM, let O(t) denote the “observable stream”
(in practice, the accelerometer readings on the different

smartphone and the motion readings reported by the occu-

pancy sensors).

If the environment was inhabited by only a single user

i, the most probable context sequence, Contexti(t), given
an observed sequence, is that which maximizes the joint

probability P (Oi|Contexti) as shown by:

P (Oi|Contexti) =

T∏

t=1

P (Contexti(t)|Contexti(t − 1))

×P (Oi(t)|Contexti(t)) (1)

In our case, there are multiple users inhabiting the same

environment with various spatiotemporal constraints ex-

pressed across their combined context. In this case, assuming

N users, we have an N -chain coupled HMMs, where each
chain is associated with a distinct user as shown below:

P (Context(n)|O) =

N∏

(n)

(
π

s
(n)
1

P
s
(n)
1

(o
(n)
1 )

T∏

t=2

⎛

⎝P
s
(n)
t

(o
(n)
t )

N∏

(d)

P
s
(n)
t |s(d)t−1

⎞

⎠

⎞

⎠ /P (O) (2)

where a different user is indexed by the superscript.

P
s
(n)
t

(o
(n)
t ) is the emission probability given a state in chain

n, P
s
(n)
t |s(d)t−1

is the transition probability of a state in chain

n given a previous state in chain d and π
s
(n)
1

is the initial

state probability.

Simplifying the N chain couplings as shown in Eqn. 2 by

considering two users, the posterior of the CHMM for any

User i

User j <walking 
living room>

<sitting, 
bathroom>

<sitting, 
bathroom>

temporal/causal

spatial/across 
user or space

t-2 t-1 t

<sitting,
living room>

<sitting,
living room>

<sitting,
bathroom>

Figure 2. CHMM with inter-user and intra-user constraints.

user can be represented as follows.1

P (Context|O) =
πs1Ps1(o1)πs

′
1
Ps
′
1
(o
′
1)

P (O)
T∏

t=2

Pst|st−1
Ps
′
t|s′t−1

Ps
′
t|st−1

Pst|s′t−1
Pst(ot)Ps

′
t
(o
′
t) (3)

where πs1 and πs
′
1
are initial state probabilities; Pst|st−1

and

Ps
′
t|s′t−1

are intra-user state transition probabilities; Pst|s′t−1

and Ps
′
t|st−1

are inter-user state transition probabilities;

Pst(ot) and Ps
′
t
(o
′
t) are the emission probabilities of the

states respectively for User i and User j. Incorporating the
spatial constraints across users as shown in Fig 2, we modify

the posterior of the state sequence for two users by:

P (Context|O) =
πs1Ps1(o1)πs

′
1
Ps
′
1
(o
′
1)

P (O)
T∏

t=2

Pst|st−1
Ps
′
t|s′t−1

Ps
′
t|st−1

Pst|s′t−1
Pst|s′tPs

′
t|stPst(ot)Ps

′
t
(o
′
t)

(4)

where Pst|s′t and Ps
′
t|st denote the inter-user spatial state

transition probabilities (constraints can be modeled with zero

or low probability values) at the same time instant.

IV. SOLVING THE COUPLED ACTIVITY MODEL

Having defined the coupled Hidden Markov model

(CHMM), we now discuss how we can solve this model to

infer the ‘hidden’ context variables for multiple occupants

simultaneously. Unlike prior work [3] which only considers

the conditional probabilities in time (i.e., the likelihood of

an individual to exhibit a specific context value at time t,
given the context value at time t − 1), we consider both
the spatial effect on conditional probabilities (coupled across

users) as well as the additional constraints imposed by the
joint observation of smartphone and infrastructural sensor

data. We first show (using the case of two simultaneous

occupants as a canonical example) how to prune the possible

state-space based on the spatiotemporal constraints. We then

propose an efficient dynamic programming algorithm for

multiple users, based on Forward-backward analysis [17] to

1We interchangeably use Context as a state s in our HMM model. For

brevity we denote Contexti(t) = st and Contextj(t) = s
′
t in equations.
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determine the best parameters for the constrained CHMM,

and subsequently describe a modified Viterbi algorithm to

infer the probability of the temporal context of each user.
Ot-2 Ot-1 Ot Ot+1 Ot+2 Ot+3

