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Resumen

n este proyecto se estudia la situacién de conflicto en la que dos aeronaves se aproximan con velocidad,
E rumbo y altitud constante en el mismo nivel de vuelo, bajo la presencia de vientos desconocidos
definidos por su funcién de densidad de probabididad.

Se considera que un conflicto se produce cuando se predice que en el futuro las aeronaves se encontrardn
en pérdida de separacion, es decir, cuando se predice que las aeronaves se encontrardn a una distancia entre
ellas menor que un margen minimo de separacién. El conflicto se caracteriza por una serie de indicadores,
tales como la minima distancia entre aeronaves, el instante de tiempo en el que se alcanza esta distancia o la
probabilidad de que este se produzca.

En este proyecto se realiza un estudio probabilistico usando transformacion de variables aleatorias. Con
este método, es posible obtener la funcién de densidad de los indicadores a partir de una transformacién de
la funcién de densidad del viento. Los resultados obtenidos son comparados y validados usando el método
de Monte Carlo.

Para dos escenarios diferentes, se estudian los efectos de las propiedades estadisticas del viento, tales como
su media o varianza, y de la velocidad de las aeronaves sobre los indicadores.






Abstract

he aim of this project is to analyse the conflict between two approaching aircraft flying at a constant
T airspeed, course and altitude for uncertain winds, which are defined by their probability density functions
(PDFs).

The conflict is characterized by a series of indicators, such as the minimum distance between aircraft, the
time to minimum distance or the probability of conflict. A loss of separation is considered to exist if the
minimum distance is found to be smaller than a minimum separation margin.

A probabilistic analysis is performed using transformation of random variables. In this method, the
indicator’s PDFs are computed by a transformation of the wind speed PDFs. The results are validated using
the Monte Carlo method. The effects of the statistical parameters of the wind and the aircraft airspeeds are
analysed for two different scenarios.
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Introduction

1.1 Motivation

The Air Traffic Management (ATM) system is a large and complex system which contains a vast number of
agents, such as aircraft, pilots, controllers and airports, that interact with each other in a complex network.
Inside the ATM, the Air Traffic Control (ATC) is responsible for organizing the flow of air traffic, provide
information for pilots and preventing hazardous operations. The complexity of the interactions of ATM
members, that are non-linear in most situations and can lead to emergent behaviours, combined with the
increasing levels of air traffic, makes necessary the development of tools to assist ATC operations.

The European airspace is among the busiest in the world. As a response to the increasing capacity problems,
the European Commission created in 1999 the Single European Sky (SES) initiative, with the objective of
drawing a common airspace and air navigation services for all European countries. In 2005, the political
vision and high level goals for the SES were stated, which include increasing the capacity and safety of the
ATM system and reducing the costs and environmental impact of European flights. The Single European
Sky ATM Research (SESAR) is the technological pillar of SES, devoted to develop the state-of-the-art
technological systems and components required to meet SES goals. Among SESAR’s lines of investigation,
an approach that can improve current prediction and optimisation mechanisms is to model, analyse, and
manage the uncertainty present in ATM.

Several sources of uncertainty are present in ATM. The ComplexWorld Research Network [8] identifies
the following types:

» Data uncertainty. This source of uncertainty comes from an incomplete knowledge of the aircraft
data or incorrect models. Some typical examples are uncertain GPS position, aircraft take-off weight
or oversimplified aircraft models.

* Operational uncertainty Human decisions are a clear source of uncertainty: they are extremely
difficult to predict and can have a very significant influence on ATM operations. Imprecision in the
execution of ATC instructions by pilots is an example of this type of uncertainty.

* Equipment uncertainty This type refers to problems in equipment, from aircraft breakdown to total
system failure.

* Weather uncertainty The atmosphere is a complex system whose exact behaviour is practically
impossible to predict. Weather can only be predicted in a satisfying way in a relatively short horizon,
which causes flight plans based on early meteorological estimations to be far away from the real
scenario.

Among these sources, weather uncertainty has the greatest impact on ATM operations. The limited
knowledge about future meteorology conditions, such as wind velocity, fog, snowfall or storms, is responsible
for much of the delays and flight cancellations, which negatively affects ATM efficiency and translates to
extra costs for airlines and air navigation service providers.

The analysis of the impact of weather uncertainties in conflict detection may benefit ATM performance by
improving its safety and efficiently levels. Some applications would include the development of ATC support
tools for conflict detection and resolution tasks or optimal conflict-resolution algorithms.
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1.2 Trajectory prediction based on ensemble weather forecasts

While deterministic meteorological forecasts have long been used in trajectory prediction and, as for today,
are still the standard in ATM applications, a lot of efforts have been made to introduce uncertainty information
in trajectory prediction systems . One of today’s trends is using Ensemble Prediction Systems, which are
based on repeatedly running a deterministic model with a different starting state , and/or different physical
parametrizations, to obtain an ensemble of forecasts [3] [12] (see Fig. 1.1). These ensemble of forecasts aim
to generate a representative sample of the possible future states of the atmosphere.
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Figure 1.1 Schematic of deterministic forecast vs ensemble forecast.

An ensemble forecast is a collection of typically 10 to 50 weather forecasts or members. Some of these EWF
are reviewed in [3]: Prévision d’Ensemble Action de Recherche Petite Echelle Grande Echelle (PEARP), a
French model with 35 members; Met Office Global and Regional Ensemble Prediction System (MOGREPS);
from UK Met Office consisting of 12 members; and the EPS of the European ECMWF, with 51 members.
These ensembles can be combined to produce a SUPER multi-model ensemble, consisting of 98 members.

SESAR’s IMET project (Investigation of the optimal approach for future trajectory prediction systems to
use METeteorological uncertainty information) aimed to quantify the sensibility of trajectory parameters
to uncertainty in meteorological forecast. In IMET project [1], two approaches for probabilistic trajectory
prediction based on ensemble weather forecast (EWF) are described (see Figure 1.2):

b) Probabilistic trajectory prediction. In this approach, the probability distribution of the trajectory
parameters of interest are directly derived from a probabilistic distribution of the weather quality of
interest using a probabilistic trajectory predictor (PTP). A previous statistical post-processing of the
forecast ensemble is necessary to create the weather probability density function.

b) Ensemble trajectory prediction. This second approach is based on repeatedly applying a deterministic
trajectory predictor (DTP) for each member of the ensemble weather forecast, which leads to an
ensemble of trajectories that can be post-processed to obtain its statistical properties.

While the IMET project followed the second approach, the work presented in this project follows the first
one.

1.3 Obijectives

This project is devoted to analyse the conflict between two approaching aircraft flying at constant airspeed,
course and altitude. The aircraft fly on the cruise phase in the same airspace, where the weather conditions,
in particular the wind, are uncertain.

A conflict occurs when a loss of separation is predicted to exist in the future, that is to say, the distance
between aircraft is predicted to be smaller than a minimum separation margin at some point of their trajectory.
The conflict is characterized by a series of indicators, that will describe the severity of the situation. Parameters
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Figure 1.2 Probabilistic trajectory prediction based on ensemble weather forecast.

such as the minimum distance between aircraft, the time to minimum distance or the duration of the loss of
separation are obtained. One of the most relevant indicators studied in this project is the probability of a
conflict for a given scenario.

A probabilistic analysis is performed using a numerical approximation to the transformation of random
variables method. With this method, the indicator’s probability density functions (PDFs) are computed by
evolving the wind speed PDFs. The numerical results are validated using the Monte Carlo method. The
effects of the wind statistical parameters and the aircraft airspeeds are analysed for two different scenarios.

1.4 Outline

The present document is structured as follows. In Chapter 2, a description of the problem under consideration
is presented: the general scenario is described and the conflict between the aircraft is defined by a series
of indicators. The governing equations for the problem are formulated. Next, in Chapter 3, the application

of the transformation of random variables and Monte Carlo methods to the present problem is addressed.

The basics of the two methods will be described, as well as their numerical application. The final results
are presented in Chapter 4, where the PDFs for the sought indicators are depicted. The influence of wind
statistical parameters (such as its mean and standard deviation) and the aircraft airspeed on the conflict are
also analysed. Finally, in Chapter 5, some conclusions and future work are presented.






2 Problem Formulation

A description of the problem scenario is presented in this chapter. The equations that describe the behaviour
of the aircraft and their interaction are presented and analysed.

The indicators herein chosen to describe the conflict between the aircraft are also introduced. Additionally,
the probabilistic wind model used in this project is defined.

2.1 General scenario

The scenario under analysis in this project is depicted in Figure 2.1. The case of two aircraft, A and B, that
fly on the cruise phase with approaching trajectories is considered. Being the wind uncertain, the aircraft
may or may not end up by losing a desired separation necessary for a conflict to be detected.
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Figure 2.1 General conflict scenario.
The conflict scenario under consideration is described by the following assumptions:

* the two aircraft fly in the same airspace and flight level,

* the course (Y, and yy) and airspeed (V4 and Vj) of both aircraft are constant and, alongside their
initial positions (5y4 and ), they are perfectly known;

* the aircraft are considered to be close enough so as to be affected by the same wind;



6

Chapter 2. Problem Formulation

* the wind w is uncertain; and

* initially, the distance between aircraft is greater than a desired separation margin D, that is to say, there
is no loss of separation at t = 0.

In order to describe the position of the aircraft 5; (¢) and 53(¢), an earth-fixed reference system is used,
where the x-axis is pointing towards the North and the y-axis is pointing East. The aircraft position is then
described by

§A(t) - E:AO +‘7gAt
Sg(t) = 5po + Vpt 2.1)

where V4 and V,p are the aircraft ground speeds, which in turn are given by

oa(t) = Va(t) +Ww
V(1) = V(1) + 2.2)

Notice that inasmuch as the wind is uncertain and the course and airspeeds of the aircraft are fixed, the
magnitudes of V,, and V,p are also uncertain and so are the directions of V, and V.

The relative motion between the aircraft is also a matter of importance in order to describe the conflict
situation. The relative position between the two aircraft §(¢) = 53(¢) — 5, (¢) can be computed as

E(t) :§BO_§AO+(VgB_‘7gA)t:§0+‘7gt (23)

where 5 and Vg are the relative initial position and relative ground speed vectors, respectively. The distance
between the aircraft at a given time d(¢) can now be computed as the magnitude of the relative position, so
one can write

d(t) =|[50)|| = \/(30 + V). (5o + V,t) = \/s(z) + 253Vt + V212 (2.4)

being s, and V, the magnitudes of the relative initial position and relative ground speed vectors.

