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A Probabilistic Approach to Fault 
Diagnosis in Linear Lightwave Networks 

Robert H. Deng, Aurel A. Lazar, Fellow, IEEE, and Weiguo Wang 

Abstract- The application of probabilistic reasoning to fault 
diagnosis in Linear Lightwave Networks (LLN’s) is investigated. 
The LLN inference model is represented by a Bayesian network 
(or causal network). An inference algorithm is proposed that is 
capable of conducting fault diagnosis (inference) with incomplete 
evidence and on an interactive basis. Two belief updating algo- 
rithms are presented which are used by the inference algorithm 
for performing fault diagnosis. The first belief updating algorithm 
is a simplified version of the one proposed by Pearl for singly 
connected inference models. The second belief updating algorithm 
applies to multiply connected inference models and is more 
general than the first. We also introduce a t-fault diagnosis 
system and an adaptive diagnosis system to further reduce the 
computational complexity of the fault diagnosis process. 

I. INTRODUCTION 

HE complexity of communication networks and the vol- T ume of information provided by these networks have 
caused an increase in demand for network management sys- 
tems and personnel. In particular, the area of network fault 
management requires a great deal of network expertise (de- 
sign, operation, management, etc.) which has proved to be 
difficult to acquire and maintain. The application of expert, or 
knowledge-based, systems to attack the inherent complexity 
of network fault management (e.g., NDS [23], YES/MVS [8], 
ACE [14], Troubleshooter [12], and ISM [7]) is a growing ef- 
fort. However, most of the network fault management systems 
were built on an ad-hoc and unstructured basis. The research 
on network fault management is still in its infancy. There 
is a pressing need, therefore, for establishing a theoretical 
foundation of network fault management and for bridging the 
gap between research and working systems. 

Fig. 1 presents a generic network fault diagnosis system 
architecture. The fault diagnosis system is data-driven and 
operates in real-time. It consists of four parts: the alarm 
acquisition system, the event manager, the interference engine, 
and the knowledge base. The alarm acquisition system gathers 
the network status information (alarm messages) from on- 
line monitors, and passes them to the event manager. The 
event manager filters the alarm messages according to certain 
criteria. The filtered messages, called evidence, are used as 
the input to the inference engine. The inference engine con- 
ducts fault diagnosis based on the available evidence and the 
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Fig. 1. A generic network fault diagnosis system architecture. 

knowledge base according to certain inference algorithms. The 
knowledge base represents the knowledge about the network 
under consideration. 

Due to the distributed nature of communication networks, 
the relationships between fault patterns and network events are 
often inexact and the conclusions are unavoidably uncertain 
[22].  Moreover, unavailability, loss, or delay of network 
messages require the fault diagnosis system to have the ability 
to conduct inference with incomplete information. To quote 
from [ 111, “to deal with the increasing network complexities, 
most existing approaches have adopted classical logic by 
designating each network (fault) proposition with a definite 
truth. However, this proves insufficient in dealing with incom- 
pleteness of network information.” For reasoning with such 
imprecise information and relationships, it is highly desirable 
for the inference engine to have the capability to conduct 
inference with uncertainty. 

Over the last few years, reasoning using probabilities has be- 
come very popular within the AI community. For introductions 
to this area as well as reviews on its recent developments, the 
reader is directed to [2] and [lo]. Most recently, applications of 
probabilistic reasoning in network fault management have be- 
gun to appear in the literature. Network fault recognition using 
probabilistic data and machine learning was studied by Maxion 
[ 131. Work on incorporating nondeterministic reasoning in 
managing heterogeneous network faults was investigated by 
Hong and Sen [l 11. 

The Bayesian network (or causal network) model is a 
popular probabilistic reasoning model developed recently [ 181. 
It has many advantages over classical rule-based models. It 
is iterative in nature in that after receiving new evidence, 
the belief about the causes of the total observed evidence 
can be recomputed (updated). This feature suites well the 
network fault diagnosis process in general. Thus, we begin 
our investigation with applying this model to specific network 
fault diagnosis problems. 

0733-8716/93$03.00 0 1993 IEEE 
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The Linear Lightwave Network (LLN) constitutes the physi- 
cal layer of ACORN, a gigabit research network testbed ([21], 
[19], and [l]). It is a new type of architecture for lightwave 
networks based on establishing controllable transparent optical 
paths among network users. The LLN is based on a single key 
component: a controllable linear dividerlcombiner (LDC). By 
appropriately controlling the settings of LDC’s placed at each 
network node, internal connections between input and output 
ports of an LDC can be set up and, as a result, optical path 
(also called routes) on which many signals are multiplexed can 
be created on demand. For a detailed introduction to LLN’s 
the reader is directed to [21]. 

Fault diagnosis of the LLN’s has been studied by Schroff 
and Schwartz using deterministic approaches [ 191. Modeling 
the same problem using Bayesian networks, a special class of 
Bayesian networks is obtained on which the belief updating 
algorithm can be greatly simplified. The resulting fault diagno- 
sis algorithm improves that of Schroff and Schwartz in that it 
allows multiple simultaneous faults in the network. The work 
cited allows only for single faults. 

The organization of this paper is as follows. In Section 11, we 
illustrate how to derive the inference model (i.e., the Bayesian 
network) for fault diagnosis from a given LLN. In Section 
111, we give an inference algorithm that is performed by the 
inference engine during the fault diagnosis process. Belief 
updating algorithms are discussed and presented in Section 
IV. To further simplify the belief function computation, we 
propose in Section V the concepts of t-fault diagnosis sys- 
tem and adaptive fault diagnosis system. Finally, Section VI 
contains our concluding remarks. 

11. THE INFERENCE MODEL 

The inference model is a Bayesian network, i.e., a directed 
acyclic graph (DAG) where the nodes are random variables 
and certain independence assumptions hold [18], [15], [2]. In 
this section, we illustrate, by using a simple example, how a 
Bayesian network is constructed from a given LLN. 