Ot-2 Ot-1 Ot Ot+1 Ot+2 Ot+3

Heads
Sidekicks

User-1 with 3-state 
HMM trellis

User-2 with 4-state 
HMM trellis

Transition 
Probabilities

Observation 
Probabilities

Pi(ot)

hi,t

ki’,t

*i,t

*j,t-1

*N,t-1

*2,t-1

*1,t-1

Pi|kj’,t-1

Pi|h1,t-1

Pi|h2,t-1

Pi|hN,t-1

Pi|hj,t-1

Pk i’,t
(ot)

Pki’,t|hj,t-1

11

Pki’,t|kj,t-1

hj,t-1

kj’,t-1

q1 q1 q1 q1 q1 q1

q2 q2 q2 q2

qN qNqN qN qN qN

q2

q1

q3

qN

q1

q2

q3

qN

State i and j are associated 
with Chain 1 or User-1

State i’ and j’ are associated 
with Chain 2 or User-2

Figure 3. Search through the state trellis of a 3-state HMM for User-1
and 4-state HMM for User-2 for state probabilities, transition, coupling and
spatial probabilities and most likely path

A. State Space Filtering from Spatial/Temporal Constraints

In this section we introduce a pruning technique for

accelerating the evaluation of HMMs from multiple users.

By using the spatiotemporal constraints between the micro-

activities (of different users) across multiple HMMs, we

can limit the viable state space for the micro-activities

of each individual, and thereby significantly reduce the

computational complexity. Unlike existing approaches (e.g.,

[16]) where such pruning is performed only during the

runtime estimation of states, we perform our pruning during

the offline building of the CHMM as well.

To illustrate our approach, consider the state-trellis for

two users, User-1 and User-2, illustrated in Fig. 3. In

this figure, User-1 is assumed (for illustration purposes) to

have 3 possible values for its context tuple (i.e., (postural

activity, location)) at each time instant, whereas User-2

is assumed to have 4 such values for her context tu-

ple; each such context tuple is denoted by a node qi in

the trellis diagram. Assume that User-1’s postural activ-

ity (inferred from the smartphone accelerometer) at time

t − 2 is ‘sitting’, while User-2’s postural activity equals

‘standing’. Furthermore, we observe that the living room
infrastructure sensor was activated at time stamp t − 2,
indicating that the living room was occupied at t − 2. In
this case, of the 3 possible values: {(sitting, livingroom),
(sitting, bathroom), (sitting, kitchen)} in the trellis for
User-1, only the (sitting, livingroom) state is pos-

sible at time t − 2. Likewise, of the 4 possible

values: {(standing, livingroom), (standing, bathroom),
(standing, kitchen), (walking, corridor)} for User-2,

only the (standing, livingroom) state is possible. Clearly,

in this case, the ambient context has enabled us to prune the

state space for each user unambiguously.

Continuing the example, imagine now that two infrastruc-

ture sensors, say kitchen and living room, are observed to
be triggered at time stamp t − 1, while User-1’s postural
activity remains ‘sitting’, while User-2’s activity is now

‘walking’. In this case, while an individual HMM may allow

(2*2 =) 4 possible state pairs (the Cartesian product of

{(sitting, kitchen), (sitting, livingroom)} for User-1 and
{(walking, kitchen), (walking, livingroom)} for User-2),
our coupled HMM spatially permits the concurrent occur-

rence of only some of these context states (namely, the ones

where both User-1 and User-2 inhabit different rooms). In

effect, this reduces the possible set of concurrent context

states (for the two users) from 4 to 2. Furthermore, now con-

sidering the temporal constraint, we note that User-1 cannot
have the state (sitting, kitchen) at time t−1, as she cannot
have changed location while remaining in the ‘sitting’ state