2.2 Conflict indicators

In this section, the indicators chosen to characterize the conflict are presented. These parameters are defined
as follows.
¢ Time to minimum distance 7,

The instant of time when the distance between the aircraft reaches a minimum can be obtained by
setting to zero the derivative of the function d(¢) given by (2.4) with respect to the time 7, so one has

d(d(r)) 125 ﬂg +2Vg2t _EO'Vg
=— =0—t 2.5
dt 2 d{r) = i 2 2)

Given that the aircraft have approaching courses, the existence of a minimum in the function d(7) is
always guaranteed atz; = > 0.

* Minimum distance d,,;,
The value of the minimum distance between the two aircraft can be computed by evaluating the equation
(2.4) in the instant of time 7, _ -

L5 (50-V,)2 (50-V,)2
dpiy = \/ 55— 25V, VZg +V? v =5t - Tj (2.6)
8 8 8

This parameter can be seen as an indicator of the conflict intensity.



2.3 Velocity uncertainty

* Probability of loss of separation at time ¢ P[d(t) < D]

In the general scenario considered in this project, the two aircraft fly at the same altitude, so a loss of
separation will exist if the horizontal distance between them (d(¢)) is smaller than a desired separation
margin D, typically SNM.

dit)<D 2.7

The probability of the occurrence of a loss of separation at a given time can be expressed as the
probability of the function d(z) of being less or equal than D, or P[d(t) < D].

Additionally, an interesting point of view would be to obtain the probability of loss of separation for
aircraft i given a distance r; along its trajectory, that could be expressed as

i
P [d(Vgi) < D} (2.8)

Probability of conflict P,

on

The probability of conflict for the whole trajectory is given by the probability of the indicator d,,;,, of
being smaller than the separation margin. This can be expressed as
P[dmin < D] (29)

and does not depend on the time.

Duration of the loss of separation Ar

In the case of a violation of the separation minima, the duration of the loss of separation is also a
parameter of interest. One can obtain this indicator by setting equation (2.4) equal to D:

d(t) =D — 55+ 25y’ V, + Vgt* = D* (2.10)

which is a second-degree equation whose solutions are

Y \/(fo.vg)2 (s3—D?)

t= g 4 _ @2.11)
4 2
8 Vg Vg

The smaller solution will correspond to the instant of time when the loss of separation is predicted
to start whereas the bigger one will correspond to the instant of time when the loss of separation is
predicted to end. The duration of the loss of separation can be computed from the previous equation as
the difference between these two solutions

50-V,)?  (s3—D?
Azzz\/(o‘/;) —(S0V2 ) 2.12)
8 8

In terms of #,,,,;,, this indicator can be expressed as

(3—D?)

— 2
Ar =2 Lamin — V2
8

(2.13)

Notice that this parameter is only defined when the radicand has a positive value, that is, when a conflict
exists

2.3 Velocity uncertainty

The indicators presented in the previous section are mostly dependent on three factors: s(z), E’O.Vg and ng.

Being the initial positions of the aircraft perfectly known, the vector 5, is certain, and so it is its modulus s(z).
In consequence, the source of uncertainty must devolve upon EO.Vg and ng.
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Taken this into account, it is now necessary to obtain the expression of Vg in terms of the wind. Given that
the relative ground velocity expressed as
Vo=Vep—Vou = Vgt — (V4 + %) =V~ V (2.14)
does not depend directly on the wind, the expressions of the airspeeds VA(VV’) and VB(W) are to be sought.
These equations can be computed from the wind triangles (see Figure 2.2) as follows.
We,A

V,
We A

cos( Yy — arcsin

N

] (2.15)

sin(yy, —arcsin

fVB

)
By v o))

(54))
( (5:))
cos((l//B — arcsin((:y; ))))] (2.16)

. . "B
sin(yg —arcsin \Z}

where y; is the heading of the aircraft i, y; the course and w, ; the crosswind affecting that aircraft. The
magnitude V; of these vectors is known. The crosswinds can be expressed in terms of the North and East
components of the wind as

Wea = WyCOSYy — W, Siny, (2.17)

We g = WyCOSYp — W, Sinyp (2.18)

These terms are considered to be positive when the crosswind comes from the left wind.

»
»

y

Figure 2.2 Wind triangle for aircraft A.

Finally, from equation (2.14), the relative ground speed is given by

cos(l//A —arcsin ( V%A ) )

sin(yy —arcsin(%)) (2.19)

= We.B

Vv cos(wB—arcsin(%)) v
s '8 sin(yp —arcsin( 7)) A

Notice that the only terms in the previous equation that introduce uncertainty are the crosswinds affecting
the aircraft, w, 4 and w, p. The crosswinds are modulated in this expression by each aircraft velocity, V, and
V. This means that the bigger the aircraft airspeeds are, the less the conflict situation is affected by the wind
uncertainty.

On the other hand, in the ground speeds expressions for each aircraft V, 4 and V, p, the uncertainty is
brought in by the crosswinds and also by the along-track winds (see equation 2.2).
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2.4 Probabilistic wind model

In this project, the wind velocity is given by its zonal component w,, in the west-east direction, and its
meridional component w,, in the north-south direction. These components are uncertain and are considered
to be independent.

The method presented in this work is applicable to any statistical distribution, so any model of uncertain
wind could be used, such as a normal or gamma distribution. Given the opportunity, a wind PDF calibrated
by means of processed forecast ensembles could be used. The approach to obtain the PDF of the wind
components using weather ensemble forecasting can be summarize as follows:

Suppose that the ensemble has » members. The first step would involve obtaining for each wind component
and location the sample values {w, ,...,w,,} and {w, ;,...w,, }. Next, one must assume that each wind
component follows a particular distribution. Finding a suitable distribution for this purpose is one of the open
challenges in this problem. Finally, the parameters of the chosen distribution are estimated from the sample.

For the sake of simplicity, the wind components are considered to be distributed as uniform continuous
random variables in this project.

The probability density function of the wind component w; is given by equation (2.20), with an average
value of E[w;] =; and a half-width §,, . In Figure 2.3, the wind component w; PDF is depicted.

1 - -
s, W, E[w. =0, ,Ww;+0,
fw,-(wi) _ 26y, i [ .z wir Vi w,] (2.20)
0 otherwise
The variance of w; is given by
1

Var[w;| = Ewi] - (E[w}])* = 553,- (2.21)
r |
\
| 1
25“,1 |
|
N |
= |
-~ r |
) |
|
\
H |
i

717‘,; - (S“;’ 71],1‘ 1,?)[ + 61‘;‘
w; [m/s]

Figure 2.3 Wind component w; uniform distribution.

Considering that the two wind components w, and w, are statistically independent, the joint density function
fwx,wy (wy,w,) can be expressed as follows

1

Sw,ow,’ w; € [W; = Sw;, w; + 6w (2.22)

1
fwx.,w_y(wxa Wy) = fwx (Wx) ' fwy (Wy) = Z






Obtaining probability density functions for
two random variables

In this chapter, the computation of the probability density function (PDF) of the indicators described in
Section 2.2, given a wind speed probability distribution, is presented. Some important statistics, such as the
mean and the standard deviation, are also obtained.

Firstly, in Section 3.1, the transformation of two random variables applied to obtain the sought PDF
is explained. The equations that are being particularized and used in this analysis and the implemented
numerical procedure are presented.

Secondly, the application of the Monte Carlo method to the problem is addressed in Section 3.2.

3.1 Transformation of two random variables

Let us consider two random variables u; and u, with a known joint probability function f, ,, (4;,u,) whose
domain is the set R € R?. Let v; and v, be two random variables

Vi :gl(ulaMZ)
vy = g (uy,y) 3.1

whose density function f, , (v{,v,) is to be obtained. Assuming that g, (u;,u,) and g, (u;,u,) is a bijective
transformation that maps the set R of the u,u, plane onto the set S of the v,v, plane, one could express
random variables as u; = h(v;,v,) and u, = hy(v;,v,). The sought joint probability density function is then
given by

Forwy V1v2) = fuy iy (M (V1,v2) i (vi,v2)) - [T (v, v0)| (3.2)

where J is the Jacobian of the transformation, which can be computed as

duy  duy ohi(vi,va)  9hi(viva)

__|adv vy | v v

T=10w | = |amiv) (i) (3.3)
avl 8v2 avl aVZ

In the problem addressed in this project, the random variable v; would be one of the parameters described
in the previous chapter: d(t), d,;,, t; . and At. Being the north and east components of the wind the source
of uncertainty, w, and w,, take the place of u; and u,.

One might notice that the random variable of interest is now a one-dimensional function of w, and wy. In
order to compute the density function f, (v;) in this case, let us use v, as an auxiliary variable . The joint
density f, ., (v{,v,) is computed from (3.2), function that can be integrated over v, to obtain the marginal
density function

Foy (1) :wavl,V2(V1aV2)dV2 (3.4)

11
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In this work, the random variable w, has been chosen to be the auxiliary variable, so as to simplify the
Jacobian expression, which is now determined as

dwy  Jdwy
(9‘31 ﬁ ?;WX 3WX 8WX(V1 7Wy)
J=10w, ow|= (V)l fy == (3.5)
Ty Iy Y
Next, the equation (3.4) is particularized for the uniform distribution considered in this work as
1 1 ow, (v, w,)
- W )dw, = — y ’d , 3.6
fv1 (Vl) [V)- fv1 Wy (Vl Wy) Wy 4 SWX(SW), W avl W), ( )

where the limits of integration are determined by the transformed set § in the v;w, plane.

Once the PDF f, (v;) is known, the mean and the typical deviation of v, can be computed as follows

Epl= [ v, (o0, 37

ov] \/ | i—EWD2A, 0y, (3.8)

3.1.1 Non-monotonic functions

The previous procedure is only to be applied when v, = g, (w,,w,) is an invertible function in the domain of
Jw,w, and the partial derivative dw,/dv, exists and is continuous. However, this might not be the case of
some indicators in determined scenarios.

