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Abstract. One concern in using cloud storage is that the sensitive data
should be confidential to the servers which are outside the trust domain
of data owners. Another issue is that the user may want to preserve
his/her anonymity in the sharing or accessing of the data (such as in Web
2.0 applications). To fully enjoy the benefits of cloud storage, we need
a confidential data sharing mechanism which is fine-grained (one can
specify who can access which classes of his/her encrypted files), dynamic
(the total number of users is not fixed in the setup, and any new user
can decrypt previously encrypted messages), scalable (space requirement
does not depend on the number of decryptors), accountable (anonymity
can be revoked if necessary) and secure (trust level is minimized).

This paper addresses the problem of building a secure cloud storage
system which supports dynamic users and data provenance. Previous
system is based on specific constructions and does not offer all of the
aforementioned desirable properties. Most importantly, dynamic user is
not supported. We study the various features offered by cryptographic
anonymous authentication and encryption mechanisms; and instantiate
our design with verifier-local revocable group signature and identity-
based broadcast encryption with constant size ciphertexts and private
keys. To realize our concept, we equip the broadcast encryption with the
dynamic ciphertext update feature, and give formal security guarantee
against adaptive chosen-ciphertext decryption and update attacks.

Keywords: Anonymity, broadcast encryption, cloud storage, dynamic
encryption, group signatures, pairings, secure provenance.

1 Introduction

New computing paradigms keep emerging. One notable example is the cloud
computing paradigm, a new economic computing model made possible by the ad-
vances in networking technology, where a client can leverage a service provider’s

� Funded by A*STAR project SecDC-112172014.

D. Naccache (Ed.): Quisquater Festschrift, LNCS 6805, pp. 442–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Published in Cryptography and Security: From Theory to Applications. Lecture Notes in Computer 
Science, vol 6805. Springer, pp. 442-464.
https://doi.org/10.1007/978-3-642-28368-0_28
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



Dynamic Secure Cloud Storage with Provenance 443

computing, storage or networking infrastructure. With the unprecedented expo-
nential growth rate of information, there is an increasing demand for outsourcing
data storage to cloud services such as Microsoft’s Azure and Amazon’s S3.

The use of public cloud infrastructure introduces significant security and pri-
vacy risks. For the sensitive data, one can always use data encryption before
outsourcing to mitigate the confidentiality concern. However, the hurdle often
lies in its management. Consider that a certain organization is a cloud service
client; different individual users within an organization should have different ac-
cess privileges of the organization’s data. The cloud client may not want to trust
the cloud server in performing the access control faithfully, or put the whole sys-
tem under the control of a reference monitor inside a trusted hypervisor. Apart
from the management of access control, dynamic user management is also an
important feature for any practical system. New users may join the system after
the data is encrypted, and it is desirable that a new user can decrypt previ-
ously created ciphertexts if necessary. This also implies that the same copy of
ciphertext can be decryptable by more than one user, and one may not want to
maintain multiple ciphertexts corresponding to the same plaintext data, either
for easier data management or minimizing storage overhead.

Another issue is privacy. A cloud client hoping to enforce access control does
not necessary need to let the cloud server to know the identity of the users.
Actually, anonymity is a desirable feature for many web or collaborative ap-
plications. Active involvement of discussion or collaboration over web can be
partially attributed to the (pseudo) anonymity perceived by the users. On the
other hand, perfect anonymity might be abused by misbehaving users. It is thus
equally important to support data provenance, especially, to record who created,
modified, deleted data stored in a cloud.

Can the current advances in cryptography solve our problem? Recall that us-
ing group signatures, each group member can sign a message on behalf of a group
such that anyone can verify that the group signature is produced by someone
enrolled to the group, but not exactly whom. Can we just employ any group
signature scheme for the data provenance, and any public key encryption for
the data confidentiality requirement of cloud storage? Concretely, for a user to
upload (encrypted) data, he or she has to sign the ciphertext using the member
signing key. The cloud service provider accepts this ciphertext if the signature
is valid. All the users’ action regarding insertion, modification and deletion will
be accountable due to the use of group signature as an anonymous authentica-
tion mechanism. A group manager can then open the signature to reveal the
uploader’s identity in case the data is in dispute. Indeed, it is actually the ap-
proach taken by a recent secure provenance system for cloud computing [12]. We
revisit this problem, identify and realize the missing features which are desirable
in the cloud setting, investigate the subtle issues involved in the interaction of
these two cryptographic primitives, and contribute to the study of secure cloud
storage system in the following four aspects.
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1.1 Survey of Cryptographic Toolkits and a Generic System Design

The system proposed by Lu et al. [12] (hereinafter referred to as LLLS scheme)
is based on two existing constructions: the group signature scheme proposed
by Boyen and Waters [5] and a simplified version of an attribute-based encryp-
tion scheme proposed by Waters [14], which are not explicitly mentioned in [12]
though. It may be difficult for a general computer scientist or a cloud computing
researcher/practitioner to make sense of what is going on behind the equations.
Indeed, we believe that the encryption part of their system can be replaced by
a single-user public key encryption scheme according to what we re-engineered
from their number-theoretic description. We also believe that it is good for both
cryptography community and security (in cloud computing) community to estab-
lish the connection between the set of properties that cryptographic schemes can
possibly offer, and the desirable features one may expect in the cloud computing
setting. Otherwise, we may need to design a “new” cryptographic scheme when-
ever there is a slight change in the application scenario. Finally, the decoupling
of specific instantiations from the generic system design is good for replacing the
building block with better constructions in the future.

1.2 Revocation in Group Signatures

Regarding the concrete contribution of our proposed system, we first notice that
a “vanilla” group signature scheme, which is used in the LLLS scheme [12], may
not be suitable for the cloud storage scenario. Recall that the ciphertexts in the
cloud are contributed by different users. When we notice something wrong with
a particular message, we want to reveal the authorship of that message. After
we learn the real author, we may worry that this user is compromised without
being noticed, or this user has been turned malicious for a while and has been
uploading “wrong” data to the cloud. It is unclear which other ciphertexts on the
system are possibly uploaded by the same user without opening all signatures.
This is actually a well known shortcoming of normal group signatures, and it
becomes more apparent in our scenario.

On the other hand, the power of anonymity revocation, if tuned correctly, can
be a mean to revoke the signing power of a user. For example, if it is possible
for the group manager to generate a user-specific trapdoor which can be used
to check whether the hidden identity of a signature is a particular one, without
opening the hidden identity in clear, verifier-local revocation is possible when
the verifier is being issued with the trapdoor for the revoked users. In our con-
crete instantiation, we will realize this verifier-local revocation concept using the
scheme proposed by Boneh and Shacham [4]. Indeed, one may take this one step
further using a recently proposed notion of real traceable signature [7] such that
the tracing of data uploaded by “bad” users can be efficiently performed.

1.3 Dynamic Broadcast Encryption

In the LLLS scheme [12], every ciphertext in the system can be decrypted by any
users. For access control, one should employ a multi-recipient encryption scheme



Dynamic Secure Cloud Storage with Provenance 445

where the encryptor can decide who is allowed to decrypt. This is exactly the
reason why a traditional (broadcast) encryption scheme is not suitable for the
dynamic user setting. Once a ciphertext is generated, the decryption set is also
fixed. No one can add/delete users for that ciphertext without decrypting it.