across (t − 2, t − 1). As a consequence, the only legitimate
choice of states at time t − 1 is (sitting, livingroom) for
User-1, and (walking, kitchen) for User-2.
Mathematically, this filtering approach can be expressed

more generically as a form of constraint reasoning. In
general, we can limit the temporal constraint propagation

to K successive instants. If each of the N individuals in

the smart environment have M possible choices for their

context state at any instant, this constraint filtering approach

effectively involves the creation of a K − dimensional
binary array, with length M ∗ N in each dimension, and

then applying the reasoning process to mark each cell of this

array as either ‘permitted’ or ‘prohibited’. In practice, this

process of exhaustively evaluating all possible (M ∗ N)K

choices can be significantly curtailed by both (a) starting

with those time instants where the context is deterministic

(in our example, the t−2 choices are unambiguous as shown
in Fig. 3) and (b) keeping the dimension T small (for our

experimental studies, T = 2 provided good-enough results).

B. Model Likelihood Estimation

To intuitively understand the algorithm, consider the case

where we have a sequence of T observations (T consecutive

time instants), with M underlying states (reduced from the

M ∗ N original states by the pruning process) at each step.

As shown in Fig. 3, this reduced trellis can be viewed as

a matrix of Context tuple, where α[i, t] is the probability
of being in Context tuple i while seeing the observation at
t. In case of our coupled activity model, to calculate the
model likelihood P (O|λ), where λ =(transition, emission
probabilities), two state paths have to be followed over time

considering the temporal coupling, one path keep track of

the head, probable Context tuple of User 1 in one chain
(represented with subscript h) and the other path keep track
of the sidekick, Context tuple of User 2 with respect to
this head in another chain (represented with subscript k) as

42



Procedure Forward (input: observation of length T,
state-graph of length N; output: forward probability αi,t)
1. Procedure State Filter(); // not shown due to lack of space
//prune state-space based on constraints
2. Initialize partial posterior probability matrix pp[N, T ];
full posterior probability matrix α∗[N, T ]
and a forward probability matrix α[N + 2, T ]
//Consider a dummy start (q0) and final state (qf)
3. For state i = 1 to N
4. α∗[i, 1] ← Pq0|i × Pi(o1); //start state is q0
//Calculate all partial posteriors (pp) for selecting
best sidekick (k) in each chain
5. For time step t = 2 to T //for T observations in chain 1
6. For state i = 1 to N //for hi,t in chain 1
7. For state j = 1 to N // for hj,t−1 in chain 1
8. pp[i, t] ←∑N

j=1 α∗[j, t − 1] × Pi|hj × Pi|k
j′ × Pi(ot);

9. For state j’=1 to N//for sidekicks in chain 2
10. kj′,t−1 = argmaxj pp[i, t]
//best sidekick from chain 2 for a head in chain 1
//Calculate full posteriors for each path considering
head hi,t = i and hj,t−1 as a sidekick kj,t−1

in chain 1 and sidekick kj′|t−1 and ki′|t in chain 2
11.For time step t = 2 to T //for T observations in chain 1
12. For state i = 1 to N // chain 1
13. For state j = 1 to N // chain 1
14. α∗[i, t] ←∑N

j=1 α∗[j, t − 1] × Pi|hj × Pi|k
j′ × Pk

i′ |hj × Pk
i′ |kj

×Pi(ot) × Pk
i′ (ot);

//Calculate marginalized α variables
15.For time step t = 2 to T //for T observations in chain 1
16. For state i = 1 to T //for T heads in chain 1
17. For state g’ = 1 to N//for sidekicks in chain 2
18. α[i, t] ←∑N

j=1 α∗[j, t − 1] × Pi|hj × Pi|k
j′ × Pk

g′ |hj × Pk
g′ |kj

×Pi(ot) × Pk
g′ (ot);

19.α[qf , T ] ←∑N
i=1 α[i, T ] × Pi|qf ; //final state is qf

20.return α[qf , T ]. //likelihood

Figure 4. Forward Algorithm pseudocode for Coupled Activity Model

shown in Fig. 3. First, for each observation Ot, we compute

the full posterior probability α∗[i, t] for all context streams
i considering all the previous trellis α∗[j, t − 1] in User 1
and inter-chain transition probabilities of sidekick trellis for

User 2 (line 14 in Fig 4).