For instance, let us consider the variable d,,;,, which for a given scenario adopts the non-monotonic
behaviour depicted in Figure 3.1. Furthermore, one can observe that the partial derivative is not even defined
in some points of the domain. In this particular scenario, the two aircraft collide (d,,;,, = 0) for certain values

of the wind speed.

10000

E
E

- 9000
2
<

0

-40
-20
0 -40
w, [m/s] wy [m/s]
Figure 3.1 Example of a non-monotonic function: d,,;, for w = —20m/s and §,, = 25m/s for a particular
scenario.

To address the problem, one can divide the domain set R in W, plane into n smaller ones R s where the
transformation is one-to-one. Next, it is possible to compute the marginal PDFs in each of these n elements as

/ I Wy (vi,w W, W, ER; (3.9)

S, i) )
otherwise
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The total density function is now obtained as a sum of the n PDFs functions, as follows.

0 =Y o i) (3.10)
j=1

Let us use the aforementioned situation as an example. One can identify, as can be appreciated in Figure 3.1,
two sets Ry and R, where the function d,,;, (w,,w,) is bijective, then compute f; = (d,;,) and fy = >(d)

and finally obtain the total density function by adding these functions together.
3.1.2 Numerical approach

The numerical procedure used to solve the problem is addressed in this section. The computations herein
described were performed using the numerical computing environment MATLAB.

The process is composed of three steps: the transformation of the function domain, computation of the
joint probability f,, Wy and integration over the auxiliary variable w,.

Domain transformation

Firstly, in order to determine the limits of integration in equation (3.6) it is necessary to obtain the transformed
domain set § in the v;w, plane from R in the w,w, plane.

This is achieved by evaluating the function v; = v, (w,, wy) in the limits of the rectangular region in the
w,w, plane. Later, these points are interpolated in order to obtain a uniform grid over the variable v;. This
interpolation is performed using MATLAB’s interpl.

An example of this transformation is depicted in Figure 3.2 for the variable 7, =, a wind mean of
W, =W, = 0m/s and a wind span of J, = 5Wy = 20m/s in a given scenario. In this example, the trans-
formation is one-to-one.

301 155
150+
20
1451
— 140t
~= A,
£ o £135)
3 el
S 130}
125+
1201
_30 i i i i i i 115 i i i i i i
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
w, [m/s] wy [m/s]
(a) R set. (b) S set.

Figure 3.2 Transformed domain for a one-to-one transformation.

For a non-monotonic function, it is also necessary to identify the points where the indicator function
vi(wy, wy) reaches an extremum and define the separate regions where the joint probability function must
be integrated. This has been accomplished by evaluating the function in a two-dimensional uniform grid
in the w,w,, plane and then finding the function extrema using MATLAB’s max and min functions in each
dimension. Notice that it is possible for the functions to be monotonic for one wind direction and not for the
other.

Once the limits of the regions R; are found, the §; sets in v;w, plane are computed by evaluating the
function in these limits. The resulted points are now interpolated as done in the one-to-one transformation case.

In Figure 3.3 an example of a more-to-one domain transformation is presented. In this case, the variable
At takes the place of Y and a wind span of §, = 6Wy = 50m/s is used. In this scenario, it is necessary to

separate the transformation into three disjoint regions R, R, and R; where the transformation is one-to-one.
The function At(w,,w,) maps these regions of the w,w, plane into regions Sy, S, and S5 of the Atw, plane.

Notice that region S5 sightly overlaps region S,.
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601 757

i i i i i i 4 i i i i i i
%0 40 =20 0 20 40 60 %o 40 20 0 20 40 60
w, [m/s] wy [m/s]

(a) Rj sets. (b) Sj sets.

Figure 3.3 Transformed domain for a more-to-one transformation.

Computation of the joint probability function

The next step is to compute the joint probability function fvhwy, which is given by

aWx(vl ’ Wy)

m @3.11)

fvl,wy = fwx,wy ’

where fwmwy is the wind joint PDF (equation (2.22)). If one could obtain the analytical expressions of the in-
verse transformation w,.(v;,w,) and its partial derivatives with respect of v,, the computation of the joint PDF
would be straightforward. However, the indicators herein defined do not allow to obtain such analytical ex-
pressions. These inverses, the partial derivatives, and the integrations are consequently computed numerically.

The inverse function wx(vl,wy) is obtained by applying MATLAB’s functions fzero or fsolve to the
following equation in w,
Z(Wx) =V (Wxawy,O) —Vio0 = 0 3.12)

where v; ; and w, , are the points in which the function is evaluated. In the present problem, these points
would be the ones in the S set (or sets).

In the cases where the indicator function is monotone in the R set, fzero is used. On the other hand, the
function fsolve is used for the cases when the function its non-monotonic, that is to say, reaches an extremum
in the R set.

The reason behind choosing one function or the other is that the function fzero, despite yielding more
precise answers than fsolve, is incapable of finding a solution if the function does not present a sign change.
For a non-monotonic function, fzero can present problems near the function extrema, where the function
does not necessary cross the axis. In spite of the fact that the answer could not be as exact, the function fsolve
does not have this problem near the extrema.

In both cases, it is necessary to provide an initial iteration point in w,. Given that one already has a matrix
vy (wy,wy) for a uniform grid in w,, wy (necessary to compute the transformed domains), this initial guess is
obtained by interpolating the matrix in the v, ; and w,, points using MATLAB’s interp2 and interpl. This
way, a very accurate w,  initial point is obtained.

Once the inverse function is computed, the partial derivative can be obtained by applying the following
finite difference formula

8wx(v1,wy) _ w,(v; —|—h,wy) —w, (v, — h,wy)
dy 2h

(3.13)

where the step / is chosen as
h= Vie 8(V1,c) (314)
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expression where € stands for the machine accuracy, obtained using eps function, and v, . is a characteristic
value of the indicator.

Figure 3.4 Joint and marginal probability functions.

Integration over w,

Finally, the joint PDF is integrated over w,, to obtain the marginal PDF f, (vy)-
For each point of the uniform grid in the variable v, the joint PDF is integrated inside the limits of the S
set. In this project, MATLAB’s function frapz has been used.

In Figure 3.4 a representation of the procedure is depicted. Once the joint PDF f, wy 18 computed over the
S set, one can obtain the marginal PDF for a point in v; by integrating over w, inside the limits defined by S:
in the picture, the magnitude of the area abcd represent this integration.

3.2 Monte Carlo Method

In this Section, the application of the Monte Carlo method to the problem is addressed. The results compiled
using these simulations are to be used as a validation of the ones obtained with the transformation of variables
analysis.

The Monte Carlo method is based on repeatedly evaluating a deterministic model using a random sampling
as an input, in order to generate a random output from which one can obtain statistical data such as the mean,
variance or the probability distribution.

This method is based on the Law of Large Numbers, which states that, given independent and identically
distributed random variables (i.i.d) X;,X,, ..., Xy, then the average

1

X=—
N;

M=

X, (3.15)
1

converges to E[X] when N tends to infinity.

The main limitation of this method is that a large number of samples is necessary to obtain a desired
accuracy, and the model equations have to be evaluated for each sample. On the other hand, the Monte Carlo
method has the advantage of being very flexible in the complexity of the model: since this model is only

used as a simulator, it is possible to obtain solutions to problems that are too difficult to be solved analytically.
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Figure 3.5 Basics of Monte Carlo method.

Taking this into consideration, it is necessary to reach a trade-off between the computational effort and the
accuracy of the solution.

The Monte Carlo method can be applied to the problem considered in this project to obtain statistical
information of the indicators from a random sample of wind velocities .

The method is applied to the problem as follows.

From the uniform wind distribution defined in equation (2.20), a set of N samples {w, ;, wy7k} is generated
using MATLAB’s rand function. These samples are used to solve the indicator equations described in 2.2 to
obtain a sample of the solution {v; ;}.

Once the N samples of the output are generated, these data can be used to find approximate values of the
mean and the typical deviation:

)
\71 = = Vik (316)
A=

1 N
o=/ X vig—7 (3.17)
N — k=1

These values are obtained using MATLAB’s mean and std functions.

Additionally, an approximation to the indicator PDF can be computed from the data by normalizing their
histogram. In order to do so, the output data is divided into a series of adjacent intervals (or bins) of equal
size. Then, the number of values that fall into each interval is counted and stored in a vector n, of size M,
being M the number of bins. An approximation in M points of the sought PDF can now be computed as

T 3.18

fv| - m ( . )

where N is the size of the sample in the simulation and d is the size of each bin. This procedure has been
carried out using the function hist in MATLAB.

3.2.1 Number of samples
As it has been stated, the size of the input sample N defines the quality of the solution in Monte Carlo
simulations. In consequence, it is important to chose N sufficiently large so that the solution is accurate

enough.

Table 3.1 Approximate error in a Monte Carlo simulation.

N elty,,)  Eldul e[Ar]

29 =512 0.6967s 122.4334m  1.7979s
216 — 65536 0.0642s  10.8240m  0.1606s
223 = 8388608 0.0057s  0.9564m  0.0142s
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According to Bayer et al. [2], the accuracy of the approximation can be characterized by the probability
that the error of the mean obtained by the Monte Carlo simulation is larger than certain tolerance €. This can

be estimated as
\/NSD (3.19)

o[vi]

P[5, — E[v,]] >e]z2<1—<b

where E[v,] is the true mean of the random variable and ® stands for the standard normal cumulative distri-
bution function.

Let us consider the same scenario used in the example for Figure 3.2. In Table 3.1, the errors € of
approximating the mean of the variables t, ., d,,;, and At for a probability of P[|v; — E[v;]| > €] = 1% are
presented for N = 2°, N = 2'% and N = 2. It can be observed that for the larger sample one obtains a very
good approximation for all indicators.

In Figure 3.6, the PDF of the variable 7, = is depicted for the aforementioned sample sizes. In this picture,
it is easy to appreciate the importance of using a sufficiently large number of samples.

0.12r
,,,,,,,,, N:29
| =N =2
0.1r § 7]\7:223
— !
E 0.08F
£ 0,06
=
<0.04
=
0.02r
0 Lo i i N |
110 120 130 140 150 160

tdm,’i,n [S]

Figure 3.6 Time to minimum distance PDF for different number of samples in a Monte Carlo simulation.