An efficient realization of multi-recipient encryption is broadcast encryption,
in which the ciphertext size is independent of the size of the recipients. In this pa-
per, we propose a method that allows the master secret key holder to re-encrypt
or update the ciphertext based on the identity-based broadcast encryption pro-
posed by Delerablée [9]. In this case, the group manager can adjust the decryp-
tion set of the existing ciphertexts on the cloud storage. This update procedure
is more efficient than the trivial “decrypt-then-encrypt” method. The possibility
of updating a ciphertext has been briefly mentioned in [9]. However, no exact
algorithm was provided in [9], not to say a formal security model capturing any
possible vulnerability which may be introduced by this update procedure. We
will show that a simple and straightforward way to update a ciphertext will make
it easily decryptable by anyone outside of the parties who have been designated
as legitimate decryptors. We provide a better way of updating, and a formal
security definition of adaptive chosen-ciphertext decryption and update attacks.
The proof turns out to be non-trivial as we need to use a slightly stronger num-
ber theoretic assumption than what has been assumed in [9] to obtain our formal
security guarantee.

1.4 Linkage between Group Signatures and Broadcast Encryption

For group signatures on plaintext messages, identification of bad messages can be
achieved in a straightforward manner: a user reports against a certain message,
everybody can read this and the revocation manager can open the identity.
This mechanism cannot be directly applied when messages are encrypted. In
particular, due to confidentiality concern, we do not want the revocation manager
to have the power to decrypt every ciphertext. To the best of our knowledge,
this issue is never formally studied.

With our dynamic broadcast encryption, a ciphertext can be updated such
that it will become decryptable by the revocation manager, but now another
problem arises as the update in the ciphertext means it is no longer the “content”
signed by the group signature. To reclaim the public verifiability offered by group
signatures so as to mitigate any concern about false accusations, we propose the
use of a linkable ciphertext transformation to achieve the dynamic decryption
and public verifiability simultaneously.

1.5 Organization

The rest of the paper is organized as follows. Section 2 introduces the system
and threat models. In Section 3, we discuss our design of cloud storage system
which supports both data provenance and dynamic users. Section 4 will detail
our concrete scheme, followed by some concluding remarks.
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2 Model

2.1 System Model

We consider a secure cloud storage system involving three different entities: the
Cloud Service Provider (denoted by CSP), who provides data storage service and
has significant storage space and computation resources, the Group Manager
(denoted by GM) who represents the IT department of an organization which
has a large amount of data files to be stored in the cloud, and is responsible for
the maintenance of the system deployed on the cloud and the management of
the credential of users. Users (denoted by U), the staffs of an organization, who
upload and download data from the organization’s storage on the cloud. A CSP
may provide the network storage service for different clients. For simplicity, we
assume there is only one GM, and all users belong to this client.

Running of a cloud storage system consists of the following phases:

Setup. This phase is performed by GM. It takes as input a security parameter,
and outputs a public parameter PK and a master secret key MK. PK is
published in the system, and MK is kept secret by GM.

User Registration. This is an initial user registration phase performed by GM
and users. A user UID can register to the GM and get a private authentication
and decryption key pair (akID, dkID). Besides, ID is added to a user list S
which is published and used for broadcast encryption.

Data Access. This phase is performed by a user UID who owns the key (akID, dkID)
and the service provider CSP. There are two kinds of accesses, read and
write. UID can read data by downloading the ciphertext and decrypting it
using dkID. To write, UID uploads ciphertexts with anonymous signatures
computed from akID. CSP accepts the ciphertext if the corresponding signa-
ture is valid and generated by an unrevoked user.

User Joining. This phase is performed by GM and a new user UID. GM first
gives the key pair (akID, dkID) to UID and adds ID to the user list S. GM also
re-encrypts the existing ciphertexts on the storage so that the new user can
decrypt them.

User Revocation. This phase is performed by GM and CSP. If a user UID is
revoked, GM removes ID from the user list S and gives a token to CSP so
that CSP can add it to the revocation list. For the existing ciphertexts, GM
re-encrypts them to exclude UID.

Tracing. This phase is performed by GM. Given a ciphertext and its correspond-
ing signature, GM outputs the identity of the signer (perhaps only when the
(GM) targeted to that specific signer) or an error symbol “⊥” (indicating
tracing failure).

2.2 Security Model

A secure cloud storage system should ensure confidentiality, anonymity and
traceability. We discuss the security models for these three properties.
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Confidentiality. We define the confidentiality of the data on the storage by
extending the notion of selective-ID chosen ciphertext security of broadcast en-
cryption in [9]. In our construction, the adversary can query an update oracle.
The security can be modeled as the following game between an adversary A and
a challenger C, which are both given as input n, the maximal size of a set of
receivers.

Init. The adversary outputs a set S∗ = {ID1, ID2, . . . , IDs} of identities it wants
to attack (with s ≤ n).

Setup. The challenger performs Setup phase and sends the public parameter
PK to the adversary.

Query Phase 1. The adversary adaptively issues queries to the following oracles:
– Extract(ID): if ID /∈ S∗, C performs User Registration phase and returns

(akID, dkID) to A.
– Decryption(C): C performs the read part of Data Access phase and re-

turns the decrypted message.
– Update(C, act, ID): C considers the following two cases:
• act = “add”: C performs the update procedure on C like in User
Joining phase to add ID to the decryption set of C.
• act = “delete”: C performs the update procedure on C like in User
Revocation phase to delete ID from the decryption set of C.

Challenge. A outputs two equal-length messages m0,m1. C randomly chooses a
bit b ∈ {0, 1} and outputs a ciphertext C∗, an encryption of mb.

Query Phase 2. This phase is the same as Query Phase 1 except that A cannot
issue
– C∗ to the decryption oracle, and
– (C∗, add, ID) to the update oracle and then ID to the extract oracle for

any ID.
Guess. A outputs a guess b′. If b′ = b, A wins.

We define A’s advantage in winning the game as SuccA as |Pr[b = b′] − 1/2|.
The probability is taken over the coin tosses of A and all the randomized algo-
rithms. We say the storage system provides IND-sID-CCA confidentiality if no
polynomial time adversary can win the above game with a non-negligible advan-
tage. If the decryption and update oracles are not allowed to query, then we say
the system provides IND-sID-CPA confidentiality. Furthermore, we define the
IND-sID-CPA* confidentiality as the IND-sID-CPA security game except that
the adversary is allowed to choose any set T ∗ ⊂ S∗ and ask for an “update” of
the challenge ciphertext encrypted for S∗\T ∗.

Anonymity. In the anonymity game, the adversary’s goal is to determine which
of two keys generated a signature, without given either of the keys. The game is
defined as follows.

Init. The challenger C runs algorithm Setup, obtaining PK and MK. He then
runs algorithm User Registration, obtaining n key pairs (akID1

, dkID1
), (akID2

,
dkID2), . . . , (akIDn , dkIDn). C provides the adversary A with PK.
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Query Phase 1. The adversary can make queries as follows:
– Extract(IDi): A requests the private key of the user at index i, 1 ≤ i ≤ n.

The challenger responds with (akIDi
, dkIDi

).
– Sign(IDi, C): C performs the write part of Data Access phase and com-

putes a signature σi on C using akIDi
. A is given σi.

