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Abstract. We present a brief introduction to the second order DWBA reaction formalism which we have used
to perform the theoretical analysis of two–nucleon transfer reactions induced both by heavy and light ions. We
also show an example of such a calculation, emphasizing the connection between the structure aspects of the prob-
lem and the resulting predicted two–neutron transfer cross section. The calculations were carried out making use
of software specifically developed for this purpose. It includes sequential, simultaneous and non–orthogonality
contributions to the process. Microscopic form factors are used which take into account the relevant structure
aspects of the process, such as the nature of the single–particle wavefunctions, the spectroscopic factors, and the
interaction potential responsible for the transfer. Overall agreement with the experimental absolute values of the
differential cross section is obtained without any free parameter.

1 Introduction

Arguably, the greatest achievement of many–body physics
in the fifties was that of developing the tools for a complete
description and a thorough understanding of superconduc-
tivity in metals. At the basis of it one finds BCS theory
and the Josephson effect. The first recognized the central
role played by the appearance of a macroscopic coherent
field usually viewed as a condensate of strongly overlap-
ping Cooper pairs, the quasiparticle vacuum. The second
made it clear that a true gap is not essential for such a
state of matter to exist, but rather a finite expectation value
of the pair field. Consequently, the specific probe to study
the superconducting state is Cooper pair tunneling. Impor-
tant progress in the understanding of pairing in atomic nu-
clei may arise from the systematic study of two–particle
transfer reactions. Although this subject of research started
about the time of the BCS papers, the quantitative calcula-
tion of absolute cross sections taking properly into account
the full non–locality of the Cooper pairs (correlation length
much larger than nuclear dimensions) is still an open ques-
tion.

2 Second order DWBA

In what follows we shall exemplify the workings of the
closely interweaved structure–reaction formalism presented
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above to probe, through two particle transfer reactions, pair-
ing correlations in atomic nuclei. In this section we intro-
duce the formalism of second order DWBA (see, for ex-
ample, [2], [5]) in the context of the study of the reaction
A + a(= b + 2) → B(= A + 2) + b. We will stress the
need to consider the sequential transfer of the two nucle-
ons by virtually populating states of the intermediate nu-
clei f (= b + 1) and F(= A + 1) in order to obtain a reliable
absolute value of the cross section.

Let us assume that two nucleons coupled to angular
momentum 0 in the initial nucleus a are transferred into
a final state of zero angular momentum in nucleus B. The
transition amplitude is given by the integral

2
∑
σ1σ2

∫
dr f FdrA2drb1χ

(−)∗(rbB)

×
[
ψ j f (rA1, σ1)ψ j f (rA2, σ2)

]0∗

0

× v(rb1)Ψ (+)(raA, rb1, rb2, σ1, σ2), (1)

where rb1 is the vector which locates neutron 1 with re-
spect to core b, rA2 is the vector which locates neutron 2
with respect to core A, r f F is the relative vector between
cores f and F etc. The χ are distorted waves (continuum
wavefunctions of an optical potential), and the ψ are the
single particle wavefunctions of the neutrons. The poten-
tial v(rb1) is a single particle mean field potential which,
aside from being responsible for the transfer in the post
representation (see below), is also used to define the single
particle wavefunctions of the neutrons in the initial state.
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If we neglect core excitations, the above expression is ex-
act as long as Ψ (+)(raA, rb1, rb2, σ1, σ2) is the exact wave-
function. We can instead obtain an approximation for the
transfer amplitude using

Ψ (+)(raA, rb1, rb2, σ1, σ2)

≈ χ(+)(raA)
[
ψ ji1 (rb1, σ1)ψ ji2 (rb2, σ2)

]0

0

+
∑
K,M

UK,M(r f F)
[
ψ j f (rA2, σ2)ψ ji1 (rb1, σ1)

]K

M

(2)

as an approximation for the incoming state. As will be
shown, the first term of (2) gives rise to the simultaneous
(T (1)) amplitude, while from second one we get the succes-
sive (T (2)

succ) and the non-orthogonality (T (2)
NO) contributions.