Taking all of this into account, a number of samples of N = 2%} = 8.4- 10 has been chosen for carrying
out all Monte Carlo simulations presented throughout this project.






Results

In this chapter, the obtained results are presented for two different scenarios. The influence of parameters
such as the mean wind w, the wind span §,, and the aircraft airspeed V is analysed.

The results are presented for two particular scenarios and a uniform wind distribution whose PDF is defined
in (2.20). It has been decided to use the same PDF for both wind components w, and w,, that is

Wy = 1y =W 8, =8, =8, 4.1

Positive values of w represent that on average the wind points north-east while positive values represent a
wind that points south-west. The mean value w varies between —20m/s and 20m/s and the wind span ranges
from Om/s (representing the deterministic scenario) to 25m/s.

The airspeeds are also equal for both aircraft V, =V = V. Values between 200m/s and 280m/s are
considered. The separation requirement D is set to SNM (9260m).

4.1 Conflict scenarios

The two particular scenarios under consideration are described in this section. In Figure 4.1, the initial
positions §p; and courses y; for aircraft A and B are depicted. These parameters are set to the following
values:

* Scenario 1: 5, 4 = [0,0], 5y 5 = [10,10]NM= [18520, 18520]m, ¥, = 90° and yj = 135°

« Scenario 2: 5, 4 = [0,0], 5, 5 = [25,50]NM= [46300,92600]m, y, = 90° and yj = 225°

40¢
201
30 ’
Pp = 225°
B | ¢p=135° By B
10f -
., 20t .,

— Vo.B — 9,B

2 N 2 //

Z. Of 4 e So———— Z. 10 %

_ N = B P
& Voua AN 8 A Vga Vi
N - /
-10f R 0 T
Ve
/
-10t P
-201 e
i i i i i _20 ‘ i i i
-10 0 10 20 30 40 0 20 40 60
y [NM] y [NM]
(a) Scenario 1. (b) Scenario 2.

Figure 4.1 Conflict scenarios.
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411 Deterministic analysis

Next, the results of a simple deterministic analysis are presented. The equations described in section 2.2 have
been evaluated for a known wind, that is to say, 5W =0.

The indicators have been computed for a nil wind mean (w = 0) and aircraft airspeeds of V = 240m/s. In
Table 4.1, the results are presented for scenarios 1 and 2.

Table 4.1 Deterministic analysis results.

d

min

Conflict At

dyin

Scenario 1  131.73s  10022.95m (5.41NM) No -

Scenario 2 232.87s  7339.14m (3.96NM) Yes 25.46s

In the first scenario, the deterministic analysis predicts a minimum distance between aircraft slightly greater
than the separation requirement, so no conflict is detected. However, since this minimum distance is close to
D, one may expect the existence of a conflict for certain wind configurations.

For the situation described in the second scenario, the deterministic analysis predicts a loss of separation
with a duration of 25.46 seconds. The time to minimum distance in this situation is greater than the obtained
in the first scenario, which is easily explained by the fact that the initial distance between the aircraft is bigger
in the second one (55.90NM versus 14.14NM).

These results give an idea of the behaviour of the overall situation for each scenario; in the following
sections, an uncertain wind is considered.

4.2 Aircraft relative distance over time

The results regarding the distance between the two aircraft over time are now presented considering the
following wind and airspeed parameters: w = Om/s, 6,, = 20m/s and V = 240m/s.

The expected value E[d(¢)] (solid), 5th percentile (dashed) and 95th percentile (doted) of the variable
have been depicted in Figure 4.2, where the dashed-doted line represents the minimum horizontal separation
requirement D. For the sake of clarity, the results obtained by means of a Monte Carlo simulation are not
shown in this picture.

0.5r
0 L L L L L i 0 L L L L i
0 30 60 90 120 150 180 0 60 120 180 240 300
t[s] ts]
(a) Scenario 1. (b) Scenario 2.

Figure 4.2 Distance between the aircraft over time using transformation of variables.

Since the aircraft are approaching, the relative distance between them decreases until it reaches a minimum,
and then increases as the aircraft move away from each other.

As one may expect, the uncertainty of the aircraft distance increases with time. For reference, the standard
deviation of this magnitude goes from zero at the beginning to ¢[d(180)] = 1462.8m (1463.1m using a
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Monte Carlo simulation) in the first scenario, and o/[d(180)] = 1469.1m in the second one (1469.5m with
Monte Carlo method).

An interesting feature shown in this picture is the assurance that the existence of loss of separation at a
given time is uncertain. For instance, in scenario 1 at = 110s, where the separation minima line crosses the
Sth percentile, the aircraft have a 5% probability of being in a loss of separation.

4.3 Time to minimum distance

Probability distribution

The probability density function of the indicator #, = is now analysed for w = Om/s, §,, = 20m/s and
V =240m/s. In Figure 4.3 the transformed two-dimensional set S and PDFs for this variable are presented
for scenarios 1 (Figure 4.3 (a) and (b)) and 2 (Figure 4.3 (c) and (d)). From now on, the results are shown for
both transformation of variables (solid) and Monte Carlo (dashed) methods.

1551 0.07r
b AC
150 0.06
= 0.05
~
=
— 0.04
b = 0.03
2z
= 0.02
0.01} ——-Monte Carlo
a a — Transf of variables d
1 1 5 i i i i i 0 i T T i
-30 -20 -10 0 10 20 30 110 120 130 140 150
wy [m/s] b [5]
(a) S set in the LWy plane for scenario 1. (b) PDF of zdmmfor scenario 1.
2501 0.1
245 b
0.08r
=
~
i
_ 0.06
= 0.04f
,ﬁE
oS
0.02+
——-Monte Carlo d
220 ‘ ‘ ‘ ‘ ‘ ‘ a [ | ——Transf of variables ‘
-30 -20 -10 0 10 20 30 (2)20 225 230 235 240 245
wy [m/s] td,, [8]
(c) Ssetinthet, Wy plane for scenario 2. (d) PDF of 1, . for scenario 2.

Figure 4.3 Transformed domain and probability distribution of ¢, =~ for w = Om/s, §,, = 20m/s and
V = 240my/s..

The PDFs of 7, . present four corners (labeled as a, b, ¢ and d in Figure 4.3). This can be explained by
the presence of the four corners in the S sets, which represent abrupt changes in the integration limits when
integrating the joint PDF f; = (tg,,»Wy) to obtain the marginal PDF.

In the first scenario, two of these corners (band ¢, atz; =~ =130.9sandz, = 131.3srespectively) are very
close to each other and are difficult to differentiate. The difference in height of the middle corners b (229.6s)
and ¢ (236.2s) in the second scenario responds to different values of the partial derivative dw,/dt,,,;, at
these points, since the limits of integration in wy remain the same.

In Table 4.2, the mean and standard deviation values of 7, . are collected. Both transformation of variables
and Monte Carlo methods yield very similar results. Notice that the expected value of t4,,;, for both scenarios
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Table 4.2 Expected value and standard deviation of #,

nin

Scenario 1 Scenario2

Method E[zdmm] G[zdmm] E[’dmm] G[tdmm]

Transformation of variables 131.87s  6.38s  233.11s  4.33s
Monte Carlo 131.89s  6.38s  233.14s  4.33s

is slightly bigger than the time obtained with a deterministic analysis using the average wind w = Om/s,
131.73s.

Effect of the wind uncertainty

The effects of the parameters w and §,, are analysed in this section for V = 240m/s. Figure 4.4 depicts the
expected value Et, ] and the standard deviation ot . | as a function of W for different values of the wind

m

width 6,, = 5,10, 15,20 and 25m/s.
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(a) Expected value of 7; . for scenario 1. (b) Standard deviation of 7, . for scenario 1.
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6 |
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(c) Expected value of 7;  for scenario 2. (d) Standard deviation of ¢, . for scenario 2.

Figure 4.4 Expected value and standard deviation of 1, as a function of w, for 6, =5,10,15,20,25m/s and
V =240m/s.

As one can observe in the picture, in both scenarios the expected value of 7, . is almost independent on
0, it increases very slightly when 6, does. The expected value also depends very briefly on the wind mean:
the influence of ¥ on E[t, . ] is basically non-existent in scenario 1, while in the second scenario the expected
value increases as the mean wind does. The reason behind this increase in E[t, . ] is that larger values of w
represent stronger north-east winds, which for the aircraft B (see Figure 4.1) translate into headwinds that
will delay the loss of separation between the two aircraft.
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Regarding the standard deviation of z, . , it depends weakly on w, decreasing slightly on scenario 1 and
increasing in scenario 2. As one may expect, the standard deviation increases as J,, increases, that is to
say, a bigger dispersion in wind values translates to a bigger dispersion inz, . As a reference, when o,
increases 1m/s, the standard deviation at w = 0 increases approximately 0.3s and 0.2s for scenarios 1 and 2,
respectively.

Effect of the aircraft airspeeds

In this section, the effect of the aircraft velocities V on 7, = is presented. In Figure 4.5 the expected
value Eft, | and the standard deviation o[t, .| as a function of V are represented for w = Om/s and

min

5, =5,10,15,20,25mys.
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Figure 45 Expected value and standard deviation of #, =~ as a function of V, for w = 0 and 9§, =
5,10,15,20,25m/s and V = 240m/s.

The effect of V is very similar in both scenarios. The expected value of 7, =~ decreases as the airspeed
increases, a predictable result that shows how the aircraft approach each other faster when their airspeeds
increase.

The interesting feature about the present result is that the standard deviation decreases when V increases,
and this change is more significant for higher values of §,,. For example, in scenario 1, when the airspeed
increases from 200m/s to 280m/s the standard deviation decreases approximately 1s for §,, = Sm/s and 6s for
d,, = 25m/s; for scenario 2, ot, . | decreases 0.8s and 4s for §,, = 5 and 25m/s, respectively. This behaviour
can be explained by equation (2.19): since the aircraft airspeed are dividing the crosswinds, which are the
source of uncertainty, it is expected that bigger values of V would translate into a more certain trajectory.



24 Chapter 4. Results

4.4 Minimum distance

Probability distribution
Next, the density function of the minimum distance d,,;, between aircraft is presented for the two scenarios

and w =0, 6,, = 20m/s, V = 240m/s. The results are depicted in Figure 4.6, where the S sets for each scenario
are also represented.
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for w = Om/s, 0,

w

Figure 4.6 Transformed domain and probability distribution of d = 20m/s and

min>
V = 240m/s.