– Revocation(IDi). A can request the revocation token of the user at index
i, 1 ≤ i ≤ n. The challenger responds with the revocation token of IDi.

Challenge. A outputs a ciphertext C∗ and two indices i0 and i1. It must have
made neither an extraction nor a revocation query on either index. The
challenger chooses a bit b ∈ {0, 1} uniformly at random, computes a signature
σ∗ on C∗ using akIDib

and provides σ∗ to A.
Query Phase 2. After obtaining the challenge, A can make additional queries of

the challenger, restricted as follows.
– Extract(IDi): As before, but A cannot make extraction queries at IDi0

or IDi1 .
– Sign(IDi, C): A can make signing queries as before.
– Revocation(IDi). As before, but A cannot make revocation queries at

IDi0 or IDi1 .
Guess. Finally, A outputs a bit b′, its guess of b. The adversary wins if b′ = b.

We define A’s advantage in winning the game as SuccA as |Pr[b = b′] − 1/2|.
The probability is taken over the coin tosses of A and the randomized key gen-
eration and signing algorithms. We say the storage system provides anonymity
if no polynomial time adversary can win the above game with a non-negligible
advantage.

Traceability. We say that a storage system is traceable if no adversary can
win the traceability game. In the traceability game, the adversary’s goal is to
create a signature that cannot be traced to one of the users in the compromised
coalition using the tracing algorithm above. Let n be the maximal size of a set
of users. The traceability game, between a challenger C and an adversary A, is
defined as follows.

Init. The challenger C runs algorithm Setup, obtaining PK and MK. He then
runs algorithm User Registration, obtaining n key pairs (akID1

, dkID1
), (akID2

,
dkID2

), · · · , (akIDn
, dkIDn

) and their revocation tokens. C provides the adver-
sary A with PK and revocation tokens of all users, and sets U = ∅.

Query Phase. The adversary can make queries as follows:
– Extract(IDi): A requests the private key of the user at index i, 1 ≤ i ≤ n.

The challenger appends i to U , the adversary’s coalition, and responds
with (akIDi , dkIDi).

– Sign(IDi, C): C performs the write part of Data Access phase and gener-
ates a signature σi of C using akIDi . A is given σi.

Output. Finally, A outputs a ciphertext C∗, a revocation list RL∗, and a sig-
nature σ∗. A wins if: (1) σ∗ is a valid signature on C∗ with revocation list
RL∗; (2) σ∗ traces (using the tracing algorithm) to some user outside of the
coalition U\RL∗, or the tracing algorithm fails; and (3) σ is non-trivial, i.e.,
A did not obtain σ by making a signing query on C∗.
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We denote by SuccT the probability that A wins the game. The probability is
taken over the coin tosses of A and the randomized key generation and signing
algorithms. We say the storage system provides traceability if no polynomial
time adversary can win the above game with a non-negligible probability.

3 Cryptographic Provenance-Aware Cloud Storage

The first part of this section is about data provenance. We start by describing
different features provided by various group signature schemes, followed by the
design of provenance-aware cloud storage system enabled by group signatures.
Next, we will focus on user dynamics. We will describe the update feature of
broadcast encryption scheme and how group signatures can be used to authen-
ticate updatable ciphertexts. To make our discussion more concrete, our pre-
sentation in this part will be based on the identity-based broadcast encryption
proposed by Delerablée [9]. Hence we will also review the properties of pairing,
which is the primitive operation used by this scheme.

3.1 Group Signatures with Different Features

We first describe how a traditional group signature scheme works. When a user
joins a group, the GM and the user executes a joining protocol. As a result,
the GM gives this new member a signer key. A group member wants to preserve
anonymity in signing. The signing process is actually a proof of knowledge (PoK)
of a signer key, with respect to the message to be signed. Another feature of group
signature is that it can be opened to reveal the true signer. Thus, it should
contain an encryption of some information that uniquely identifies a user, such
that only a designated party (e.g., the GM, or another party being assigned to
do that) can decrypt it. This process is often called as opening.

Verifier-Local Revocation. In a group signature scheme which supports
verifier-local revocation (VLR), the encryption of unique identification informa-
tion in the signature is not necessary. However, there should be enough “struc-
ture” in the group signature that links it to a “unique revocation token”. Such
a token is a by-product generated from the joining protocol. Unless instructed,
this revocation token is kept confidential by the GM. When there is a need to
revoke a user, the corresponding revocation token is released such that everyone
can identify if a signature is produced by the revoked user and discard the sig-
nature if this is the case, which effectively enables the signing key revocation.
In our instantiation to be presented, we will use a VLR group signature scheme
proposed in [4].

Traceability. Opening and VLR are not the only possible anonymity manage-
ment mechanisms. Here we describe a new way supported by a recently proposed
notion which is called real traceable signature [7]. It is similar to the VLR group
signature. A difference is that, instead of checking whether a signature was issued
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by a given user, the GM can generate a tracing trapdoor which allows the recon-
struction of user-specific tags. These tags can uniquely identify a signature of a
misbehaving user. Identifying N signatures just requires N tag-reconstructions
instead of requiring the checking of all N ′ (>> N) signatures ever produced
in the system. This feature is desirable when the cloud storage is storing time-
sensitive information, such as real-time financial data.

Exculpability. Along with the aforementioned properties, another strengthen-
ing of the basic group signature notion is exculpability. Note that the member
signing key generated by the GM can be regarded as a signature produced by
the GM. Instead of generating this signature and giving it as a member signing
key to the user directly, the GM can sign on something that is related to some
valuable secrets of users, such that they would not share it with others easily.
To sign on behalf of the group, a member can only do so using both the mem-
ber’s own valuable secret and the member signing key. In this way, even the GM
cannot sign “on behalf” of a group member.

3.2 A Basic Design

Setup. The GM first selects a group signature scheme (GS) suitable for the ap-
plication scenario and a multi-recipient public-key encryption scheme, may it
be an identity-based encryption (IBE), an attribute-based encryption (ABE)
(e.g., [14]) or a broadcast encryption (BE). The public parameter PK and
the master secret key will include the corresponding public/secret parameter
of GS and BE.

User Registration. The user’s key is (akID, dkID), where akID is the member sign-
ing key given by GS and dkID is the private decryption key of the encryption
scheme. The generation of akID may involve a tracing trapdoor for the user
ID, which will be held confidentially by the GM or the revocation manager
RM.

Data Access. For read operation, UID downloads the ciphertext from the cloud
and decrypts it using dkID. For write operation, UID first prepares a ciphertext
using the encryption scheme according to the expected intended recipient
lists; then signs the resulting ciphertext using GS . CSP only accepts and
stores both the ciphertext and the signature if the signature is valid.