In each step of the forward analysis we calculate the max-
imum a posterior (MAP) for {Contexti(t), Contextj

′
(t −

1) = head, sidekick} pairs given all antecedent paths.

Here there are multiple trellises for a specific user. We

use i, j for User 1 and i′, j′ for User 2, where hi, hj and

ki, kj ∈ Contexti, Contextj and ki′ , kj′ and hi′ , hj′ ∈
Contexti

′
, Contextj

′
. Every Contexti(t) tuple for User 1

sums over the same set of antecedent paths, and thus share

the same Contextj
′
(t − 1) tuple as a sidekick from User

2. We choose the Contextj
′
(t− 1) tuple in User 2 that has

maximum marginal posterior given all antecedent paths as

a sidekick (line 10 in Fig 4). In each chain, we choose the

MAP state given all antecedent paths. This is again taken

as a sidekick to heads in other chains. We calculate a new

path posterior given antecedent paths and sidekicks for each

head. We marginalize the sidekicks to calculate the forward

variable α[i, t] associated with each head (line 18 in Fig 4).
This forward analysis algorithm pseudocode is articulated in

Fig. 4 and explained with a pictorial diagram in Fig. 3 where

hi,t and ki,t represents the heads and sidekicks indices at

Procedure Viterbi (input: observation of length T,
state-graph of length N; output: best-path)
1. Initialize a path probability matrix viterbi[N + 2, T ]

and a a path backpointer matrix backpointer[N + 2, T ]
2. For state i = 1 to N
3. α[i, 1] ← Pq0|i × Pi(o1); //forward variable
4. backpointer[i, 1] ← 0;
//for each antecedent path in t − 1 select MAP sidekicks
5. For state j = 1 to N // for path hj,t−1 in chain 1
6. For state i’ = 1 to N // for sidekick in chain 2
7. ki′,t = argmaxi α[i, t]
//best sidekick from chain 2 for a head in chain 1
8. For time step t = 2 to T
9. For state i = 1 to N
10. For state j = 1 to N
//for each head in t, select antecedent path and
sidekick that maximizes the new head’s posterior
11.viterbi[i, t] ← maxNj=1 viterbi[j, t − 1] × Pi|hj × Pk

i′ |hj × Pi(ot);

//backpointer keeps track of whichever state was the most
probable path to the current state
12.backpointer[i, t] ← argmaxNj=1 viterbi[j, t − 1] × Pi|hj × Pk

i′ |hj ;
13.viterbi[qf , T ] ← maxNi=1 viterbi[i, T ] × Pi|qf ;
//final state is qf
14.backpointer[qf , T ] ← argmaxNi=1 viterbi[i, T ] × Pi|qf ;
15.return the path by following backpointers from
backpointer[qf , T ].

Figure 5. Viterbi Algorithm psuedocode for Multiple Users

each time stamp t, α∗[i, t] is the probability mass associated
with each head and pp[i, t] is the partial posterior probability
of a state given all α∗[j, t − 1].

C. Determination of Most-Likely Activity Sequence

Subsequent to state pruning and model likelihood determi-

nation through forward analysis, the inference of the hidden

context states can be computed by the Viterbi algorithm,

which determines the most likely path (sequence of states)

through the trellis. Given the model constructed as described

above, we then use the Viterbi algorithm to find the most
likely path among all unpruned state paths through the trellis.
For our coupled activity model, we calculate the MAP value

given all antecedent paths. Given our coupled model, for

each head at time t, the Viterbi algorithm must also choose

an antecedent path in t − 1 for a single HMM, as well as
a sidekick in t. This can be achieved in two steps: i) Select
MAP sidekicks in t for each antecedent path in t − 1 and
ii) Select the antecedent path and associated sidekick that

maximizes the new head’s posterior for each head in t. Fig. 5
presents the pseudocode for our modified Viterbi algorithm,

developed for multi-inhabitant environments.