A simple LLN with five LDC’s is shown in Fig. 2. Each 
LDC has a number of input and output ports and the LDC’s 
are interconnected by optical links. In Fig. 2, the symbols 
z j k  and ojl denote, respectively, the kth input port and the Ith 
output port of LDC j. The arrows represent unidirectional fiber 
links that connect output ports to input ports. The label Fip 
associated with the i th  fiber link denotes the optical output 
power value at the output port that it is connected to. For 
example, FzP is the power value at port 021. Finally, 4, and 
Ok, denote the input and output power values from/to the 
LLN periphery, respectively. 

We make the following assumptions in our model: 
1. The observable messages are the LDC input and output 

power values. Faults are detected when the observed 
values deviate from the expected range of power values. 
We assume to have reliable information about the range 
of power values under normal operation of each LDC in 
the LLN. Once a power value falls outside its specified 
operating range, a fault is said to have occurred. 

LDC 2 

LDC 4 

Fig. 2. An example of an LLN. 

TABLE I 
LLN ROUTING TABLE 

Route 1 ill 011 i z i  021 i41 041 

Route 2 i l l  011 hi 0 2 2  is1 051 

Route 3 is1 031 i4z 042 

Route 4 i3i 032 isz 05 I 

2. The basic network components (BNC’s) are LDC’s. 
That is, LDC’s are treated as black boxes and are the 
elementary units (atoms) for the network fault manager. 
If an LDC has failed or some part of it has failed, 
all its output power values will be incorrect (outside 
the specified range) but its input power values remain 
unaffected. 

3. We assume that the optical links between LDC’s are not 
subject to failure. This is not really a restriction because 
we can model a link as a one input/one output “LDC” 
which is subject to failure. Thus, the set of BNC’s also 
includes the optical links. 

4. The network routes are considered to be quasistatic. 
That is, the network configuration changes very 
slowly-connections that are established remain up for 
a long time when compared with the time required to 
carry out the fault diagnosis. 

The LLN routes/connections determine the internal connec- 
tions between the input and the output ports of every LDC. 
Thus, the routing information is required by the fault diagnosis 
system for constructing the inference model. Assuming the 
routing table as given in Table I, the internal connections of 
each LDC shown in Fig. 2 by dotted lines. Hence, Fig. 2 
summarizes the network configuration, which together with 
the four assumptions constitutes the knowledge about the LLN. 
The inference model is constructed based on this knowledge. 

Since a power value, say Fip, is assumed to be in one of the 
two states, within the expected range or outside it, we define a 

LDC 3 

LDC 5 

- 
binary-valued random variable (RV) F‘ for power value P 

F’ = { 0 if the power value Fip is not within 

1 if the power value Fzp is within 
the expected range, 

the expected range. 
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hence, it is the knowledge base to be consulted by the inference 
engine in carrying out fault diagnosis. 

From this example, it is clear that the construction of the 
Bayesian network inference model from an arbitrary LLN 
with routing information is straightforward and can be easily 
automated. 

111. THE INFERENCE ALGORITHM 

The RV’s in the inference model of an LLN (see Fig. 3) 
can be classified into two types: observable and unobservable. 
The power-related RV’s such as F l ,  11, 01 belong to the first 
type, since their values can be determined from measuring the 
corresponding power values. On the other hand, LDC-related 
RV’s such as Lj are of the second type because we have treated 
an LDC as a black box. The task of the LLN fault diagnosis 

Fig. 3. The Bayesian network for the LLN. 

Similarly, for each LDC we define a binary-valued RV 

(2) L j  = { 0 if LDCj has failed. 
1 if LDC j is under normal operation, 

Furthermore, we assume that the Lj’s are mutually indepen- 
dent RV’s with probability distribution 

P(Lj  = 0) = p j ,  P(Lj  = 1) = 1 - p .  3 ‘  (3) 

With these RV’s so defined, based on Fig. 2 and the assump- 
tions 1, 2, and 3, the following dependence relations among 
the RV’s are obvious: 

Fi =I1 A L 1 ,  
F4 = F5 = 12 A L3, 

F2 = F3 = Fi A L2, 
0 1  = F2 A Lq, 

0 2  = F4 A F4, 0 3  = F3 A F5 A Ls (4) 

where A denotes the logical “AND” operation. The depen- 
dence relations in (4) can be graphically represented as a DAG, 
in which each node represents a RV and the arcs indicate the 
dependence relations (Fig. 3) such that a node representing an 
RV on the left-hand side of an equation in (4) is pointed by 
arcs from the nodes representing the RV’s on the right-hand 
side of the same equation. Note that since RV’s F2 and F3 
always have the same value according to (4), they are drawn 
in the same node for simplicity. This is similar to F4 and F5. 
In general, for a non-root RV X in the DAG of Fig. 3, X and 
its parents U1, , U,, are related by: 

x = Au, A - . .  Au,. (5) 

The conditional probability P(zlu1, . . . , U,) (for a RV X, we 
denote its value by the lower case letter x) is then derived as: 

system is to infer, based on the values (i.e., instantiations) of 
the observable RV’s, the values of the unobservable RV’s. 

Referring now to Fig. 1, the fault diagnosis process for 
LLN’s can be briefly summarized as follows: network moni- 
tors periodically measure the values of optical powers among 
other things and generate messages to the management agent. 
The messages will be filtered by the management agent. Only 
those messages which indicate possible network faults are 
passed to the inference engine. The set of messages received 
at the inference engine is called evidence for network faults. 
Based on this evidence and the inference model, the inference 
engine computes its belief that an LDC has failed using the 
inference algorithm to be presented in this section. 

If the fault diagnosis system were supplied with power 
measurements at all the LDC’s, fault diagnosis would be a 
trivial process. However, power measurements, or evidence 
gathering, is usually an expensive process. To minimize the 
cost in evidence gathering, we assume that power measure- 
ments are only performed at the periphery of the LLN under 
normal network operation; power measurements at other input 
and output ports are conducted only if additional evidence is 
needed in order to complete the fault diagnosis process. This 
suggests that the inference algorithm must have the following 
two features: 

1. It should be able to conduct inference with incomplete 
evidence and be able to identify the faulty LDC or a 
plausible set of faulty LDC’s. 