In essence, this simplifies the framework implicitly used by the LLLS sys-
tem [12]. One difference is that the user in their system will also generate a
one-time signing key and use it to sign on the ciphertext to be uploaded. The
group signature is signed on the corresponding verification key of the one-time
signature instead. So the whole uploaded data also consists of a verification key, a
one-time signature in additional to the ciphertext and the group signature. Simi-
lar technique has been used in the group signature paradigm to achieve “security
against adaptive opening attack”, e.g., as used in [7]. However, this requires the
underlying group signature scheme to offer a similar level of security while the
underlying scheme [5] employed in [12] can only provide CPA security. The bene-
fit of using this “2-layer” signing approach is not clear. Another difference is that
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[12] requires the existence of a system manager which is “a trustable and power-
ful entity, located at the top of the cloud computing system”. In particular, this
entity can decrypt all ciphertexts of the system and issue signatures on behalf
of any user. While in our design, we can employ a GS scheme with exculpability
to avoid the later problem, and the power of decryption is only confined to the
group manager GM but not the cloud service provider CSP. (And one may take
a step further to reduce the trust assumption by employ constructions such as
“escrow-free” IBE [8] and multi-authority ABE [6]). We thus believe our design
is more preferable.

3.3 Bilinear Group

Let G1,G2 and GT be three (multiplicative) cyclic groups of prime order p,
ψ : G2 → G1 be an isomorphism and e : G1 × G2 → GT be a map with the
following properties:

– Bilinear: for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, e(g
a
1 , g

b
2) = e(g1, g2)

ab.
– Non-degenerate: e(g1, g2) �= 1 for some g1 ∈ G1, g2 ∈ G2.
– Efficiently computable: e can be computed efficiently.

We say that BGS = (p,G1,G2,GT , ψ(·), e(·, ·)) is a bilinear group system if all
the above operations are efficiently computable.

In this paper, we say a bilinear group system is symmetric if G1 = G2, and it
is asymmetric otherwise.

Throughout this paper, we only work with bilinear group pairs of prime order.
We remark that the implicit group signature scheme [5] used in the LLLS system
requires bilinear group pairs of composite order. Realizing cryptographic scheme
in a composite order group tends to be less efficient in general since a larger
modulus should be chosen to withstand the best known factorization attack.

3.4 Update in Dynamic Broadcast Encryption

Now we move forward to show how to equip the encryption scheme with dynamic
update features so as to support dynamic users. We will adopt Delerablée’s [9]
broadcast encryption scheme to encrypt data. Here we explain why a trivial
update mechanism would not work for this scheme.

Before delving into the details of the scheme, we focus on a particular com-

ponent of the ciphertext, namely, c2 = h
k·
∏

id∈S(α+H0(id))

2 , where α is the master
secret key (that is used to generate the user decryption key), S is the set of
designated users who can decrypt the ciphertext, and k is the randomness of the
ciphertext which uniquely determines the padding used to encrypt the message,
specifically, e(h1, h2)

k.
Let us consider a simple case that the ciphertext is originally intended for

user id1, i.e., c2 = h
k(α+H0(id1))
2 . Suppose at a later stage we want to also allow

user id2 to decrypt this ciphertext and we want to revoke the decryption power

of id1. A trivial way to do is exponentiating c2 to the power of α+H0(id2)
α+H0(id1)

, which

gives us c′2 = (h
k(α+H0(id1))
2 )

α+H0(id2)

α+H0(id1) = h
k(α+H0(id2))
2 .
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Now, note that we have two equations c2 and c′2 regarding two unknown k
and α in the exponent with a common base element h2. Hence, it is possible to
derive the value of hk2 from c2 and c′2. With this value, one can easily recover
the padding e(h1, h

k
2) = e(h1, h2)

k.

3.5 Signatures on Updated Ciphertext

In the case of revoking a user based on a bad message he or she has posted, we
do not care much about the message confidentiality for this particular cipher-
text anymore. So the above simple update suggests a simple linkable ciphertext
transformation such that any user can still verify the group signature on the
original ciphertext. The GM first updates the ciphertext by allowing any revo-
cation manager (the entity in the organization who is responsible for asserting
misbehavior of a user) to decrypt the ciphertext in question. Specifically c2 will

be updated to c
(α+H0(RM))
2 where RM is the identity of the revocation manager.

Now, it is easy to verify the linkage between the original ciphertext component
c2 and the newly updated component c′2 by the bilinearity of the pairing, i.e.,

checking if e(w1 · hH0(RM)
1 , c2) = e(h1, c

′
2) where w1 = hα1 is a component in the

public parameter.

3.6 Updating Ciphertexts in Practice

The outcome of the update algorithm is that the ciphertext becomes decryptable
by any user specified in the input, independent of the original specified decryptor
set. By the strong functionality provided by the update algorithm, it seems
unavoidable to require the knowledge of the master secret key α to update a
ciphertext.

While we advocate that supporting dynamic user is an essential feature,
adding or removing users from the system should be a relatively less frequent
operation. One choice to realize the update functionality in practice is that when-
ever a new staff is added to an organization, his/her supervisor, who knows what
classes of data he/she should be entitled to access, submits the corresponding
update requests to the GM. Another way is to rely on a trusted hypervisor.
Note that it is different from the approach of putting the entire storage system
within a trusted virtual machine maintained on the cloud. In our case, only the
update module which works on a relatively smaller set of ciphertexts is put in
the trusted execution environment.

4 Concrete Construction

Now we are ready to present our concrete construction, which is based on the
VLR group signature scheme proposed in [4] and our variant of the identity-
based broadcast encryption proposed by Delerablée [9].
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4.1 Instantiation of Our Design

Let n be the maximum number of receivers the file can be encrypted to.

– Setup. On input a security parameter κ, the GM performs the following steps:
• It generates a bilinear group system (p,G1,G2,GT , ψ(·), e(·, ·)) as de-
scribed above where p ≥ 2κ and cryptographic hash functions H0 :
{0, 1}∗ → Z

∗
p, H1 : {0, 1}∗ → G

2
2, H2 : {0, 1}∗ → Zp.

• It randomly chooses h1 ∈R G1, h2, g2 ∈R G2 and computes g1 = ψ(g2).
• It randomly chooses two secrets α, γ ∈ Z

∗
p and sets w1 = hα1 , w2 = gγ2 .

The public parameter is defined as

PK = ( BGS = (p,G1,G2,GT , ψ(·), e(·, ·)), H0(·), H1(·), H2(·),
g1, g2, h2, h

α
2 . . . , h

αn

2 , w1, w2, e(h1, h2) ).

The master secret key is MK = (h1, α, γ).
– User Registration. For each user UID, the GM issues a private key (akID, dkID),

where

akID = (xID ∈R Zp, g
1/(γ+xID)
1 ) and dkID = h

1/(α+H0(ID))
1 .

The identity ID is added to the access user list S and (ID, g
1/(γ+xID)
1 ) is added

to a token list T .
– Data Access. This phase is performed by a user UID and the service provider

CSP. The user UID with the private key (akID, dkID) can read or write data
as follows.
• Write: Given a message m and a user list S, UID first chooses a random
k ∈ Z

∗
p and computes the ciphertext C = (c1, c2, c3) as follows.

c1 = w−k
1 , c2 = h

k·
∏

id∈S(α+H0(id))

2 and c3 = m · e(h1, h2)k.

Let akID = (xID, yID). UID generates a signature on C:
1. Pick a random nonce r ∈ Zp and let (û, v̂) = H1(g1||g2||w2||C||r) ∈

G
2
2. Compute their images in G1 : u = ψ(û); v = ψ(v̂).