The probability of conflict can be computed from these PDFs by obtaining the area under the function to
the left of the vertical dash-doted line that represents the minimum separation criterion D:

D
Prn= | _fun(P)dp @)

The presented PDFs display again four corners, which, as in the case of 7, ., can be explained by the four
corners of the transformed domains.

Notice that the points a, b, ¢ and d in these functions are almost connected by straight lines, unlike the
case of 7, ., where some curvature exists. This fact clearly shows that the shape of the PDF of d,,,;,, is highly
influenced by the shape of the set S and not so much by the value of the Jacobian of the transformation, which
seems to be quite constant in the whole region. This is also the reason why the points b and ¢ have the same

height, which is mostly affected by the values of the limits of integration.

The obtained values of E[d,,;,], o[d,,;,] and P,,, are collected in Table 4.3 for transformation of variables

and Monte Carlo methods. Once more, the results differ little from one method to the other.
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Table 4.3 Expected value, standard deviation of d,,;,, and probability of conflict.

Scenario 1 Scenario2

Method E[dmin] G[dmin] Pcon E[dmin] G[dmin] Pcon

Transformation of variables 10012.4m 1075.6m 27.98% 7337.6m 1902.3m 81.48%
Monte Carlo 10013.0m 1075.2m 27.95% 7337.6m 1903.9m 81.49%

Effect of the wind uncertainty

In this section, the effects of w and §,, on the minimum distance expected value and standard deviation are
studied for V = 240m/s. The results are depicted as a function of w in Figure 4.7 for §,, = 5,10, 15,20 and

25m/s.
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Figure 4.7 Expected value and standard deviation of d,,,;, as a function of w, for §,, =5, 10, 15,20,25m/s and
V = 240m/s.

Again, the expected value of the indicator does not depend on the wind PDF width. However, unlike the
case of L the wind mean has a relevant influence in this indicator: for scenario 1, the expected value
decreases as w increases; for scenario 2, the opposite trend appears.

This can be explained considering the deterministic case: as w increases, the wind goes from pointing
south-west to pointing north-east; in consequence, the aircraft airspeeds rotates clockwise to keep their course
constant, which affects aircraft B more because the wind direction is perpendicular to its course. As a result,
the relative ground speed V,, also rotates clockwise and becomes more aligned with the relative initial position

vector 5. This causes the term (E’O.\Z,)Z / ng in equation (2.6) to increase and, consequently, d,,;, decreases.
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In scenario 2, the course of the aircraft B is parallel to the wind direction. While for aircraft A the previous
analysis predicts its airspeed to rotate, the aircraft B airspeed does not rotate in this case, but increases its
value when w increases. It can be checked that in this scenario the vector V, is more perpendicular to 5 as w

increases, which causes the term (Zv’O.Vg)2 / ng to decrease and, as a result, the minimum distance between
aircraft increases.

As can be observed in the figure, the wind mean has almost no effect on the standard deviation of d,,,;,,,
which slightly increases with w for the first scenario and remains constant in scenario 2 for §,, = 5,10 and
15m/s. Once again, the standard deviation of the indicator increases as J,, increases.

The interesting result obtained in this analysis appears when one observes the behaviour of ¢d,,;,] for
values of w near —20m/s and high values of §,, in the second scenario: the standard deviation of the minimum
distance drops for these values. While this is more striking for the standard deviation, it can also be observed
for E[d,,;,] near w = —20m/s, where the expected value for 0, = 25m/s is higher than the others.

The reason behind this behaviour is that the function d,,,;, (w,,x,) reaches a minimum (d,,;, = Om, which
can be understood as a collision between the aircraft) for some values of the wind speed that are predicted by
its PDF. In the context of the transformation of variables method, this will mean that the domain separation

into two disjoints regions is necessary.
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Figure 4.8 Transformed domains and probability distribution of d,,,;,, for scenario 2, w = —20m/s, §,, = 25m/s
and V = 240m/s.

In Figure 4.8 (a), the transformed sets S| and S, are depicted for w = —20m/s, §,, = 25m/s and V = 240m/s;
as can be seen, the S; set partially overlaps S, set. In Figure 4.8 (b) the obtained PDF is represented. The
contribution of each set to the total PDF are presented in this picture as f; = | (dash-doted) and f; =, (doted).
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Figure 4.9 Expected value and standard deviation of d,,;, as a function of V, for w = Om/s and §,, =
5,10,15,20,25m/s.
As it can be seen in the this figure, in this situation the PDF of d,,;, is higher around d,,,;, = Om. This
causes the PDF to be narrower and, in consequence, the standard deviation to be smaller.

Effect of the aircraft airspeeds
The effects of the aircraft airspeeds in d,

min are addressed in this section. The expected value and standard
deviation are depicted in Figure 4.9 for w = Om/s and §,, = 5,10, 15,20 and 25m/s.

Alircraft airspeeds have no impact on the expected value of d,,;, whatsoever. The wind span §,, also has
no influence on this parameter. The behaviour of 6[d,,;,| is exactly the same as in#, . case: the standard
deviation decreases with V, being this reduction more important for higher values of 9,,.

4.5 Probability of being in loss of separation at a given distance

The probability for an aircraft to be in a loss of separation for each point of its trajectory is analysed next. The
results herein presented are computed for the aircraft A. For aircraft B, the existence of a loss of separation
takes place in an earlier point of the trajectory in comparison to aircraft A for the first scenario, whereas in
the second scenario, the loss of separation for aircraft B starts later. In spite of this fact, the results are very
similar for both aircraft.
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Figure 4.10 Probability for aircraft A of being in loss of separation Pld(r,/V, 4 < SNM)] as a function of r,
for w =0, 8, = 0,5,10,15,20,25m/s and V = 240m/s.
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In Figure 4.10, the probability for the aircraft A of being in a loss of separation Pld(r,/V, 4 < SNM)] as a
function of the aircraft position along its trajectory r, is depicted for w = 0, V = 240m/s and different values
of §,,: 8,,=0,5,10,15,20 and 25m/s. The value §,, = Om/s corresponds to a deterministic analysis, and is
represented in the figure with a thicker line.

In both scenarios, the probability is zero at the beginning and starts to grow from a certain value of the
aircraft distance. Then, it reaches a maximum and descends, so it becomes zero again as the two aircraft
move away from each other.

For the first scenario, the deterministic analysis (6,, = Om/s) predicts no loss of separation along the whole
trajectory. However, for uncertain winds a probability of a loss of separation appears: as the wind PDF width
d,, increases, the probability of a loss of separation increases for values of r, around 30km. The maximum
probability appears approximately at 32km, with a value of 32% for J,, = 25m/s.

In the second scenario, a loss of separation between r, = 52.8km and r, = 58.9km is predicted in the
deterministic analysis. The probability of being in loss of separation increases with 8, outside this region and
decreases inside it. This is a very interesting result that will also be seen later in section 4.6: The certainty
that a loss of separation exists or does not exist decreases as the wind uncertainty increases.

Next, in Figure 4.11, the effects of the mean wind w are analysed for 6,, = 20m/s and V = 240m/s. Values
of w=—20,—10,0, 10 and 20m/s are considered.

In this case, the probability of being in loss of separation increases when the wind mean increases for
scenario 1, while in scenario 2, the probability decreases when w increases. This can be easily explained by
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Figure 4.11 Probability for aircraft A of being in loss of separation Pld(r,/V, 4 < SNM)] as a function of r,,
for = —20, —10,0, 10,20m/s, §,, = 20m/s and V = 240m/s.
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Figure 4.12 Probability for aircraft A of being in loss of separation Pld(r,/V, 4 < SNM)] as a function of r,,
for v = Om/s, 8, = 20m/s and V = 200,220,240, 260, 280m/s.
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observing Figure 4.7, where d,,;,, was obtained as a function of w. In that figure, one can appreciate that the
minimum distance between aircraft decreases as w increases in the first scenario, that is to say, the conflict is
more severe for higher values of the wind mean; as a consequence of this drop in d,,;,, the probability of
being in loss of separation increases. A similar analysis can be done for the second scenario.

In Figure 4.12, the effects of the aircraft airspeeds are represented for w = Om/s, §,, = 20m/s and V =
200,220,240,260 and 280m/s. As expected, for higher values of V the certainty of the existence of a conflict
decreases: in scenario 1, where the deterministic analysis does not predict a loss of separation, the probability
decreases for higher values of V, whereas in scenario 2, where a loss of separation in predicted by the
deterministic analysis, the probability increases with V.

4.6 Conflict probability

The conflict probability throughout the trajectory P,,, is now studied for different values of the wind mean,
the aircraft airspeeds and the wind width.

In Figure 4.13, the probability of conflict P, is represented for both scenarios as a function of w, for
6, =0,5,10,15,20 and 25m/s, where the value §,, = Om/s represents the deterministic case (depicted with a
thick line). The deterministic analysis predicts a loss of separation for values of the wind mean larger than
w = 6.2m/s in the first scenario and smaller than w = 8.9m/s in the second one.
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Figure 4.13 Probability of conflict P,,, as a function of w, for §,, = 0,5, 10, 15,20,25m/s and V = 240m/s.

Regarding the effect of the mean wind, the probability of conflict increases with w for all values of 9§,
in scenario 1, due to the fact that the minimum distance between aircraft decreases with w. The opposite
behaviour is found in scenario 2.

As in the previous section, the effect of §,, depends on whether a loss of separation is deterministically
predicted or not: for values where the deterministic P, is zero, higher values of §,, yield an increase in the
probability of conflict; on the other hand, for values where a conflict is predicted in the deterministic case,

the probability of conflict decreases as §,, increases.

In Figure 4.14, P, is represented as a function of V for §,, = 0,10,15,20 and 25m/s.

The obtained results are to be expected: in situations where the conflict is not predicted deterministically,
such as in scenario 1, an increment in V (or a decrement in J,,) translates into smaller values of P,,,; on
the contrary, when a loss of separation exists in the deterministic case, like in scenario 2, the probability of
conflict decreases when V increases and J,, decreases.
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Figure 4.14 Probability of conflict P,,, as a function of V, for w = 0 and J,, = 0,5, 10, 15,20, 25m/s.