2. It should perform inference on an interactive basis. 
Initially, it should identify a plausible subset based on 
the currently available evidence. Then, with this subset 
as a guide, it should decide what additional evidence 
needs to be acquired. With the new evidence, it should 
narrow down the possible set of faulty LDC’s and finally 
pinpoint the faulty ones. 

With respect to the LLN inference model, the evidence 
which is the probabilistic representation of the dependence 
relation given in (5). 

The DAG in Fig. 3 and the probability distributions of (3) 
and (6) constitute the inference model for the LLN of Fig. 
2. This inference model is a Bayesian network [18], [15]. 
It captures the knowledge required for LLN fault diagnosis; 

is a set of instantiated observable RV’s, W = {WI = 
w1, . . . , W, = Wz}.  Relating to our earlier example, the Wj’s 
can be either F, I ,  or 0 variables. The instantiation is derived 
from power measurements. For example, if measurement 
indicates that the power value W;, is incorrect, then W = 
{. . . , W; = 0 , .  . .}. The belief function of an LDC-related RV 
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L,: is defined as: 

b(Lj = l j )  = P ( L j  = ljlW) forlj  = 0,1. (7) 

The belief function tells us the likelihood that the RV Lj takes 
value 0 or 1. Therefore, b(Lj = 0) is the likelihood that LDC 
j has failed given evidence W. We illustrate the previously 
mentioned concepts with a fault diagnosis example for the 
LLN in Fig. 2. 

Example 1: For the LLN in Fig. 2, suppose that LDC 1 
and LDC 5 have failed simultaneously. We also assume that 
the LLN input power I l p  and 1zP are both correct; otherwise, 
fault sources will be in the transmitters which are outside of the 
LLN. Due to the failures of LDC’s 1 and 5 ,  the observed LLN 
output power values 01, and 0 3 ,  will be both incorrect and 
0 2 p  will be correct. Therefore, with respect to the reference 
model in Fig. 3 ,  the evidence is W = {I1 = 1,Iz = 1,Ol = 
0 , 0 2  = 1 , 0 3  = 0). The job of the inference engine is to 
locate the fault sources, i.e., L1 = Lg = 0,  based on the 
evidence W. This is achieved in an iterative fashion. 

Since 0 2  = 1, all the ancestors of 0 2 ,  i.e., L4, F4,5,L3, 
and 12, must also have value 1. Therefore, 0 2  and all its 
ancestors can be eliminated from the inference model in Fig. 3. 
Similarly, 11 can be deleted. For the purpose of fault diagnosis, 
therefore, we need only to work with the trimmed inference 
model shown in Fig. 4(a). 

Iteration 1: The evidence in Fig. 4(a) is W = ( 0 1  = 
O,O3 = O}. Through direct application of the Bayes formula, 
we obtain: 

Pl b(L1 = 0 )  = 
P l  +PZ -P1P2’  

Pl + P2 - PlP2 ’ 
b(Lz = O )  = p z  and 

b(L5 = 0) =p5. 

For simplicity, assume that pi = p for all i. Then, b(L1 = 0) 
and b(L2 = 0) achieve the maximum of all belief functions. 
In other words, LDC’s 1 and 2 are the most probable failed 
LDC’s which have caused the evidence W. We arbitrarily 
select LDC 2 for further probing. Measuring the input and 
output power values at LDC 2 will reveal that they are all 
incorrect. This corresponds to Fl = F2,3 = 0 in Fig. 4(a). 
This measurement does not tell us directly anything about the 
status of LDC 2. 

Iteration 2: Now the evidence available to us is updated 
to W = {Fl = 0,  Fz,3 = 0 , 0 1  = 0 , 0 3  = 0). For this 
simple model, we immediately recognize that L1 = 0, i.e., 
LCD 1 has failed. However, to illustrate the diagnosis process, 
we proceed with the belief function calculation based on the 
updated evidence. Simple calculations using Bayes formula 
show that b(L1 = 0) = 1, b(L2 = 0 )  = p ,  and b(Ls = 0) = p .  
Therefore, we are certain that LDC 1 has failed. 

Iteration 3: With LDC 1 being repaired, the updated ev- 
idence becomes W = (L1 = 1,01 = 1, O3 = O}.Since 
01 = 1,Ol and all its ancestors can be removed from Fig. 
4(a). The resulting inference model is now as shown in Fig. 
4(b). The evidence in Fig. 4(b) is W = ( 0 3  = O}. The belief 
function calculated based on Fig. 4(b) and the evidence W is 
b(L5 = 0) = 1. Hence, LDC 5 has failed. After LDC 5 is 

Fig. 4. Trimmed Bayesian network. 

repaired, power measurements at the LLN output will be all 
0 correct. Therefore, no more faults are detected. 

The previous example shows one important step in the LLN 
fault diagnosis process-trimming of the inference model-an 
operation that can significantly simplify belief function calcu- 
lations, Given the evidence, W = {Wi = wl, . . . , W, = w,} 
if wi = 1; then, the RV Wi and all its ancestors can be deleted 
from the inference model. The inference engine needs only to 
conduct its inference on the trimmed inference model. We are 
now ready to present the inference algorithm for LLN fault 
diagnosis. 

Algorithm 1: (LLN fault diagnosis algorithm) 
Step 1: Read the input and output power values at the 

If all the input power values are correct but some output 
power values are incorrect, then go to step 2, otherwise 
exit. 

Step 2: Let W denote the evidence obtained from Step 1. 
Trim the inference model if possible. Compute b(Lj = 0), 
for all j, based on some belief updating algorithm (to be 
described in more detail later). Find the LI, with the largest 
belief. If ~ ( L I ,  = 0) = 1, then LDC k has failed. Go to step 
5;  otherwise, go to step 3. 