2. Select a random a ∈ Zp and compute T1 = ua and T2 = yIDv
a.

3. Set δ = axID. Pick three random blinding values ra, rx and rδ ∈ Zp.
4. Compute helper values

R1 = ura , R2 = e(T2, g2)
rxe(v, w2)

−rae(v, g2)
−rδ , R3 = T rx

1 u−rδ .

5. Compute a challenge c = H2(g1||g2||w2||C||r||T1||T2||R1||R2||R3) ∈
Zp.

6. Compute sa = ra + ca, sx = rx + cxID, and sδ = rδ + cδ ∈ Zp.
The signature on C is defined as σ = (r, T1, T2, c, sa, sx, sδ). Then (C, σ)
is sent to CSP. Upon receiving (C, σ), CSP first verifies the signature
σ = (r, T1, T2, c, sa, sx, sδ):
1. Compute (û, v̂) = H1(g1||g2||w2||C||r) ∈ G

2
2 and their images in

G1 : u = ψ(û); v = ψ(v̂).
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2. Compute R̃1 = usa/T c
1 , R̃2 = e(T2, g2)

sx · e(v, w2)
−sa · e(v, g2)−sδ ·

(e(T2, w2)/e(g1, g2))
c and R̃3 = T sx

1 u−sδ .
3. (C, σ) is said to be a correct cipher-signature pair if we have c =
H2(g1||g2||w2||C||r||T1||T2||R̃1||R̃2||R̃3).

CSP accepts (C, σ) if it is a correct cipher-signature pair and there is
no element yID in the revocation list R such that e(T2/yID, û) = e(T1, v̂).
The description of the revocation list will be given shortly.
• Read : Given a ciphertext C = (c1, c2, c3) and a user list S, UID computes

m = c3/(e(c1, h
ωID,S

2 )e(dkID, c2))
1∏

id∈S,id �=ID H0(id) ,

where

ωID,S =
1

α
·

⎛
⎝ ∏

id∈S,id �=ID

(α+H0(id))−
∏

id∈S,id �=ID

H0(id)

⎞
⎠ .

– User Joining. When a user UID joins, the GM gives the user a private key pair
(akID, dkID) as in the registration phase. Let akID = (xID, yID). The identity
ID is added to the user list S and (ID, yID) is added to a token list T . For an
existing ciphertext C = (c1, c2, c3), the GM chooses a random k′ ∈ Z

∗
p and

replaces C with C′ = (c′1, c
′
2, c

′
3), where

c′1 = c1 · (hα1 )−k′
, c′2 = c

α+H0(ID)
2 ·hk

′·
∏

id∈S(α+H0(id))

2 , c′3 = c3 ·e(h1, h2)k
′
.

– User Revocation. If a user UID is revoked, the GM first removes ID from the
user list S. Then the GM searches for the pair (ID, yID) in the token list T
and sends yID to CSP so that CSP can add it to the revocation list R. For an
existing ciphertext C = (c1, c2, c3), the GM chooses a random k′ ∈ Z

∗
p and

replaces C with C′ = (c′1, c
′
2, c

′
3), where

c′1 = c1·(hα1 )−k′
, c′2 = c

(α+H0(ID))−1

2 ·hk
′·
∏

id∈S(α+H0(id))

2 , c′3 = c3·e(h1, h2)k
′
.

– Tracing. Given a valid cipher-signature pair (C, σ = (r, T1, T2, c, sa, sx, sδ)),
the GM finds the first pair (ID, yID) ∈ T satisfying e(T2/yID, û) = e(T1, v̂)
and outputs ID.

4.2 Efficiency Analysis

The operational efficiency of our system inherits the merit of the underlying
schemes. Regarding the system setup, the length of the system parameter (which
is shared by all users of the system) is independent of the total number of users
(which can be exponential in theory due to the use of identity-based system)
and is only dependent on the maximum number of decryptors for a ciphertext.
The user private key is of constant size, so as the ciphertext.

For computation requirement, pairing is the dominating operation in pairing-
based cryptosystems like ours. Thanks to the design of the underlying encryp-
tion scheme, encryption itself does not require any pairing operation (the value
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e(h1, h2) can be pre-computed and put into the system parameter), and the gen-
eration of group signature only requires the computation of one pairing (e(v, w2)
and e(v, g2) can be pre-computed). Verification of group signature is a little bit
more costly (two pairing operations which cannot be pre-computed). However,
this part is done by the CSP which is assumed to be computationally power-
ful. Decryption of a ciphertext requires two pairing operations, which is again
independent of the total number of users of the system.

For the ciphertext update operation, we must compare its performance with
the näıve “decrypt-then-encrypt” approach. It is clear that our update algorithm
outperforms this approach since no pairing is required by ours but two evalu-
ations of pairing are needed in the decryption. Indeed, it is not difficult to see
that our update operation’s computational complexity is similar to that of the
encryption algorithm. We consider this as a natural requirement.

4.3 Security Analysis

We start by listing out the required number-theoretical assumptions.

The General (Decisional) Diffie-Hellman Exponent Assumption. Boneh
et al. [2] introduced the General Diffie-Hellman Exponent (GDHE) assumption.
Consider a symmetric bilinear group system (p,G,GT , e(·, ·)). Let s, n be positive
integers, P,Q ∈ Fp[X1, . . . , Xn]

s be two s-tuples of n-variate polynomials over Fp

and f ∈ Fp[X1, . . . , Xn]. We write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs).
We require that p1 = q1 = 1. For a set Ω, a function h : Fp → Ω and a vector
x1, x2, . . . , xn ∈ Fp, we write

h(P (x1, x2, . . . , xn)) = (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs.

We use similar notation for the s-tuple Q. Let g ∈ G be a generator of G and
set gT = e(g, g) ∈ GT . We define the (P,Q, f)-General Diffie-Hellman Problem
in G as follows.

Definition 1 ((P,Q, f)-GDHE). Given the vector

H(x1, . . . , xn) = (gP (x1,...,xn), g
Q(x1,...,xn)
T ) ∈ G

s ×G
s
T ,

compute g
f(x1,...,xn)
T ∈ GT .

Definition 2 ((P,Q, f)-GDDHE). Given H(x1, . . . , xn) as above and an ele-
ment T ∈ GT , decide whether T = gf(x1,...,xn).

The data confidentiality of our instantiation is based on the decisional ver-
sion of the GDHE assumption: the General Decisional Diffie-Hellman Expo-
nent (GDDHE) assumption. The specific choice of P , Q and f will be given in
Appendix. For the unforgeability of the group signature, we require the following
assumption that is outside of the GDHE framework.
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The Strong Diffie-Hellman Assumption. The traceability of our instanti-
ation is based on the q-Strong Diffie-Hellman assumption (q-SDH), which was
also used by Boneh and Boyen in the security proof of their short signature
scheme [1].

Definition 3 (q-SDH). The q-SDH problem in (G1,G2) is defined as follows:

given a (q+2)-tuple (g1, g2, g
γ
2 , g

γ2

2 , · · · , gγ
q

2 ) as input, output a pair (g
1/(γ+x)
1 , x),

where x ∈ Z
∗
p.

The Decisional Linear Assumption. The anonymity of our instantiation
is based on the hardness of Decisional Linear (D-Lin) problem, introduced by
Boneh, Boyen, and Shacham [3].