4.7 Duration of the loss of separation

Probability distribution

In this section, the density function of the duration of the loss of separation Af is obtained. Since this
parameter is only defined when there is a loss of separation, the conditioned probability distribution of At
given P, , > 0 has been computed. The conditioned PDF can be obtained as

(1P, > 0) = &) @3)

con

In Figures 4.15 and 4.16, the sought conditioned PDFs and their correspondent S sets have been represented
for scenarios 1 and 2, respectively. Additionally, the regions where the indicator is defined in the R sets in the
w,w,, plane have been depicted; in scenario 1 it is defined by the points b,c.d, and e, and in scenario 2 by the
points a,b,d,e, and f. The PDFs have been obtained for w = Om/s, 6,, = 20m/s and V = 240m/s.

The obtained PDFs for this indicator differ quite a bit from 7, . and d,,;,, ones. For scenario 1, the § set
presents again four corners (e, d, ¢ and b), but this time they do not correspond to the cornets in the original
R set as in the previous cases. Notice that for values of Az from points b,e (0s) to point d (26.12s), the limits
of integration remain the same (—20m/s to 20m/s); however, the PDF increases almost lineally between these
points. This clearly shows how variable the partial derivative dw, /d Az is throughout the R set.

In the second scenario, the S set presents five corners (b,d,a,e and f). The relevance of the partial derivative
values in the outcome is also obvious in this case: from points b,d (0s) to point a (7.06s), the upper and lower
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(a) R set in the Wy, plane for scenario 1. (b) S set in the Atwy plane for scenario 1.
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Figure 4.15 Wind domain, transformed domain and conditioned probability distribution of Az, for w = Om/s,
d,, = 20m/s and V = 240m/s for scenario 1.
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Figure 4.16 Wind domain, transformed domain and conditioned probability distribution of At, for w = Om/s,
0,, = 20m/s and V = 240m/s for scenario 2.

limits of integration remain almost constant, but the PDF increases between these points; from a to e (35.3s),
the value of the PDF significantly increases despite being the limits of integration closer to each other.

The relatively odd shapes of the S sets for this indicator and the changing values of dw, /d At may be due to
the fact that this indicator is defined by quite a complex equation (see eq. [2.12] in Chapter 2) in comparison
toz, . and d,,, indicators.
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In Table 4.4, the correspondent values of the mean and standard deviation of At are collected for transfor-
mation of variables and Monte Carlo methods.

Table 4.4 Expected value and standard deviation of Ar, conditioned to the existence of a conflict.

Scenario 1 Scenario2

Method E[Atf]  o[Af]  E[Af] oA

Transformation of variables 32.40s 12.39s 26.55s 8.65s
Monte Carlo 32.40s 12.39s 26.57s 8.65s

Effect of the wind uncertainty

Next, the influence of the wind parameters w and §,, on At is analysed. In Figure 4.17, E[At] and o[A¢] are
represented as a function of w for ,, = 5,10,15,20 and 25m/s and V = 240m/s. The results shown in this

section are not conditioned to the existence of a conflict; when P, = 0, the indicator Az has been set to zero.
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Figure 417 Expected value and standard deviation of Ar as a function of w, for §,, = 5,10, 15,20,25m/s and
V = 240m/s.

If one compares these graphics with the ones in Figure 4.13, it is clear that indicators At and P, are strictly
related: higher values of P, translate into a more severe conflict situation, and thus, to higher expected
values of the duration of the loss of separation.

As seen in section 4.6, the probability of conflict increases when w increases in scenario 1 (while decreases

in scenario 2), and so does the expected value of the duration of the conflict. Regarding the standard deviation,
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Figure 4.17 shows that higher levels of dispersion are obtained for wind mean values around w = 6.2m/s
in scenario 1 and w = 8.9m/s in scenario 2, which correspond with the wind mean values that limits the
existence of a conflict for the deterministic case.

Unlike other indicators, the variable J,, now affects the expected value of At: for w values where the
conflict is detected in the deterministic analysis, increments of §,, yield to higher values of E[A¢], while the
opposite is true when no conflict exists in the deterministic case.

For o[At], the behaviour is now similar to other indicators: the standard deviation of At increases for higher
values of §,,.

Effect of the aircraft airspeeds

Finally, the effect of the aircraft airspeeds V on E[Ar] and o[At] is studied in this section. Figure 4.9 depicts

the expected value and standard deviation of At as a function of V for w = Om/s and §,, = 5,10, 15,20 and
25m/s.
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Figure 4.18 Expected value and standard deviation of Ar as a function of V, for w = Om/s and J,, =
5,10,15,20,25m/s.

As the figure shows, expected value of At decreases when the aircraft airspeeds increases, which is a
perfectly predictable result, given the fact that faster aircraft will exit the loss of separation sooner than slower
ones.

The evolution of o[A] with V is very similar to #, . and d,,;, cases: when V increases, the standard
deviation decreases, a tendency that is more important for higher values of §,,,.






Conclusions and future work

In this project, the transformation of random variables method has been successfully applied to the proba-
bilistic study of aircraft conflict detection in presence of uncertain wind. The results have been validated
using the Monte Carlo method. Both methods yield practically identical results.

Conflict indicators like the time to minimum distance, minimum distance or the duration of the loss of
separation have been defined to characterize the intensity of the conflict situation. In particular, the probability
of the existence of a conflict is a parameter of great interest in the present analysis. The influence of the
wind uncertainty and aircraft airspeeds on these indicators has been studied for two different scenarios. The
evolution of the indicators has been found to be different for each scenario, proving that this evolution depends
on the relative position and movement between the aircraft.

The application of the transformation of random variables methodology has proven to be very useful to
analyse the probability density functions of the indicators, and thus, their statistic characteristics expected
value and standard deviation. In particular, the study of the transformed domains obtained with this method
has helped to fully understand the behaviour of the indicators’ distributions.

A uniform wind distribution has been considered. However, the methodology herein described is applicable
to any wind distribution.

Among the most interesting results obtained throughout this work are the following:

* The expected value of the indicators differs from the one obtained in a deterministic analysis for the
average wind, which is due to the non-linear dependence of the indicators on the wind parameters;

* higher values of the aircraft airspeeds contribute to the reduction of uncertainty; and

* the certainty that a conflict exists or does not exist decreases when the wind dispersion increases or the
aircraft airspeeds decrease.

This project constitutes a first step in the development of a methodology to manage weather uncertainty
in the context of conflict detection and resolution. The safety and efficiency of the air traffic management
are expected to be beneficed from the inclusion of weather uncertainty in automated conflict detection by
allowing the trajectories to be strategically deconflicted in the long range planning and reducing the number
of missed and false alerts in the mid and short terms.

Next steps in the present line of investigation would include:

* The application of the methodology to other conflict indicators, such as the instant of time when a loss
of separation is detected or the position of each aircraft along its trajectory where the LOS takes place.

* Probabilistic analysis considering different types of wind distributions. Among the possible distribu-
tions, the use of a wind PDF obtained from an actual ensemble weather forecast would be of great
interest.

* The use of the methodology on more complex scenarios, such as trajectories composed on several
cruise segments with different courses or the presence of more than two aircraft in the same airspace.

* The consideration of correlated wind-fields in which the wind velocity varies with the position.
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1. Introduccion
Motivacion

El sistema de gestidn del trafico aéreo (ATM) es un sistema complejo con un gran nimero de
agentes que interactdan entre ellos. Como cualquier sistema complejo, el sistema ATM presenta
incertidumbre, que puede ser debida a factores humanos, dindmicas desconocidas o errores
en las medidas. En concreto, la incertidumbre introducida por el caracter impredecible de la
atmdsfera (aparicién de nieblas, velocidad del viento, tormentas...) es especialmente importante
y es causante de un gran numero de retrasos y cancelaciones.

El estudio y gestion de la incertidumbre meteorolégica puede beneficiar en gran medida a
la gestion del trafico aéreo, mejorando su eficiencia y seguridad.

Una de las lineas de investigacién actualmente mas populares para la inclusién del estu-
dio de la incertidumbre meteoroldgica en la prediccion de trayectorias de aeronaves es el uso
de Sistemas de Prediccion por Conjuntos. Estos sistemas se basan en evaluar repetidamente
un modelo de prediccidén para variaciones pequenas de las condiciones iniciales y/o diferen-
tes parametrizaciones fisicas, para obtener un conjunto de predicciones, compuestos por un
numero de predicciones (o miembros) de entre 10 y 50. El proyecto IMET [1] [3] describe dos
enfoques diferentes en cuanto a la prediccion probabilistica de trayectorias usando prediccion
meteoroldgica por ensambles:

1. Prediccidn probabilistica de trayectorias: Los parametros de interés de la trayectoria se
derivan directamente de la distribuciones de probabilidad de las variables meteoroldgicas,
utilizando un predictor de trayectorias probabilistico.

2. Prediccion de trayectorias por conjuntos: En este enfoque, se aplica un predictor de tra-
yectorias determinista a cada miembro del conjunto, obteniendo un conjunto de trayectorias.

El proyecto IMET seguia este segundo enfoque. En este trabajo se va a seguir el primero.

Objetivos

El objetivo del trabajo es estudiar la situacién de conflicto en la que dos aeronaves se apro-
ximan con velocidad, rumbo y altitud constantes en el mismo nivel de vuelo y bajo la presencia
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de vientos desconocidos, definidos por su funcién de densidad. Se considera que un conflicto
se produce cuando se predice que en el futuro las aeronaves se encontraran en pérdida de se-
paracion, es decir, cuando se predice que las aeronaves se encontraran a una distancia entre
ellas menor que un margen minimo de separacion. El conflicto se va caracterizar por una serie
de indicadores, tales como la minima distancia entre aeronaves, el instante de tiempo en el que
se alcanza esta distancia o la probabilidad de que se produzca el conflicto.

Se va a realizar un estudio probabilistico usando transformacién de variables aleatorias. Los
resultados obtenidos seran comparados y validados usando el método de Monte Carlo.

Para dos escenarios diferentes, se van a estudiar los efectos de las propiedades estadisti-
cas del viento, tales como su media o varianza, y de la velocidad de las aeronaves sobre los
indicadores.

2. Planteamiento del problema

Escenario

El escenario general considerado en este proyecto es el que se muestra en la Figura 1.