V. IMPLEMENTATION AND RESULTS

In this section, we report on our experiments that inves-

tigate the benefit of this proposed approach for recognizing

complex ADLs using a combination of smartphone and

simple infrastructural testing. Our experiments are conducted

using 10 participants at the WSU CASAS smart home.

A. Data Collection

To validate our approach, we collected data from 10

subjects, each of whom carried an Android 2.1 OS based
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Samsung Captivate smart phone (containing a tri-axial ac-

celerometer and a gyroscope) [5]. Each subject carried

the phone while performing different activities of daily

living. We utilized a custom application on the phone to

collect the corresponding accelerometer sensor data; while

the accelerometer sampling rate could be varied if required,

our studies are conducted based on a sampling frequency

of 80 Hz. In tandem, we also collected data from ceiling-

mounted infrared motion sensors (embedded as part of

the SHIMMER platform), providing us a combination of

concurrent smartphone and ambient sensor data streams.

Using a smartphone-based application, subjects could stop

and start the sensor data that was being collected, as well

as manually input the activity they were about to perform.

As each individual performed these tasks separately from

the others, the multi-user sensor stream (for the ambient

sensors) was then obtained by synthetically combining (for

each time slot) the readings from all the simultaneously

activated ambient sensors. We superimposed the data-traces

of two randomly chosen users to generate this multi-user

sensor data streams.

B. Enumeration of Activities

Consistent with our proposed two-tier architecture, the

activities we monitored consist of two types: 1) Low-level
(or micro): These consist of the postural or motion activities
that can be classified by a phone-mounted accelerometer.

For our study, the micro-activity set consisted of 6 labels:

{sitting, standing, walking, running, lying, climbing stairs}.
2) High-level (or complex): These consisted of semantically
meaningful ADLs, and included 6 labels:

• Cleaning: Subject wiped down the kitchen counter top
and sink.

• Cooking: Subject simulated cooking by heating a bowl
of water in the microwave and pouring a glass of water

from a pitcher in the fridge.

• Medication: Subject retrieved pills from the cupboard

and sorted out a week’s worth of doses.

• Sweeping: Subject swept the kitchen area.
• Washing Hands: Subject washed hands using the soap
in the bathroom.

• Watering Plants: Subject filled a watering can and

watered three plants in living room.

Note that each instance of the ADL had definite (start, end)

times, manually annotated by each subject. Thus, in this

paper, we assume that we have a priori knowledge of the

exact mapping between an instance of a complex activity and

the underlying set of micro-activities. The subjects repeated

execution of these complex activities four times.

C. Micro-Activity Classification

Our goal is to apply feature-based classification tech-

niques for the micro-activities, and then apply the micro-

activity stream in a two-tier manner to understand the impact

on complex activity classification. To classify the micro-

activities, the 3-axis accelerometer streams and the 3-axis

gyroscope data were broken up into successive frames (we
experimented with frame lengths of {1,2,4,8,12} secs and
report results here for the representative case of 4 seconds),

and a 30-dimensional feature vector (see Table I) was com-

puted over each frame. The ground-truth annotated training

set (aggregated across all 10 users) was then fed into the

Weka toolkit [20] and used to train 6 classifiers: Multi-layer

Perceptron, Naive Bayes, Bayesian network, Decision Table,

Best-First Tree, and K-star. The accuracy of the classifiers

was tested using 10-fold cross-validation.