Definition 4 (D-Lin). Given u, v, h, ua, vb, hc ∈ G1 as input, decide whether
a+ b = c.

With our generic design, it is easy to argue the security of our cloud storage
system. Basically, the security guarantees follow from those of the respective
underlying schemes. For confidentiality, as we have pointed out in Section 3.4,
extra care must be taken to have a secure update. The formal security guar-
antee against adaptive chosen-ciphertext decryption and update attacks for our
extension of Delerablée’s scheme can be found in Appendix.

5 Conclusion

We studied the problem of building a secure cloud storage system. We believe
that supporting dynamic users and data provenance are essential in cloud stor-
age. In this paper, we proposed a cryptographic design of such systems with a
number of desirable features. During the course of our design we also devised new
cryptographic techniques to build a provably secure dynamic system. We also
discussed different features that existing anonymous authentication mechanisms
can provide. We hope that our study can help cloud storage service providers
and cloud clients to pick the right system to use for their application scenarios.
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A Security with Update

We prove the IND-sID-CPA* confidentiality of our construction under the gen-
eral decision Diffie-Hellman exponent (GDDHE) framework introduced by [2].
The assumption is described as follows. The intractability of this assumption
can be proved using the similar techniques in [9].

Definition 5 ((f, g, F )−GDDHE). Let (p,G1,G2,GT , ψ(·), e(·, ·)) be a bilinear
group system defined above. Let f and g be two coprime polynomials of orders
t and n, respectively. Let g0, h0 be two generators of G1 and G2, respectively.
Given

g0, gα0 , · · · , gα
t−1

0 , g
α·f(α)
0

g
k·α·f(α)
0 , g

k·α2·f(α)
0 , · · · , gk·α

s·f(α)
0

h0, hα0 , · · · , hα2n

0 , h
k·g(α)
0

and T ∈ GT , decide whether T is equal to e(g0, h0)
k·f(α).
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We first give the following lemma to show that the adversary can get more
information about the challenge ciphertext without influencing the security of
our dynamic identity-based broadcast encryption (D-IBBE).

Lemma 1. Consider the IND-sID-CPA* security game between an adversary A
and a simulator S, D-IBBE remains secure even if A can ask for any challenge
ciphertext encrypted for S∗\T ∗, where T ∗ ⊂ S∗.

Proof. Given the bilinear group system BGS = (p,G1,G2,GT , ψ(·), e(·, ·)) and
the input of (f, g, F )−GDDHE problem, S plays the IND-sID-CPA* game with
A as follows.

Init: The adversary A outputs a target set S∗ = {ID∗
1, · · · , ID∗

s} of identities
that it wants to attack (with s ≤ n− 1).

Setup: S first defines h1 = g
f(α)
0 and sets

h2 = h
∏t+n

i=t+s+1 (α+xi)

0 ,

w1 = g
α·f(α)
0 = hα1 ,

e(h1, h2) = e(g0, h0)
f(α)·

∏t+n
i=t+s+1 (α+xi).

Note that the degree of
∏t+n

i=t+s+1 (α+ xi) is (n− s). All other values and func-
tions (g1, g2, H0(·), H1(·), H2(·), w2) are chosen as in the scheme. The public
parameter is defined as

PK = (BGS,H0(·), H1(·), H2(·), g1, g2, h2, hα2 , · · · , hα
n

2 , w1, w2, e(h1, h2)),

where hα
n

2 can be computed from {hαi

0 }i≤(2n−s).
Hash Queries: Same as the original scheme, and omitted.
Query Phase 1: Same as the original scheme, and omitted.
Challenge: A asks for any challenge ciphertext encrypted for S∗\T ∗, where

T ∗ ⊂ S∗. Let S = {xi}IDi∈S∗,H0(0||IDi)=xi
. Let T = {xi}IDi∈T ∗,H0(0||IDi)=xi

.
When T = ∅, we can encrypt the message mb:

c1 = g
−k·α·f(α)
0 , c2 = h

k·g(α)
0 , c3 = T

∏t+n
i=t+s+1 xi · e(gk·α·f(α)0 , h

q(α)
0 )

with q(α) = 1
α (

∏t+n
i=t+s+1 (α+ xi)−

∏t+n
i=t+s+1 xi) which is of degree (n− s− 1).

One can verify that

c1 = w−k
1 , c2 = h

∏t+n
i=t+s+1 (α+xi)

∏t+s
i=t+1 (α+xi)

0 = h
k
∏t+s

i=t+1 (α+xi)

2

and c3 = e(h1, h2)
k if T = e(g0, h0)

k·f(α).
Now, to encrypt when T ∗ �= ∅, the idea is to define c2 as if it uses the random

factor k(
∏

T (α + xi)) and “adjusts” c1 and c3 accordingly. After that, we re-
randomize all components. Note that the size of T is at most s− 1.

Computing c1 = g
−k·(

∏
T (α+xi))·α·f(α)

0 requires g
k·α·f(α)
0 , g

k·α2·f(α)
0 , · · · ,

g
k·αs·f(α)
0 .
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We define

q′(α) =
1

α
(

t+n∏
i=t+s+1

(α + xi) ·
∏
T
(α+ xi)−

t+n∏
i=t+s+1

(xi) ·
∏
T
(xi))

which is of degree (n− 2), and compute

K = T
∏t+n

i=t+s+1 (xi)·
∏

T (xi) · e(gk·α·f(α)0 , h
q′(α)
0 ).

If T = e(g0, h0)
k·f(α), the discrete logarithm ofK to the base v = e(g0, h0)

f(α)

is

k

t+n∏
i=t+s+1

(xi) ·
∏
T
(xi) + k · α · q′(α)

= k(

t+n∏
i=t+s+1

(xi) ·
∏
T
(xi) +

t+n∏
i=t+s+1

(α + xi) ·
∏
T
(α+ xi)−

t+n∏
i=t+s+1

(xi) ·
∏
T
(xi))

= k(

t+n∏
i=t+s+1

(α+ xi) ·
∏
T
(α + xi))

Recall that e(h1, h2) = e(g0, h0)
f(α)·

∏t+n
i=t+s+1 (α+xi), c3 = e(h1, h2)

k·
∏

T (α+xi))

as desired.
Re-randomizations of all components are straightforward.

B Intractability of Our (f, g, F )− GDDHE

In this section, we prove the intractability of distinguishing the two distributions
involved in our (f, g, F )−GDDHE problem. We first review some results on the
General Diffie-Hellman Exponent Problem, from [2]. In order to be the most
general, we assume the easiest case for the adversary: when G1 = G2, or at least
that an isomorphism that can be easily computed in either one or both ways is
available.

Theorem 1 ([2]). Let P,Q ∈ Fp[X1, · · · , Xm] be two s-tuples of m-variate
polynomials over Fp and let F ∈ Fp[X1, · · · , Xm]. Let dP (respectively dQ, dF )
denote the maximal degree of elements of P (respectively of Q,F ) and pose d =
max(2dP , dQ, dF )). If F /∈ 〈P,Q〉 then for any generic-model adversary A that
makes a total of at most q queries to the oracles (group operations in G,GT and
evaluations of e) which is given H(x1, · · · , xm) as input and tries to distinguish

gF (x1,··· ,xm) from a random value in GT , one has Adv(A) ≤ (q+2s+2)2·d
2p .