Figura 1: Escenario general

Este escenario viene definido por los siguientes supuestos:
= |las dos aeronaves vuelan en el mismo espacio aéreo y nivel de vuelo;

= |as derrotas y velocidades aerodinamicas de las aeronaves son constantes y conocidas,
asi como sus posiciones iniciales;

= las aeronaves se encuentran suficientemente cerca como para suponer que estan ex-
puestas al mismo viento;

m ¢l viento es incierto; y
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m |a distancia entre aeronaves en el instante inicial es mayor que un margen minimo de

separacion D.
En este escenario, la posicidon de las aeronaves A y B puede escribirse como

FA(t) = Fa0 + Vyat = 5o + (Va(t) + @)t
(1)

l

(t) = 8o + Vypt = 5o + (V(t) + W)t

)

B
siendo V,; la velocidad con respecto a tierra, V; la velocidad aerodindmica y 3 ; la posicién

inicial de cada aeronave.
La distancia entre aeronaves viene dada por
(@)

\/sg + 25Vt + V212

d(t) =
donde 5 = 5y — 0.4 €s la posicién inicial relativa entre aeronaves y V, = V, 5 — V, 5 es la

velocidad relativa con respecto a tierra.

Indicadores
Los indicadores que se han escogido para caracterizar el conflicto son los siguientes
m  Tiempo para la distancia minima
d(d(t))  128.V,+2V2A —5.7,
dt 2 d(t) 7 Vi )
m Distancia minima
. §0-‘7g (%-%)2 _ 2 (_’0- _‘9)2
dmin = \/8(2) — 280Vg ‘/‘,92 + %2 Vg4 - SO — Ti (4)
m Probabilidad de pérdida de separacion en un instante de tiempo t
Pld(t) < D] (5)
» Probabilidad de conflicto
m Duracion de la pérdida de separacion
(50.V)? (53— D?) 5 (s — D?)
At = 2\/ v - V2 = 24 [ tamin V2 (7)
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Incertidumbre en la velocidad

Los indicadores anteriores dependen de la velocidad X7g. Dado que ésta depende del viento,
es necesario obtener su expresion con respecto a las componentes de la velocidad del viento.
En este proyecto el viento va a quedar definido por su componente norte w, y su componente
este w,. La velocidad relativa con respecto a tierra viene dada por la siguiente expresion:

cos (?l)A — arcsin ( w‘a“‘ ) )

sin(ya — aresin( w‘j;‘A )

cos(¢p — arcsin( w‘jj’gB )

We, B

V)=~ T =V,
I o 4 o sin(z/JB —arcsin(V—B))

- Vu (8)

donde los términos w,; hacen referencia al viento cruzado, que puede expresarse como

We, A = WyCOSY A — Wy SINY A (9)
We, B = WyCOSYRB — W, SINYRB (10)
Como puede verse, V, sélo depende del viento cruzado, mientras que V, 4 y V, 5 también
dependen del viento paralelo a la direccion de la trayectoria de cada aeronave.
Modelo probabilistico de viento

En este proyecto se va a considerar unos vientos distribuidos uniformemente, con la siguien-
te funcion de densidad para sus componentes w;, y wy:

1 _ _
;Wi € |[W; — Oy, Wi + Ouy,
gy = { Foewr 0 0 S (11)
0 en otros casos
donde 24,,; es el ancho de la funcion de densidad. Dado que ambas componentes son inde-
pendientes, la funcidn de densidad conjunta puede expresarse como

11
4 dwgow,’

fwz,wy(wxawy) = fwz(w:c) : fwy(wy) w; € [wi - 5wi; w; + 571}1] (12)

3. Transformacion de variables aleatorias

Para obtener las funciones de densidad de probabidad (f.d.d o PDF) de los indicadores a
estudiar se ha utilizado el método de transformacion de variables aplicado al caso de dos va-
riables aleatorias. Este método consiste en obtener la funcion de densidad de la variable de
interés a partir de la funcién de densidad de las variables de las que ésta depende.

Considérese dos variables aleatorias u; y uz con funcién de densidad conjunta f,,, ., cono-
cida con dominio R. Sea v y vy dos variables aleatorias tal que

U1 = gl(ulaUZ)

vy = ga(u1,ug) (13)

con una funcién de densidad f,, ,, (v1, v2) que se desea obtener. Si la transformacion g; (u1, uz)
y g2(u1,u2) es bijectiva y transforma el recinto R del plano u;ug en el recinto S del plano v, vs,
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la funcion de densidad buscada puede calcularse como

Joro0(V1,02) = fuy e (h1(v1,v2), ho(v1,v2)) - |J (v1,v2)] (14)

donde la inversa de la transformacion viene dada por u; = hj(vi,v2) Yy uz = ha(vi,v2),y J €S
el Jacobiano de la transformacion.

% % ahl(vl,’ug) 8h1(v1,v2)
—_ 61)1 81}2 _ 81}1 (91)2
J = Jua  Oua | Oha(vi,v2)  Oha(vi,v2) (15)
Ovi  Ovo Ov1 Ova

La funcién de densidad marginal f,, (v1) se puede calcular de la siguiente forma

Forlv1) = /_ " oroa (01, v2)ds (16)

En el problema que se estudia en este proyecto, las velocidades w, y w, toman el lugar de
u1 Y ug. La variable v; es el indicador a estudiar y v, se considera una variable auxiliar, que por
simplicidad se ha tomado igual a w,. El método de transformacion de variables particularizado
al presente problema quedaria como

B 11 0wy (v1, wy)
fu (o) = wy fvl’wy (v1, wy)dwy = Zéwﬁwy /wy ‘ vy dwy (7)

En el caso de que la transformacién fuera no mondtona en el dominio R, seria necesario
dividir el dominio en regiones R; donde la transformacion fuese mondtona, calcular la funcion
de densidad marginal en estas regiones y finalmente sumarlas.

Dado que las ecuaciones que definen los indicadores no permiten obtener expresiones
analiticas de las derivadas parciales ni de las transformaciones inversas, éstas se han calculado
numéricamente usando la herramienta de software matematico MATLAB.

4. Método de Monte Carlo

El método de Monte Carlo se ha usado en este proyecto para validar los resultados obtenidos
con el método de transformacion de variables.

W . oy Vi1 PDF(v1)
PDFw)  e—> Modelo  |—>V12
s determinista |__ ., o
Vi (Wx;WY) | - [Vl]

Wn — \‘Vl,N o [Vl]

Figura 2: Método de Monte Carlo

Este método, basado en la ley de los grandes nimeros, consiste en evaluar repetidamente
un modelo determinista usando una muestra aleatoria como entrada, para obtener otra muestra
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aleatoria a la salida de la cual obtener informacion estadistica, como la media, varianza o la
funcién de distribucion de la variable de interés.

El método de Monte Carlo se ha aplicado a este problema considerando muestras aleatorias
de las componentes del viento {w, ,w, }. Estas muestras se usan para evaluar las funcio-
nes de los indicadores y asi obtener una muestra de la solucién {v; ;;} de la cual se obtiene

informacidn estadistica.
El nidmero de muestras utilizado en las simulaciones de Monte Carlo llevadas a cabo en

este proyecto ha sido N = 2% =84 -10°

5. Resultados

Se han obtenido resultados para el caso en el que las dos componentes del viento siguen
funciones de distribucion idénticas w, = w, = w Yy du, = 6w, = 0. Las velocidades aerodi-
namicas de las aeronaves también se han considerado iguales V4 = Vp = V. Los resultados
mostrados en este documento se han obtenido para w = 0m/s, §,, = 20m/sy V = 240m/s.

Escenarios
Los resultados se han obtenido para dos escenarios diferentes:
= Escenario 1: 5, 4 = [0,0], 50,5 = [10, 10]NM= [18520, 18520]m, /4 = 90° y 15 = 135°

= Escenario 2: 5, 4 = [0,0], 5o, 5 = [25, 50]NM= [46300, 92600]m, ¢)4 = 90° y 1y = 225°

Tiempo para la distancia minima

La funcion de densidad para el indicador ¢, . en cada escenario se muestra en la Figura 4.
Puede verse como el recinto transformado presenta 4 esquinas (a, b ¢ y d en la figura) y cémo

estas esquinas se traducen en cambios bruscos en la funcién de densidad.

40r

20t
307
=9225°
B | ¢p=135° B ¥p
10 :
- 20+ -
— Vy,B — V.;I:B
= = /
=l N =1 s
Z 0 U S — B — Z. 10 ~ y
— N — N /
8 Vg AN 8 A Vga /
A _ R S
-10r N 0 ¢ > e
J
/
—10} e
20t : //
i ‘ ‘ ‘ j _20 ‘ ‘ ‘ ‘
-10 0 10 20 30 40 0 20 40 60
y [NM] y [NM]
(a) Escenario 1 (b) Escenario 2

Figura 3: Escenarios
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1551 0.07r
b AC
150+ 0.061
145}
& 005/
140t —
@ — 0.04}
:135
3 = 0.03
130+ :
125} = 002
1201 0.01F ——-Monte Carlo
a a — Transf of variables d
115 ‘ : : ‘ : ; 0 : i i ‘
30 20  -10 0 10 20 30 110 120 130 140 150
wy [m/s] b [8]
(a) Region S enelplano t4,,,, w, para el escenario 1 (b) PDF de t,,,,, para el escenario 1
2507 0.1r
245} b
0.08}
2
240+ >
— = 0.06f
3 235} =
- T:0.04f
230+ 5
Ry
oos| 0.02f
——-Monte Carlo d
220 ‘ ‘ ‘ ‘ ‘ ‘ a [ |——Transf of variables | ‘
=30 -20 -10 0 10 20 30 320 225 230 235 240 245
wy [m/s] ta,. [5]
(c) Region S en el plano tg4,,,, w, para el escenario 2 (d) PDF de t,,,,, para el escenario 2

Figura 4: Dominio Sy funcion de densidad de ¢4, ,, para w = 0m/s, 6,, = 20m/s 'y V' = 240m/s.

Se ha encontrado que la media del indicador E|t, es practicamente constante con w y

min]

dw, Mientras que disminuye con V. La desviacion estandar o[t aumenta al aumentar §,, y

disminuye al aumentar V', mientras que su evolucion varia segun el escenario que considere-
mos (disminuye con w en el escenario 1 y aumenta en el escenario 2).