Step 3: Measure the input and output power values of LDC 
I C :  

If some or all of the output power values are correct, 
LDC k is not faulty; clear “uncertain” marks if any; go 
to step 4. 
If all the input power values are correct and some output 
power values are incorrect, then LDC IC has failed. Go 
to step 5. 
If some input and all output power values are incorrect, 
mark RV LI ,  “uncertain”; go to step 4. 

periphery of the LLN: 

Step 4: Add to W the evidence obtained from the power 
measurement of LDC IC in step 3.  Trim the inference model if 
possible. Compute b(Lj = 0) for all j. Find the RV, say Li, 
with the largest belief and not marked “uncertain.” Let k = z; 
go to step 3 .  

Step 5: Repair LDC I C .  Clear all “uncertain” marks. Go to 

Algorithm 1 did not include the belief updating part. This, 
however, will be the center of discussion for the rest of the 

Step 1. 0 
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paper. To see that the algorithm always converges, note that 
the number of “uncertain” marks is strictly increasing until 
a faulty LDC is repaired or a good LDC is identified. By 
the definition of step 3, an LDC is marked uncertain if and 
only if it has an faulty ancestor. Since the network is finite 
and acyclic, there is always an LDC that does not have any 
faulty ancestor. Therefore, step 4 will always be successful. A 
faulty LDC without faulty ancestor will be picked up in step 
4 and repaired. This follows the argument of the bound on the 
number of power tests needed for the algorithm to locate the 
repair all faults. Assuming there are N LCD’s, the number of 
“uncertain” marks can increase to at most N ,  and there are at 
most N resets to the counting. So, the total number of power 
tests is bounded by O(N2) .  

IV. BELIEF UPDATING ALGORITHMS 

In this section, general belief updating algorithms will be 
discussed. In Section IV-A, Pearl’s belief updating algorithm 
and its limitations are briefly mentioned. For the benefit of the 
reader, the algorithm is presented in the Appendix. In Section 
IV-B, belief updating for multiply connected inference models 
is described. A new belief updating algorithm for multiply 
connected LLN inference models is presented in Section IV-C. 

A .  Belief Updating for  Singly Connected Inference Models 

Since our inference model for fault diagnosis of LLN’s 
is a Bayesian network, the core operation in the diagnosis 
algorithm presented in the last section is the belief function 
computation also known as belief updating. Belief updating for 
general Bayesian networks has been proven to be NP-hard [4]. 
For singly connected Bayesian networks (namely, networks 
with no more than one path between any two RV’s), the belief 
updating can be done in polynomial time [18], [15]. In the 
Appendix, we summarize Pearl’s belief updating algorithm 
for singly connected Bayesian networks [18], [15] and call 
it Algorithm 2. 

Pearl’s algorithm deals directly with the conditional prob- 
ability P ( X ( U 1 ,  . . . Un).  For the LLN inference model, all 
RV’s are binary-valued and the conditional probability is given 
simply by (6). For such a special case, the computations in 
the belief updating algorithm can be simplified considerably. 
Specifically, it is straightforward to show that (3 I)  and (32) 
(see the Appendix) can be reduced to: 

7r(X = 1) = n 7 r s ( U i  = l), 
1 

7r(X = 0) = 1 - n ( X  = l)] 

if X is not instantiated, (8) 
and 

X,(Ui = 0) = A(X = O) ,  

X,(Vi = 1) =X(X = 1 ) r 1 7 r X ( U k  = 1) 
k # i  

+ qx = 0) 1 - n7rx(Uk  = 1) ( k f ;  

respectively. 

B. Belief Updating for Multiply Connected Inference Models 

Pearl’s belief updating algorithm described in the Appendix 
cannot be applied to multiply connected Bayesian networks. 
A multiply connected Bayesian network is evidenced by the 
presence of loops. Here, loops are defined as undirected cycles 
in the underlying network. The inference model in Fig. 3 is 
multiple connected. There is one loop in this model, formed 
by the nodes F2,3101,L4,02,F4,5,  and 0 3 .  

There are three general approaches of belief updating for 
multiply connected Bayesian networks: clustering, condition- 
ing, and simulation [ 181, [15]. Clustering involves forming 
compound nodes in such a way that the resulting network 
of clusters is singly connected. For example, the model in 
Fig. 3 becomes singly connected if we cluster the nodes 
F 2 , 3 , 0 1 ,  L4,02,  and F4,5 into a compound node. Every 
Bayesian network can be structured as singly connected if 
we do not limit the size of the clusters. Unfortunately, in the 
LLN case, the sizes of the clusters can be quite large, and the 
structureless nature of the compound node makes it difficult 
to compute, much less explain, the belief functions with the 
clustered nodes. For this reason, clustering does not appear to 
be a feasible approach for the LLN. 

The simulation technique provides an approximate solution 
to the belief functions. It uses Monte Carlo techniques to 
estimate probabilities by counting how frequently events occur 
in a series of simulation runs. The first simulation method in 
this contest, called logic sampling, was proposed by Henrion 
[9]. In logic sampling, simulation starts at the root nodes and 
ends at leaf nodes. A value is assigned to each root node 
based on its prior probability. Once root nodes have been 
assigned values, their children are assigned values based on 
the conditional probabilities relating the root nodes to their 
children. This process of setting values of the children based 
on the values of their parents and the related conditional 
probabilities continues until all the nodes in the network have 
been assigned values. The assignment of a value to each node 
in the network constitutes one simulation cycle. 

Logic sampling applies to any Bayesian network; however, 
it does not permit evidence nodes to be clamped to their 
known values, unless they just happen to be root nodes. Since 
the simulation proceeds in a top-down fashion, there is no 
way to account for nonroot node evidence known to have 
occurred until the nodes corresponding to these evidences 
are sampled. If the assigned values match the evidence, the 
simulation cycle is then counted as one positive instance of the 
simulation; otherwise, it must be discarded. To get a reasonable 
approximation to the belief function, the process is repeated 
until enough positive instances are generated to be statistically 
significant. In those cases where there are a large number of 
instantiated nodes, many repetitions may be needed to produce 
just one positive instance [9]. 