Proof (of Generic Security of Our (f, g, F ) − GDDHE). We need to prove that
our (f, g, F ) − GDDHE lies in the scope of Theorem 1. Our proof will be very
similar to that in [9] since the argument does not really depend on the maximum
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degree of the polynomials involved. (Of course, this certainly affects the final
bound regarding the advantage of a generic adversary.) Similar to [9], we consider

the weakest case G1 = G2 = G and thus pose h0 = gβ0 . Our problem can be
reformulated as (P,Q, F )− GDDHE where

P = ( 1, α, · · · , αt−1, α · f(α)
k · α · f(α), k · α2 · f(α), · · · , k · αs · f(α)
β, β · α, · · · , β · α2n, k · β · g(α) )

Q = 1

F = k · β · f(α),

and thus m = 3 and s = t+ s+ 2n+ 3. We have to show that F is independent
of (P,Q). By making all possible products of two polynomials from P which
are multiples of k · β, we want to prove that no linear combination among the
polynomials from the list R below leads to F :

R = ( k · β · α · f(α), k · β · α2 · f(α), · · · , k · β · α2n+s · f(α),
k · β · g(α), k · β · α · g(α), k · β · αt−1 · g(α),
k · β · α · f(α) · g(α) )

where the first line is “generated” from {k · αi · f(α)} and the second line is
“generated” from {k · βg(α)}.

Note that the last polynomial can be written as a linear combination of the
polynomials from the first line. Also, taking out the “common factors” of k · β
from R and F , we therefore simplify the task to refuting a linear combinations
of elements of the list R′ below which leads to f(α):

R′ = ( α · f(α), α2 · f(α), · · · , α2n+s · f(α),
g(α), α · g(α), αt−1 · g(α) )

Any such linear combination can be written as

f(α) = A(α) · f(α) +B(α) · g(α)

where A and B are polynomials such that A(0) = 0 (since f(α) does not exist
in R′), degA ≤ 2n+ s and degB ≤ t− 1.

Since f and g are coprime by assumption, we must have f |B. Since deg f = t
and degB ≤ t− 1, this implies B = 0. Hence A = 1 which contradicts A(0) = 0.

C A Variant with Chosen-Ciphertext Security

In this part we present a variant of our system with chosen-ciphertext security.
Before we describe our construction, we first introduce the notion of strong one-
time signature, which is used in our construction.
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C.1 Strong One-Time Signatures

A strong one-time signature scheme is a signature scheme with the difference that
each private key is used only once for signature generation. Like a normal signa-
ture scheme, a one-time signature scheme consists of three algorithms, namely,
SKeyGen (generates a signing key sk and a verification key vk), Sign (generates
a signature ρ on a message m using sk) and Vrfy (verifies a message/signature
pair (m, ρ) using vk). The security requirement is that the adversary is unable
to generate a valid signature of a new message after making at most one signing
query. The strong unforgeability means that it is even impossible for the adver-
sary to generate a new signature on a message whose signature is already known.
Since the introduction in [13,11], there have been many schemes proposed (e.g.,
using one-way function paradigm [10]) and many of them are efficient.

C.2 Our Construction

Let (n − 1) be the maximum number of receivers the file can be encrypted to
and {SKeyGen, Sign, Vrfy} be a one-time signature scheme.

– Setup. On input a security parameter κ, the GM performs the following steps:
• It generates a bilinear group system BGS = (p,G1,G2,GT , ψ(·), e(·, ·))
as described above where p ≥ 2κ and cryptographic hash functions H0 :
{0, 1}∗ → Z

∗
p, H1 : {0, 1}∗ → G

2
2 and H2 : {0, 1}∗ → Zp.

• It randomly chooses h1 ∈R G1, h2, g2 ∈R G2 and computes g1 = ψ(g2).
• It randomly chooses two secrets α, γ ∈ Z

∗
p and sets w1 = hα1 , w2 = gγ2 .

The public parameter is defined as

PK = (BGS,H0(·), H1(·), H2(·), g1, g2, h2, hα2 . . . , hα
n

2 , w1, w2, e(h1, h2)).

The master secret key is MK = (h1, α, γ).
– User Registration. For each user UID, the GM issues a private key (akID, dkID),

where

akID = (xID ∈R Zp, g
1/(γ+xID)
1 ) and dkID = h

1/(α+H0(0||ID))
1 .

The identity ID is added to the access user list S and (ID, g
1/(γ+xID)
1 ) is added

to a token list T .
– Data Access. This phase is performed by a user UID and the service provider

CSP. The user UID with the private key (akID, dkID) can read or write data
as follows.
• Write: Given a message m and a user list S, UID performs the following
steps:
1. Run SKeyGen(1κ) to generate {vk, sk};
2. Choose a random k ∈ Z

∗
p;

3. Compute C = (c1, c2, c3) as follows.

c1 = w−k
1 , c2 = h

k·(α+H0(1||vk))
∏

id∈S(α+H0(0||id))
2 , c3 = m · e(h1, h2)k.
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4. Run Signsk(C) to generate ρ, the ciphertext is C = 〈C, vk, ρ〉.
5. Let akID = (xID, yID). UID generates a signature on C:

(a) Pick a random nonce r ∈ Zp and let (û, v̂) = H1(g1||g2||w2||C||r)
∈ G

2
2. Compute their images in G1 : u = ψ(û); v = ψ(v̂).

(b) Select a random a ∈ Zp and compute T1 = ua and T2 = yIDv
a.

(c) Set δ = axID. Pick three random blinding values ra, rx and rδ ∈
Zp.

(d) Compute helper values

R1 = ura , R2 = e(T2, g2)
rx ·e(v, w2)

−ra ·e(v, g2)−rδ , R3=T
rx
1 ·u−rδ .

(e) Compute a challenge c = H2(g1||g2||w2||C||r||T1||T2||R1||R2||R3)
∈ Zp.

(f) Compute sa = ra + ca, sx = rx + cxID, and sδ = rδ + cδ ∈ Zp.
The signature on C is defined as σ = (r, T1, T2, c, sa, sx, sδ). Then
(C, σ) is sent to CSP. Upon receiving (C, σ), CSP first verifies the
signature σ = (r, T1, T2, c, sa, sx, sδ):
(a) Compute (û, v̂) = H1(g1||g2||w2||C||r) ∈ G

2
2 and their images in

G1 : u = ψ(û); v = ψ(v̂).
(b) Compute R̃1 = usa/T c

1 , R̃2 = e(T2, g2)
sx ·e(v, w2)

−sa ·e(v, g2)−sδ ·
(e(T2, w2)/e(g1, g2))

c and R̃3 = T sx
1 u−sδ .

(c) (C, σ) is said to be a correct cipher-signature pair if

c = H2(g1||g2||w2||C||r||T1||T2||R̃1||R̃2||R̃3).

CSP accepts (C, σ) if it is a correct cipher-signature pair and there
is no element yID in the revocation list R such that e(T2/yID, û) =
e(T1, v̂). The description of the revocation list will be given shortly.