Distancia minima entre aeronaves

En la Figura 5 se muestran los recintos transformados y las funciones de densidad de la
variable d,,;, para ambos escenarios. La linea vertical D muestra el minimo de separacion
fijado (5NM).

De nuevo, los recintos muestran 4 esquinas que constituyen cambios bruscos de pendiente
en la PDF. En el caso de d,.;», puede verse que los puntos a,b,c y d estan unidos practicamente
por lineas rectas, lo que indica que el jacobiano de la transformacidn es constante en todo el
dominio.

El valor medio de la distancia minima disminuye con w en el escenario 1 y aumenta en el
escenario 2. Se ha encontrado que E[d,,;,] no depende de d,, ni de V. La desviacion estandar
o[dmin]) @umenta con ¢, y disminuye con V, mientras que variaciones en w apenas influyen en
este parametro.

Pagina 7



1.37 4 1
d : ——-Monte Carlo
! Transf of variables
1.2r |
—. 3¢ b ¢
C
1.1t &}
. =
£ —
s 1 f2r
< |, =
0.9 E
S 1L
0.8
? d
0.7 ‘ : ‘ : ‘ ; o2l i ‘ ‘ ‘ ;
230 -20 -10 0 10 20 30 0.7 0.8 0.9 1 1.1 1.2 1.3
wy [m/s] dpin [m] x 10*
(a) Region S en el plano d.,;»w, para el escenario 1 (b) PDF de d,,;», para el escenario 1
—4
12000r X 10 \
d ——-Monte Carlo
— Transf pf variables
10000+
— 1.5 1
c g
> |
"5 8000 = |
£ s 1r i
£ ~ .
< 6000f =
b :
=
05t i
4000+
a |
a | d
2000 i i i i i i 0 il il il " il ]
=30 -20 -10 0 10 20 30 2000 4000 6000 8000 10000 12000
wy [m/s] dpmin [m]
(c) Region S en el plano d.,;,w, para el escenario 2 (d) PDF de d,,;, para el escenario 2

Figura 5: Dominio S y funcidn de densidad de d,,;,, para w = 0m/s, d,, = 20m/s y V = 240m/s

Como excepciodn, para valores cercanos a w = —20m/s en el escenario 2 aparece una
transformacion no mondtona donde hay que separar el recinto R en dos, R; y R». Esto causa
una ligera caida en la desviacion estandar de d,,;,, al aparecer distribuciones menos dispersas.

Probabilidad de pérdida de separacion

En este apartado se muestra la probabilidad de la aeronave A de estar en pérdida de sepa-
racion a lo largo de su trayectoria, lo que puede expresarse como Pd(ra/Vy 4 < 5NM)). En la
Figura 6 se muestra como varia esta probabilidad a lo largo de la trayectoria de A para diferentes
valores de ¢,,. En una linea mas gruesa se muestran los resultados del caso determinista.

La probabilidad es cero al comienzo de la trayectoria, aumenta desde cierto punto y alcanza
un maximo para después disminuir hasta cero al alejarse las aeronaves entre si. Puede verse
que cuando el caso determinista no predice una pérdida de separacién, aumentos de ¢,, produ-
cen aumentos de probabilidad, mientras que cuando si se predice una pérdida de separacion,
al aumentar §,, esta probabilidad disminuye.

Adicionalmente, se ha comprobado que P[d(ra/V, a4 < 5NM)] aumenta con w en el es-

cenario 1 mientras que disminuye en el escenario 2. Valores altos de la velocidad V' provocan
bajadas de la probabilidad cuando no se predice pérdida de separacion y subidas cuando si se
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40+¢ 100
——-Monte Carlo ——-Monte Carlo
35| — Transf of variables —— Transf of variables
=) = 80r
X 30l =
= <
= =
z 25 = 60t
o] 0
v 20) %
4218 43 9
= 10 3
Q. A 20
5,
0 - 0 ;
0 1 2 5 2 3 4 5 6 7
74 [m] x 10* 74 [m] x 10°
(@) Pld(ra/Vg,a < 5NM)] para el escenario 1 (b) Pld(ra/Vy,a < 5M)] para el escenario 2

Figura 6: Probabilidad de que la aeronave A se encuentre en pérdida de separacion
Pld(ra/Vya < 5NM)]como funcidndery, paraw = 0, §,, = 0, 5, 10, 15,20,25m/sy V' = 240m/s

predice en el caso determinista.
Probabilidad de conflicto

100

100

——-Monte Carlo ‘
—— Transf of variables

8ot 8ol

601 60

A a0t A a0t
20t 20t
——-Monte Carlo ‘
0 7Trans‘f of varlabh?s
-20 -10 0 10 20 -20 -10 0 10 20
W [m/s] W [m/s]
(a) P, para el escenario 1 (b) P.,, para el escenario 2

Figura 7: Probabilidad de conflicto P.,,, como funcién de w, para é,, = 0,5,10,15,20,25m/s y
V = 240m/s

La probabilidad de conflicto se puede obtener a partir de la PDF de d,,,;,, obteniendo el area
bajo la funcidn a la izquierda de la separacién minima D:

D
Pccm = /_ fdmm (p)dp (18)

En la Figura 7 se muestra como varia esta probabilidad como funcidn de la media del viento
w para diferentes valores de ¢,, en los dos escenarios. En una linea mas gruesa se muestra de
nuevo el caso determinista.

La probabilidad de conflicto aumenta con w desde 0 hasta 100 % en el escenario 1, mientras
que disminuye en el escenario 2. La influencia de §,, depende de si se predice o no conflicto
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en el caso determinista: por ejemplo, en el escenario 1, para valores de w menores a 6.2m/s,
la probabilidad aumenta al aumentar ¢,,, mientras que para valores mayores disminuye cuando
o aumenta.

La influencia de V en P.,, también depende de si se predice o0 no conflicto: para casos en
los que no se predice conflicto P,.,, disminuye al aumentar V' y para casos en los que si se
predice P.,, aumenta con V.

Duracion de la pérdida de separacion

701 0.03r
0,025/ d

~
=,

—~ 0.02f
S
A

= 0.015}
&
-~

< 0.01¢
3
w3

0.005r

——-Monte Carlo
b.e — Transf of variables ¢
0 i i i i i i
-20 -10 0 10 20 30 0 10 20 30 40 50 60
w, [m/s] At [s]

(a) Regioén S en el plano Atw, para el escenario 1 (b) PDF condicionada de At para el escenario 1

50 0.071
e
0.06r-
40+ )
~
= 0.05r
| =
-3 A 0.04
= §
L A5 0.03
20 g
~— 0.02
10 “ﬂ a
0.01 7b d ——-Monte Carlo
) Transf of variables | f
0 : : : 0 : : : L
-30 -20 -10 0 10 20 30 0 10 20 30 40
wy [m/s] At [s]

(c) Regidn S en el plano Atw, para el escenario 2 (d) PDF condicionada de At para el escenario 2

Figura 8: Dominio S y funcién de densidad condicionada de At, para w = 0m/s, é,, = 20m/s'y
V = 240m/s

En este apartado se recogen los resultados relativos al indicador At. Dado que este para-
metro solo estd definido cuando existe un conflicto se ha obtenido la funcidon de densidad de
At condicionada a que P,,, > 0. La PDF condicionada se puede calcular como

fat(At|Peon, > 0) = %At) (19)

En la Figura 8 se representan los dominios transformados y las funciones de densidad de At
para los dos escenarios.
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De nuevo, los recintos presentan una serie de esquinas que causan cambios en la pen-
diente de la PDF. Puede verse como los limites de integracidn no tienen tanta relevancia en la
forma de la PDF como la tenian en los indicadores anteriores: el valor del Jacobiando de esta
transformacion es variable a lo largo de todo el dominio.

En cuanto a la media E[At], se ha comprobado que depende de los factores w, d,, y V
tal y como lo hace el parametro P.,,. La desviacion estandar o[At] aumenta al aumentar ¢,, y
disminuye al aumentar V.

6. Conclusiones

En este proyecto se ha aplicado exitosamente el método de transformacion de variables
al estudio de deteccion de conflictos entre aeronaves en presencia de vientos inciertos. Los
resultados obtenidos se han validado utilizado el método de Monte Carlo, mostrando ambos
métodos resultados practicamente idénticos.

Se han estudiado indicadores como la distancia minima entre aeronaves, tiempo hasta la
distancia minima y duracion de pérdida de separacion. En particular, el parametro de probabi-
lidad de existencia de un conclicto ha sido de gran interés.

Aunque en el presente proyecto se ha considerado una distribucidon de vientos continua y
uniforme, cualquier otra distribucion podria ser aplicable a esta metodologia.

Algunos de los resultados mas relevantes obtenidos en este estudio son:

» Elvalor esperado de los indicadores es diferente al obtenido al aplicar un estudio determi-
nista utilizando el viento medio. Esto se debe a la relacién no lineal entre los indicadores
escogidos y el viento.

= Valores altos de la velocidad aerodinamica de las aeronaves contribuye a disminuir el
efecto de la incertidumbre introducida por el viento.

m La certeza de que un conflicto existe o no existe decrece cuando la dispersion del viento
aumenta o la velocidad de las aeronaves decrece.

Este proyecto constituye un primer paso en el desarrollo de una metodologia para gestionar
la incertidumbre meteoroldgica en el contexto de deteccidn y resolucion de conflictos entre
aeronaves.

Posibles lineas de trabajo futuro incluyen:

= Aplicacion de la metodologia a otros indicadores.

m Utilizacidn de otras distribuciones de vientos. En concreto, la utilizacidon de funciones de
densidad obtenidas a partir de predicciones por conjuntos seria de gran interés.

= Aplicaciéon de la metodologia a escenarios mas complejos, como trayectorias formadas
por varios tramos rectilineos o consideracién de mas de dos aeronaves en el mismo es-
pacio aéreo.
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= Consideracién de campos de viento en los que la velocidad del viento sea diferente para
cada posicion.
Palabras clave

Conflicto, pérdida de separacion, aeronave, espacio aéreo, sistema de gestion de trafico
aéreo, ATM, SESAR, sistema de prediccidn por conjuntos, transformacién de variables, Monte
Carlo.
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