The stochastic simulation method proposed by Pearl [ 171 ac- 
counts for the evidence in the sampling process. It permanently 
clamps the evidence nodes to the values observed and then 
conducts the stochastic simulation on the clamped network. 
Although the stochastic simulation method seems to work 
well with Bayesian networks having nodes that are not highly 
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dependent on each other, it is prone to convergence problems 
when the network contains links that are nearly deterministic. 
Therefore, it cannot be applied to the LLN inference model 
where the links are deterministic. 

Chin and Cooper [3] have proposed logic sampling with 
evidential integration, which employs link reversal to convert 
nonroot evidence nodes to root nodes. However, this does 
not seem to be a general approach since the link reversal 
process is liable to combinatorial problems. More recently, 
other simulation approaches have been investigated, such as 
the likelihood weighting technique by Fung and Chang [6] and 
the importance sampling technique by Shachter and Peot [20]. 
While the convergence properties of these two approaches 
seem hard to predict, their numerical results suggest that they 
work well even for networks with near 0 and 1 probabilities 
values. The applicability of the latter two techniques to the 
LLN model remains an open problem. 

The third method, conditioning, involves breaking the loops 
by instantiating a selected set of nodes to render the network 
singly connected so that Pearl’s belief updating algorithm can 
be applied [18], [15]. In Fig. 3, for example, instantiating L4 
will render the rest of the network singly connected. Given the 
evidence W, we instantiate L4 for each of its values. We then 
propagate the evidence W, using Pearl’s algorithm, under each 
of the instantiations of L4. The belief functions, say b(L3)  of 
L3, can be obtained by: 

b(L3) = b(L3(L4 = 0)P(L4 = OlW) 
+ b(L31L4 = l )P(L* = 1lW) (10) 

where b(L31L4 = 0) and b(L31L4 = 1) are the belief functions 
obtained by instantiating L4 to 0 and 1, respectively. Using 
Bayes rule, we have: 

P(L4(W) = aP(wIL4)P(L4) (11) 

where a is a normalizing constant, P(L4) is the a priori prob- 
ability of L4, and P(WIL4) can be obtained by propagating 
all instantiations of L4 through a single connected network. 

In the LLN inference model, the nodes are all binary-valued. 
If a model contains K loops, one node in each loop needs 
to be instantiated. Therefore, the amount of computation is 
approximately equal to the execution of Pearl’s algorithm for 
2K singly connected networks. If the number of loops is not 
too large, conditioning would be a possible approach for the 
LLN application. 

C. A Belief Updating Algorithm for LLN’s 
In what follows, we present a belief updating algorithm for 

multiply connected LLN inference models, The computational 
complexity of the algorithm is O ( N z )  in the worst case, where 
N is the number of LDC RV’s, i.e., those corresponding to 
LDC’s, in the trimmed inference model, and Z is the number 
of RV’s instantiated to value 0 in the evidence. 

Let W = {Wl = O,...,Wz = 0) be the evidence in the 
trimmed inference model. For each LDC RV Lj ,  we denote 
the event Lj = 0 by e j .  From ( 3 ) ,  we have that: 

p(ej> = P j  (12) 

and these events are mutually independent. 
For i = 1, . . . , 2, define sets: 

E; = { e j J L j  hasapathto Wiintheinferencemode}. (13) 

Note that sets E; are all nonempty since there must be some 
cause for the faulty power outputs at W;. Moreover, any single 
event in E; alone can cause the instantiation of Wi to 0. In 
other words, the disjunction of the events in the set is logically 
equivalent to W; = 0. Depending on the context, symbol E; 
will denote the set as defined in (13) or the disjunction of 
the events in the set. Therefore, the conjunction of E; for 
2 = 1 , 2 , . . . , z :  

is logically equivalent to the total observed evidence W. 
Using the laws of Boolean algebra, we can rewrite (14) 

in the irreducible disjunctive normal form (DNF), i.e., in a 
disjunction of conjunctions of basic events in which each 
disjunct contains no identical basic events and no disjunct is 
a subset of another. 

The DNF form of V represents the precise set of all joint 
events, each of which alone can cause the observed evidence 
W. Due to the logical equivalence between W and V, the 
belief function of event e j ,  i.e., Lj = 0, given W can be 
expressed as: 

The computation of P(V A ej) and P ( V )  is straightforward 
by the laws of probability [16]. 

Example 2: Consider the trimmed inference model of Fig. 
4(a) with evidence W = ( 0 1  = 0,  O3 = 0). The sets E1 and 
E3 are as follows: 

E1 = {el, e2},  E3 = { e l ,  ez, e5). 

From (14), we have: 

v = (el v e2) v (el v e2 v e5)  

and the irreducible DNF is: 

V = e l  V e2. 

Using (13 ,  we obtain: 

and, similarly, 

0 
The belief updating algorithm to be presented consists of 

2 + 1 steps. Step 0 finds the sets E;, i = 1, . . . , 2; steps 
1 to Z - 1 compute the DNF form of V iteratively; and 
the last step computes the belief function. The proof of 
the correctness of steps 1 to 2 - 1 is straightforward but 
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tedious; therefore, it is omitted. In what follows, we will use 
AflB,  AUB, A-B  to denote set operations, and AAB,  AVB 
to denote Boolean operations. We will treat sets of (possibly 
joint) events interchangeably with Boolean formulas in the 
following way: a set is converted to a formula by talung the 
Boolean OR of its elements, and a formula in DNF form is 
converted to a set by treating the disjuncts as elements of the 
set. 

Algorithm 3. (Belief Updating Algorithm for LLN’s.) 
Step 0: Given the inference model and the evidence W = 

{Wl =O,~~~,Wz=O},computeE~,i=l,~-~,Zbyfinding 
all ancestors of W; that are LDC RV’s. 

Step 1 : Find the intersection of E1 and Ez, S I  = E1 n EZ , let 

(21) 

Specifically, the right-hand side of (21) is computed as follows: 
remove from El and E2 the events in SI, and treat the 
resulting sets as disjunctions. Then, apply the distributive law 
to obtain a DNF. The resulting disjunction is again treated as 
a set and unioned with SI. Note that if either El - SI  or 
E2 - 5’1 is empty, then VZ = S I  and, if SI  is empty, then 

v2 = s1 U [(El  - S l )  A (E2 - SI)]. 