Table I
FEATURE EXTRACTED FROM THE RAW DATA

Feature Name Definition
Mean AVG (

∑
xi); AVG (

∑
yi);AVG (

∑
zi)

Mean-Magnitude AVG (
√

x2
i + y2

i + z2
i )

Magnitude-Mean
√

x̄2 + ȳ2 + z̄2

Max, Min, Zero-Cross max, min, zero-cross
Variance VAR (

∑
xi); VAR (

∑
yi); VAR (

∑
zi)

Correlation corr(x, y) =
cov(x,y)
σx,σy

Fig. 6 plots the average classification accuracy for the

micro-activities: we see that, except for Naive Bayes, all the

other classifiers had similar classification accuracy of above

90%. Our experimental results confirm that the smartphone-

mounted sensors indeed provide accurate recognition of the

low-level micro-activities. For subsequent results, we utilize

the Best-First Tree classifier (as this provides the best results

for the Naive-Mobile approach described in Section V-E).
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D. Location Classification

As explained previously, the subject’s indoor location

is the ‘hidden context’ state in our studies. Accordingly,

we fed the combination of individual-specific micro-activity

streams features (not accelerometer sensor features as shown

in Table I but micro activity features as explained as

Naive-SAMMPLE in subsection V-E) and the infrastructure

(motion sensor) specific location feature into our activity

recognition (ar version 1.2) code [1] on our multi-user

datasets to train each individual HMM model. Our Viterbi

algorithm then operates on the test data to infer each
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subject’s most likely location trajectory. Fig. 7 reports on the

accuracy of the location estimate of 4 individuals randomly

chosen. We see that our use of additional intra-person and

inter-person constraints results in an overall accuracy of

room-level location inference of approx. 72% on average. In

contrast, given the presence of multiple occupants, a naive

strategy would be able to declare the location unambiguously

for only those instants where either (a) only one inhabitant

was present in the smart home, or (b) all the occupants were

located in the same room. We found this to be the case

for only ≈ 5 − 6% of our collected data set, implying that

our constrained coupled-HMM technique is able to achieve

over a 12-fold increase in the ability to meaningfully infer

individual-specific location.

E. Macro/Complex Activity Classification

Finally, we investigate the issue of whether this

infrastructure-assisted activity recognition approach really

helps to improve the accuracy of complex activity recogni-

tion. In particular, we experimented with 4 different strate-

gies, which differ in their use of the additional infrastructure

assistance (the motion sensor readings) and the adoption of a

one-tier or two-tier classification strategy: 1) Naive-Mobile
(NM): In this approach, we use only the mobile sensor data
(i.e., accelerometer and gyroscope-based features) to classify

the complex activities. More specifically, this approach is

similar to the step of micro-activity classification in that the

classifier is trained with features computed over individual

frames, with the difference lying in the fact that the training

set was now labeled with the complex activity label.
2) Naive-SAMMPLE (NS): In this two-tier approach, we
essentially replicate the approach in [21]. In this approach,

instead of the raw accelerometer data, we use the stream of

inferred micro-activity labels as the input to the classifier.

More specifically, each instance of a complex activity label

is associated with a 6-dimensional feature-vector consisting

of the number of frames (effectively the total duration) of

each of the 6 micro-activities considered in our study. For

example, if an instance of ‘cooking’ consisted of 3 frames of

‘sitting’, 4 frames of ’standing’ and 7 frames of ‘walking’,

the corresponding feature vector would be [3 4 7 0 0 0], as
the last 3 micro-activities do not have any occurrences in this

instance of ‘cooking’. 3) Infra-Mobile (IM): This is the first
infrastructure-augmented approach. Here, we associate with

each frame of complex activity instance, a feature vector
corresponding to the accelerometer data, plus the location

estimated by our Viterbi algorithm. This is effectively a

one-tier approach, as we try to classify the complex activity

directly based on accelerometer features.

4) Infra-Mobile-SAMMPLE (IMS): This combines both
the two-tier classification strategy and the additional ‘lo-

cation’ context inferred by our Viterbi algorithm. This is

effectively an extension of the Naive-SAMMPLE approach,

in that we now have a 7-dimensional feature vector, with the

first 6 elements corresponding to the frequency of the un-

derlying micro-activities and the 7th element corresponding

to the indoor location inferred by our Viterbi algorithm.
Fig. 8 plots the accuracy of the different approaches (using

10-fold cross validation) for a randomly selected set of 5

subjects. (The other subjects have similar results and are

omitted for space reasons.) We see, as reported in prior

literature, that classifying complex activities (which can

vary significantly in duration and in the precise low-level

activities undertaken) is very difficult using purely phone-

based features: both Naive-Mobile and Naive-SAMMPLE

report very poor classification accuracy–an average of 45%
and 61%, with values as low as 35% and 50% respectively.