6. Read : Given a ciphertext C = 〈C = (c1, c2, c3), vk, ρ〉 and a user list
S, UID performs the following steps:
(a) Return ⊥ if Vrfyvk(C, ρ) = 0.
(b) Compute

m = c3/(e(c1, h
ωID,S

2 )e(dkID, c2))
1

H0(1||vk)·
∏

id∈S,id �=ID H0(0||id) ,

where

ωID,S =
1

α
· ( (α +H0(1||vk))

∏
id∈S,id �=ID(α +H0(0||id))

−H0(1||vk)
∏

id∈S,id �=IDH0(0||id) ).

– User Joining. When a user UID joins, the GM gives the user a private key pair
(akID, dkID) as in the registration phase. Let akID = (xID, yID). The identity
ID is added to the user list S and (ID, yID) is added to a token list T .
For an existing ciphertext C = 〈C = (c1, c2, c3), vk, ρ〉, the GM performs the
following steps:
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1. Return ⊥ if Vrfyvk(C, ρ) = 0.
2. Run SKeyGen(1κ) to generate {vk′, sk′};
3. Choose a random k′ ∈ Z

∗
p;

4. Compute c′1 = c1 · (hα1 )−k′
;

5. Compute c′2 = c
(α+H0(0||ID))(α+H0(1||vk′))

α+H0(1||vk)

2 ·hk
′·(α+H0(1||vk′))·

∏
id∈S(α+H0(0||id))

2 ;

6. Compute c′3 = c3 · e(h1, h2)k
′
.

7. Define C′ = (c′1, c
′
2, c

′
3).

8. Run Signsk(C
′) to generate ρ′, the ciphertext is C′ = 〈C′, vk′, ρ′〉.

– User Revocation. If a user UID is revoked, the GM first removes ID from the
user list S. Then the GM searches for the pair (ID, yID) in the token list T
and sends yID to CSP so that CSP can add it to the revocation list R.
For an existing ciphertext C = 〈C = (c1, c2, c3), vk, ρ〉, the GM performs the
following steps:
1. Return ⊥ if Vrfyvk(C, ρ) = 0.
2. Run SKeyGen(1κ) to generate {vk′, sk′};
3. Choose a random k′ ∈ Z

∗
p;

4. Compute c′1 = c1 · (hα1 )−k′
;

5. Compute c′2 = c
α+H0(1||vk′)

(α+H0(0||ID))(α+H0(1||vk)
)

2 ·hk
′·(α+H0(1||vk′))·

∏
id∈S(α+H0(0||id))

2 ;

6. Compute c′3 = c3 · e(h1, h2)k
′
.

7. Define C′ = (c′1, c
′
2, c

′
3).

8. Run Signsk(C
′) to generate ρ′, the ciphertext is 〈C′, vk′, ρ′〉.

– Tracing. Given a valid cipher-signature pair (C, σ = (r, T1, T2, c, sa, sx, sδ)),
the GM finds the first pair (ID, yID) ∈ T satisfying e(T2/yID, û) = e(T1, v̂)
and outputs ID. The GM outputs “⊥” if that pair does not exist.

C.3 Security Analysis

Now, the IND-sID-CCA confidentiality is given by the following theorem. Let Π ′

denote the IND-sID-CPA* construction provided in Section 4.1 and Π denote
the construction above.

Theorem 2. If Π ′ is IND-sID-CPA* secure and {SKeyGen, Sign, Vrfy} is a
strong one-time signature scheme, then Π is IND-sID-CCA secure.

Proof. (sketch) Assume we are given a PPT adversaryA attackingΠ in an adap-
tive chosen-ciphertext attack. Say a ciphertext 〈C, vk, ρ〉 is valid if Vrfyvk(C, ρ) =
1. Let {〈C∗

i , vk
∗
i , ρ

∗
i 〉} denote the set of challenge ciphertexts received by A dur-

ing a particular run of the experiment, and let Forge denote the event that A
submits a valid ciphertext 〈C, vk, ρ〉 to the decryption oracle where vk ∈ {vk∗i }
(we may assume that {vk∗i } is chosen at the outset of the experiment so this
event is well-defined even before A is given the challenge ciphertext). Recall also
that A is disallowed from submitting the challenge ciphertext to the decryption
oracle, and transforming the ciphertext to be decryptable by anyone outside S∗,
once the challenge ciphertext is given to A.

It is easy to show that the probability that Forge happens is negligible.
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We use A to construct a PPT adversaryA′ which attacksΠ ′. Define adversary
A′ as follows:

1. A′(1κ) runs SKeyGen(1κ) qU times to generate {vk∗i , sk∗i }, and outputs the
“target” identity set as {0||ID∗

i }ID∗
i∈S ∪ {1||vk∗i }.

2. A′ is given a master public key PK, and runs A(1κ, PK) in turn.
3. When A makes extraction oracle query on ID /∈ S, A′ issues the query (0||ID)

to its own extraction oracle and forwards the result.
4. When Amakes decryption oracle query on the ciphertext 〈C, vk, ρ〉 adversary
A′ proceeds as follows:
(a) If vk ∈ {vk∗i } then A′ checks whether Vrfyvk(C, ρ) = 1. If so, A′ aborts

and outputs a random bit. Otherwise, it simply responds with ⊥.
(b) If vk /∈ {vk∗i } and Vrfyvk(C, ρ) = 0 then A′ responds with ⊥.
(c) If vk /∈ {vk∗i } and Vrfyvk(C, ρ) = 1, then A′ makes the extraction query

to obtain the secret key of 1||vk, decrypts C and responds with the result.
5. Since decryption oracle queries can be simulated, update oracle queries can

be easily simulated too.
6. At some point, A outputs a set T ∗

j , for T ∗
j ⊂ S∗, where 1 ≤ j ≤ qU . A′

outputs the set {0||ID∗
i }ID∗

i∈T ∗
j
∪{1||vk∗i }i�=j . In return, A′ is given a challenge

ciphertext C∗
i . It then computes ρ∗i ← Signsk∗

i
(C∗

i ) and returns 〈C∗
i , vk

∗
i , ρ

∗〉
to A. This effectively simulates the maximum number of qU update of the
challenge ciphertext that can be queried by A.

7. A may continue to make update and decryption oracle queries, and these are
answered by A′ as before, with the natural restrictions regarding challenge
ciphertext.

8. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π ′; in particu-
lar, A′ never requests the secret key corresponding to any of the target identity
in the set {0||ID∗

i }ID∗
i ∈S∪{1||vk∗i }. Furthermore, A′ provides a perfect simulation

for A until event Forge occurs.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2012

	Dynamic Secure Cloud Storage with Provenance
	Sherman S. M. CHOW
	Cheng-Kang CHU
	Xinyi HUANG
	Jianying ZHOU
	Robert H. DENG
	Citation


	Dynamic Secure Cloud Storage with Provenance
	Introduction
	Survey of Cryptographic Toolkits and a Generic System Design
	Revocation in Group Signatures
	Dynamic Broadcast Encryption
	Linkage between Group Signatures and Broadcast Encryption
	Organization

	Model
	System Model
	Security Model

	Cryptographic Provenance-Aware Cloud Storage
	Group Signatures with Different Features
	A Basic Design
	Bilinear Group
	Update in Dynamic Broadcast Encryption
	Signatures on Updated Ciphertext
	Updating Ciphertexts in Practice

	Concrete Construction
	Instantiation of Our Design
	Efficiency Analysis
	Security Analysis

	Conclusion
	References