V2 = E1 A Ez. 
Step ivor 1 < i < 2 - 1): 
1. Find the generalized intersection of V, and Ei+l: 

Si = Ei+l @ V ,  
={w E V, : 3e E Ei+1,wcontainseasabasicevent}. 

(22) 

In other words, Si contains those (possibly joint) events 
in Vi that have some events in E;+1 as basic event. 

2. In a similar fashion to step 1, let 

K+l = Si U [(&+I - Si) A (K - Si)] .  (23) 

3. As we shall see later, the set V,+1 thus obtained may not 
be in the irreducible DNF form because some of its joint 
events might contain some other joint events in it. The 
former should be eliminated. This can be done by ar- 
ranging the joint events in V,+l in increasing cardinality 
order and then scan from the smallest upwards checking 
for proper containment. The resulting set is K+1 in the 
irreducible DNF form. 

Step 2: 
Let V = Vz. Compute P ( v ) , P ( V  A e j )  and b ( e j )  for 

0 
Note that step i ( 3 )  is necessary because step i ( 2 )  does not 

necessarily return K+l in irreducible DNF form. Here is an 
example: Let V2 = {el  A e2,ez A e3, e l  A e 3 } ,  E3 = {e l} .  
(It is easy to see that this can be the case for some LLN). 
Now, by (22), S2 = {el A e2, el A e3} and, by (23), V3 = 
{el A e2, el A e3, e l  A e2 A e3) and the joint event el A e2 A e3 
is redundant. 

j = l , . . . , N  by using (15). 

If an element in V; is a joint event of 5 basic events, we 
say that the element has multiplicity 5. In particular, if IC = 1, 
it is called a singleton. Note that if the elements in are 
all singletons, then the generalized intersection defined in (22) 
reduces to the ordinary intersection. 

Let us estimate the worst-case time complexity of this 
algorithm. Recall that we have N LDC nodes and 2 output 
ports whose power measurements are incorrect. In step 0, 
to compute each Ei, it takes at most O ( N 2 )  amount of 
time to traverse the DAG. Thus, this step takes at most 
O ( Z N 2 )  amount of time. In step i, all three subsets take time 
proportional to the size V, and E,+1. The former is bounded 
by O ( W ) ) ,  and the latter by O ( N ) .  Thus, in total, steps 1 
through Z - 1 take at most O ( Z N Z )  amount of time. Step 
2 takes time proportional to the size V ,  which is bounded 
by O ( Z N Z ) .  Therefore, in the worst case the entire algorithm 
takes O ( Z N Z )  amount of time. This bound is not very good 
but, as we will see in the next section, this method will allow 
us to come up with a better average case algorithm. 

V. THE &FAULT DIAGNOSIS SYSTEM AND 
ADAFTIVE FAULT DIAGNOSIS SYSTEM 

A fault diagnosis system employing Algorithm 1 in con- 
junction with Algorithm 2 or 3 is capable of identifying 
any number of faults in the LLN. Hence, we call such 
systems general fault diagnosis systems. In a practical LLN, 
simultaneous failure of a large number of LDC’s is very 
unlikely. Consider, for example, an LLN with 100 LDC’s. 
Assuming that the a priori probability of LDC failure is 
p = 0.001, the probabilities of one, two, and three LDC 
failures are 9 x  lo-’, 4 . 5 ~  and 1.45 x respectively. 
Therefore, for practical purposes, it is worthwhile to consider 
fault diagnosis systems with more limited fault diagnosis 
capabilities. In this section, we introduce the concept of t-fault 
identification capability for an inference system, and show 
that the computational complexity of a t-fault identification 
algorithm is on the order of O ( Z N t )  in the worst case. 

A fault diagnosis system is said to have a t-fault diagnosis 
capability if it is designed to identify all fault patterns with t 
or fewer LDC failures. We call such systems t-fault diagnosis 
systems. We observe that if all the fault patterns have t or fewer 
faults, then the corresponding element in the irreducible set V 
will be of multiplicity at most t. The t-fault diagnosis system 
conducts its inference using Algorithm 1 and a modified 
version of Algorithm 3. 

The basic idea of the modified Algorithm 3 is as follows. 
Step 0 remains the same as in Algorithm 3. In step i ( 2 ) ,  
when forming set K+l we discard all those joint events that 
have more than t basic events. We denote the resulting set 
of step i ( 3 )  by V,“,. As a result, the final V t  as well as all 
intermediate V,”s will contain only joint events of multiplicity 
less than or equal to t .  Step Z also remains the same as in 
Algorithm 3: 

(24) 

Following the same complexity analysis of Algorithm 3 ,  we 
can see that the worst-case time complexity of the t-fault 
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(a) (b) 

Fig. 5.  The LLN inference model for Example 3. 

diagnosis algorithm is bounded by O ( Z N t ) .  Note that this 
is a significant reduction in time complexity since it is now a 
polynomial in the size of the LLN. 

During the steps i = 1 , 2 , .  . . , 2 - 1, set Kt might become 
empty. This means that no t or less faults can cause the given 
evidence. In other words, the actual number of faults must be 
larger than t ,  and such fault combinations cannot be identified 
by the t-fault diagnosis algorithm. Therefore, there is a tradeoff 
between the fault diagnosis capability and the computational 
complexity. As a special case, when t = 1, finding V1 is 
particularly simple: 

= n n . . . n E ~ .  (25) 

Note that n denotes the set intersection operation instead of the 
Boolean “and.” It can be shown that if the apriori probabilities 
pi are all identical, the 1-fault diagnosis system becomes the 
deterministic fault diagnosis system presented in [ 191. 