In contrast, our ability to infer and provide the room-level

location in the smart home setting leads to an increase (over

30%) in the classification accuracy using the one-tier Infra-

Mobile approach, as high as 79%. Finally, the Infra-Mobile-
SAMMPLE approach performs even better by using micro-

activity features for classification, attaining classification

accuracy as high as 85%. The results indicate both the
importance of location as a feature for complex ADL dis-

crimination in smart homes (not an unexpected finding) and

the ability of our approach to correctly infer this location in

the presence of multiple inhabitants (a major improvement).
Table II provides the Best-First Tree confusion matrix

for the 6 pre-defined complex activities, for both the

Naive-Mobile approach and our suggested Infra-Mobile-

SAMMPLE approach. We can see that pure locomo-

tion/postural features perform very poorly in classifying

complex activities (such as medication, washing hands or

watering plants) in the absence of location estimates; when

augmented with such location estimates, the ability to clas-

sify such non-obvious activities improves.

Table II
CONFUSION MATRIX FOR COMPLEX ACTIVITY SET FOR BOTH NM & IMS

Macro-Activity a b c d e f
(NM/IMS)

Cleaning Kitchen = a 90/101 63/62 27/0 39/76 11/0 14/0

Cooking = b 53/61 251/315 59/0 111/151 22/0 39/0

Medication = c 26/0 65/0 383/580 60/0 24/0 30/0

Sweeping = d 27/45 114/106 69/0 359/476 35/0 31/0

Washing Hands = e 29/0 31/0 37/0 48/0 49/207 14/0

Watering Plants = f 11/0 56/0 34/0 54/0 10/0 85/248

F. Computation Complexity of the Viterbi Algorithm
We now report some micro-benchmark results on the per-

formance of the Viterbi algorithm. In particular, we show the

performance of our constrained pruned-HMM approach and

evaluate it using two metrics: a) estimation accuracy, mea-
sured as the log likelihood of the resulting model predictions

(effectively indicating how much improvement in accuracy

the constraint-based pruning provides). b) execution speed
(effectively indicating how much computational overhead

may be saved by our pruning approach).
Fig. 9 depicts the training and testing log-likelihoods

of our coupled model which establishes that train-test di-

vergence is very minimal. Fig. 10 shows the computation
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time of our algorithms with a fixed number of states and

increasing number of data sequences, whereas Fig. 11 plots

the computation time with a fixed number of data sequences

and increasing number of states. Clearly, pruning the state

space can reduce the computational overhead. For example,

if the joint number of states is reduced from 10×10 = 100 to
7×7 = 49, we would obtain a 5-fold savings in computation
time (2500ms → 500ms).

VI. CONCLUSIONS

In this work, we have outlined our belief in the prac-

ticality of a hybrid mobile-cum-infrastructure sensing for

multi-inhabitant smart environments. This combination of
smartphone-provided personal micro-activity context and

infrastructure-supplied ambient context allows us to express

several unique constraints, and show how to use these

constraints to simplify a coupled HMM framework for

the evolution of individual context states. Results obtained

using real traces from a smart home show that our ap-

proach can lead to ∼70% accuracy in our ability to re-

construct individual-level hidden micro-context (‘room-level
location’). This additional context leads to significant im-

provements in the accuracy of complex ADL classification.

These initial results are promising. However, we believe

that the additional sensors on smartphones can provide

significantly richer observational data (for individual and

ambient context). We plan to explore the use of the smart-

phone audio sensor to enable capture of different ‘noise

signatures’ (e.g., television, vacuum cleaner, human chat);

such additional micro-context should help to further improve

the accuracy and robustness of complex ADL recognition.
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