Example 3: Consider an LLN with its inference model as 
shown in Fig. 5(a). Assume that the LLN input power values 
are all correct and that LDC’s 1 and 3 have failed. Then, the 
evidence for this inference model will be W = {Il = 1, I2 = 
1,01 = 0 , 0 2  = 0). The nodes 11 and 1 2  have been deleted 
from the model since their values are 1. 

a) Assuming that the I-fault diagnosis system is used, we 
proceed as follows: 

Iteration 1: The evidence for the trimmed inference model 
is W = (01 = 0,Oz = 0). We have E1 = {el,e2,e3} 
and E2 = {elre3,e4}. Since V1 = {el,e3},V1 A el = 
{el},V1 A e2 = {el A e2,e3 A e2},V1 A e3 = {e3}, and 
V1 A e4 = {el A e4] e3 A e4}, we have b(1, e l )  M pl/(pl + 
~ 3 ) ,  b(1: e2) = P 2 ,  b(1, e3) X p3/pl + 133, and b(1, nnq) = p4. 
Assuming that pi = p for all i, then b(1, e l )  and b(1, e3) are 
the maximum. If LDC 1 is selected for power measurement, 
we will find that it has failed and will need to be repaired. 

Iteration 2: The updated evidence is W = {01 = 0, O2 = 
0, F1 = l}. After deleting node F1 and its ancestor L1, the 
mmmed inference mode is shown in Fig. 5(b). The evidence 
corresponding to Fig. 5(b) is W = (0, = 0 , 0 2  = O}. 
We have El = (e2,eg) and E2 = {e3,e4}. Thus, V1 = 
{e3}, V1 A e2 = {e3 A e2} ,  V1 A e3 = {e3}, and V1 A e4 = 
{e3Ae4}.Then,b(l,ez) = p z , b ( l , e a )  = 1,andb(l,e4) =p4. 
After LDC 3 is fixed, the LLN output levels will be all correct 
and, hence, no further faults are detected. 

b) Assuming that the general fault diagnosis system is used, 
we proceeds as follows: 

Iteration 1: El and E2 will be the same as in iteration 
1 of a). Following Algorithm 3, we have V = {el,e3,e2 A 
e4}, v A el = {el}, v A e2 = {el A e2, e3 A e2, e2 A e4}, v A 
e3 = {e3}, and V A e4 = {el A e4,e2 A e4,e3 A e4}. 

Then, b ( 4  = PI/(PI + p3 + p ~ p A b ( e 2 )  = (PI + p3 + 
b(e4) = (PI + PZ + p3)p4/(pl + p3 + p2p4). (This, again, 
P4)pZ/(pl + p3 + p2p4), b(e3) = p3/(pl + p3 + p2p4)r and 

assumes that p ,  = p for all i. The b(e1) and b(e3) are the 
maximum. If LDC 1 is selected, we will find that it has failed 
and have it repaired. 

0 
Note that the 1-fault diagnosis system corrects the two faults 

for this LLN. Also, note that the belief functions b(1, e3) and 
b(e,) are generally different due to the omission of larger 
joint events in the modified version of Algorithm 3. If the 
a priori probabilities p ,  << 1, the effects due to the difference 
between the two sets of belief functions on the inference 
process become negligible. 

To take advantage of the low computational complexity for 
small t’s, we propose the adaptive inference algorithm that 
runs the modified version of Algorithm 3 with increasing t 
values. More precisely, it starts with t = 1. If the set V t  
is not empty, it computes b ( t ,  e3) and conducts the inference 
process as described in Algorithm 1. Only when the set V t  is 
found to be empty, it increases t by 1 and restarts the modified 
Algorithm 3 again. It repeats this until it finds a nonempty V t .  

To analyze the time complexity of this adaptive inference 
algorithm, we assume that in some instance of execution there 
are actually T faults. In the worst case, the algorithm will find 
all Vt, t = 1, . . . , T - 1, to be empty. For t = T ,  Vt will be 
nonempty. As shown previously, for each t = 1, . . . , T - I, 
the algorithm takes O ( Z N t )  amount of time and the last step 
takes O ( Z N ~ ) .  Therefore, it takes at most O(C?==, Z N ~ )  = 
O(ZNT+l) amount of time when there are exactly T faults. 
Normally, each LDC has limited fanout. Therefore, the number 
of output ports Z should be bounded by a constant times NI the 
number of LDC’s. Thus, the time complexity of the algorithm 
is O(NT+’)  for T faults. Assuming that the apriori failure 
probabilities of the LDC’s are all equal to p ,  then the average 
time complexity of the algorithm is, at most, 

Iteration 2: The same as in a). 

(26) 
When p < 0.5N-’, (26) is bounded by a constant. In other 
words, whenever some fault occurs, the adaptive inference 
algorithm would spend (on average) a constant amount of time 
to compute the belief function, independent of the size of the 
network as long as p < 0.5NP2. As an example, when p 
can be guaranteed to be smaller than 5 x loP5 (a reasonable 
assumption given today’s optical technology), the network can 
be made as large as having 100 nodes. 

VI. SIMULATION RESULTS 

We have conducted some simulation experiments to assess 
the performance of Algorithm 1 with our belief updating 
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algorithm (Algorithm 3) proposed in Section IV-C. We are 
mainly concerned with two performance measures: the number 
of power tests required to locate all faulty LDC’s and the 
computational complexity. The former can be directly counted 
as the number of iterations of step 3 of Algorithm 1. The 
latter could be, in principle, found out by measuring the time 
it takes for the algorithm to find all the faults. But, in a time- 
shared multiuser system, the time thus obtained does not really 
reflect the true computational complexity. On the other hand, 
we have seen in the complexity analysis of Section IV-C that 
the size of the sets V ,  (see Algorithm 3) is proportional to 
the time complexity of the algorithm. Therefore, we counted 
the number of terms in sets V ,  for the estimation of the 
computational complexity. 

We have tested LLN’s with various sizes from 15 to 95 
nodes. The LLN’s and the routes were generated at random. 
There is a fixed number of output ports at the periphery. Each 
output port has at least two routes from some input 

The a priori failure probability was assumed to be the same 
for all LDC’s and, for the simulation, it was arbitrarily chosen 
to be 0.001. For each of the sizes, we generated 10 sample 
networks with routes. Then, for each sample LLN with routes, 
we generated fault patterns containing one faulty LDC’s up 
to six faulty LDC’s. For each of the fixed number of faults 
t = 1, . . .  ,6, we generated ten faulty patterns at random. 
Therefore, for each size and number of faults combination, 
there were 100 samples all together. Then, the algorithm was 
run for the network with these fault patterns. The total number 
of power tests and the maximum number of terms in the sets 
V ,  were recorded. The simulation was implemented in C with 
little effort in coding efficiency, and was run on a SUN SPARC 
2. It took a few seconds for the smallest generated network, to 
more than 10 hours for a 95 node with six faults. The results 
are presented in Figs. 6 and 7, after taking the average over 
the 100 samples for each size and the number of faults. 

Time complexity - 
I I I I t -  1 

From Fig. 6, we find that the average number of power tests 
grows as the network size and the number of faults increase 
but very mildly. The average number of power test per fault 
grows even more slowly. This means that for each fault, the 
system spends an almost constant amount of extra number of 
tests to locate it. 

On the computational complexity side, from Fig. 7 we can 
see that with a few exceptions due to random fluctuations, the 
time complexity increases as the network size and the number 
of faults increase at different rates. It increases slowly as the 
network size increases but fast when the number of faults 
grows. The figures and the real execution time taken seem 
to suggest an exponential increase in the number of faults. 
Fortunately, multiple simultaneous faults occur very rarely as 
long as the single failure probability of the LDC’s is small. 

VII. CONCLUSIONS 

In this paper, we proposed a probabilistic approach to 
fault diagnosis in LLN’s. In particular, the application of the 
Bayesian network inference model to fault diagnosis in LLN 
was investigated. A general inference algorithm and a belief 
update algorithm for multiply connect LLN inference models 
was proposed. We also proposed the t-fault and adaptive 
diagnosis concept for the tradeoff between computational cost 
and fault diagnosis capability. 

Some simulation of our algorithm was reported. The results 
suggest that the algorithm performs well with single and 
multiple faults. The average number of power tests grows 
slowly as the network size and number of faults increase. 
Although the computational complexity grows fast as the 
number of faults and network size increase, it has been 
shown in the simulation that with today’s available midrank 
workstations, the computational demand of our system for 
six simultaneous faults in a 100-mode network can be coped 
with. This limit will certainly be pushed up with better 
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implementations and more powerful machines. As possible 
future research topics, it is interesting to consider extension 
of the model to cover the multibandwidth aspect and to cope 
with partial LDC failure of the LLN. 

APPENDIX 
This Appendix presents Pearl's belief updating algorithm. 

Pearl's algorithm is distributed in nature, with each nodeRV 
of the Bayesian network regarded as an individual processor. 
Each node performs local computations, and the results are 
communicated only between neighboring nodes. A typical 
fragment of the singly connected Bayesian network is shown 
in Fig. 8, along with the messages to be passed between 
neighboring nodes. In this figure, node X has n parents 
U,, . . . ~ U,, m children, Y1, . . . , U,. The conditional proba- 
bility P(zlu1, . . . , U,) quantitatively relates the node X to it 
parents. 

Let W i Y j  denote the evidence contained in the subnet- 
work on the head side of the arc X -  > y,  and W$ix 
denote the evidence in the subnetwork on the tail side of 
the arc Vi- > X .  The total available evidence is given by 
W = {Wi,W,'}l where W; = {W~ul,...,W~y,} and 
Wd: = {W,',,, . . . , Wt,,}. Note that for singly connected 
networks, all IVYyi and WGiX are disjoint. 

In Fig. 8, the 7r message 

.x(.;) = P(UZIW=;X) (27) 

is the current strength of the causal support contributed by 
incoming arc U,- > X ,  and the X message 

XYj(.) = P(W,,jlz) (28) 

is the current strength of the diagnostic support contributed by 
each outgoing arc X -  > Yj. 

Algorithm 2 (Pearl's belief updating algorithm [18], [IS]) 
A node X is activated when it receives the T messages from 

its parents, the X messages from its children, or the node itself 
is instantiated for a specific value 5 .  Upon the activation, X 
performs the following three steps in any order. 

Step 1: Belief updating. The node X updates its belief 
measure to 

b(z) = cyX(z)7r(z) (29) 

where 

nXyj ( I C )  if X is not instantiated, 

if X is instantiated for x 
if X is instantiated but not for z 

(30) 
is the X value of node X ,  

P(+I,. . . 1  un)I-17rz(uz) 
z 

if X is not instantiated, 

if X is instantiated for IC 

if X is instantiated but not for z 

(31) 

Fig. 8. A typical node X in a Bayesian network. 

is the 7r value of node X ,  and where a is a normalizing 
constant rendering CX b(z) = 1. 

Note that (29)-(31) implies that b(z) = 1 if X is instantiated 
with value z and 0 if X is instantiated with values other than IC. 

Step 2: Bottom-up propagation. The node X computes new 
X messages and posts them to its parents: 

Step 3: Top-down propagation. The node X computes new 
7r messages and posts them to its 

b(x ) /Xy j ( z )  if X is not instantiated, 
if X is instantiated for z 
if X is instantiated but not for z. 

(33) 

This algorithm needs to be initialized by the following pro- 
cedures: 

1. Set all X values, X messages, and T messages to 1. 
2. For all roots U, set .(U) = P(u) .  
3. For all roots U and all children X of U, the node U 

posts new T messages to X :  

P(u)  if U is not instantiated, 
1 if U is instantiated for U (34) 
0 if U is instantiated but not for U .  

Initially, when no evidence is available, the probability distri- 
bution embedded in the Bayesian network is in equilibrium. 
Upon the instantiation of a node (i.e., the arrival of a new 
piece of evidence), the equilibrium state is broken. In order for 
the network to enter a new equilibrium state (i.e., the belief 
functions converge to their true values), the number of belief 
updates to be performed by each node is proportional to the 
diameter of the Bayesian network [18]. 
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