To extract the amplitudeUK,M(r f F), we define fKM(r f F) as
the scalar product

fKM(r f F) =

〈[
ψ j f (rA2, σ2)ψ ji1 (rb1, σ1)

]K

M

∣∣∣∣
Ψ (+)(raA, rb1, rb2, σ1, σ2)

〉
(3)

for fixed r f F , which can be seen to obey the equation(
~2

2µ f F
k2

f F +
~2

2µ f F
∇2

r f F
− U(r f F)

)
fKM(r f F)

=

〈[
ψ j f (rA2, σ2)ψ ji1 (rb1, σ1)

]K

M

∣∣∣∣
v(rc2)

∣∣∣∣Ψ (+)(raA, rb1, rb2, σ1, σ2)
〉
. (4)

The solution can be written in terms of the Green function
G(r f F , r′f F) defined by(

~2

2µ f F
k2

f F +
~2

2µ f F
∇2

r f F
− U(r f F)

)
G(r f F , r′f F)

=
~2

2µ f F
δ(r f F − r′f F). (5)

Thus,

fKM(r f F) =
2µ f F

~2

∫
dr′f FG(r f F , r′f F)

×

〈[
ψ j f (r′A2, σ

′
2)ψ ji1 (r′b1, σ

′
1)
]K

M

∣∣∣∣
v(rC2)

∣∣∣∣Ψ (+)(r′aA, r
′
b1, r

′
b2, σ

′
1, σ

′
2)
〉

≈
2µ f F

~2

∑
σ′1σ

′
2

∫
dr′f Fdr′A2dr′b1G(r f F , r′f F)

×
[
ψ j f (r′A2, σ

′
2)ψ ji1 (r′b1, σ

′
1)
]K∗

M
v(r′c2)χ(+)(r′aA)

×
[
ψ ji1 (r′b1, σ

′
1)ψ ji2 (r′b2, σ

′
2)
]0

0

= UK,M(r f F) +

〈[
ψ j f (r′A2, σ2)ψ ji1 (r′b1, σ1)

]K

M

∣∣∣∣
χ(+)(r′aA)

[
ψ ji1 (r′b1, σ

′
1)ψ ji2 (r′b2, σ

′
2)
]0

0

〉
. (6)

Therefore

UK,M(r f F) =
2µ f F

~2

∑
σ′1σ

′
2

∫
dr′f Fdr′A2dr′b1G(r f F , r′f F)

×
[
ψ j f (r′A2, σ

′
2)ψ ji1 (r′b1, σ

′
1)
]K∗

M
× v(r′c2)χ(+)(r′aA)

×
[
ψ ji1 (r′b1, σ

′
1)ψ ji2 (r′b2, σ

′
2)
]0

0
−

〈[
ψ j f (r′A2, σ2)ψ ji1 (r′b1, σ1)

]K

M

∣∣∣∣
χ(+)(r′aA)

[
ψ ji1 (r′b1, σ

′
1)ψ ji2 (r′b2, σ

′
2)
]0

0

〉
. (7)

When we substitute UK,M(r f F) into (2) and (1), the first
term gives rise to the successive (T (2)

succ) amplitude for the
two–particle transfer, while the second term is responsible
for the non–orthogonal (T (2)

NO) contribution. Explicitly,

T (1)( ji, j f ) = 2
∑
σ1σ2

∫
dr f Fdrb1drA2

× [Ψ j f (rA1, σ1)Ψ j f (rA2, σ2)]0∗
0 χ

(−)∗
bB (rbB)

× v(rb1)[Ψ ji (rb1, σ1)Ψ ji (rb2, σ2)]0
0χ

(+)
aA (raA), (8a)

T (2)
succ( ji, j f ) = 2

∑
K,M

∑
σ1σ2
σ′1σ

′
2

∫
dr f Fdrb1drA2

× [Ψ j f (rA1, σ1)Ψ j f (rA2, σ2)]0∗
0 χ

(−)∗
bB (rbB)v(rb1)

× [Ψ j f (rA2, σ2)Ψ ji (rb1, σ1)]K
M

∫
dr′f Fdr′b1dr′A2G(r f F , r′f F)

× [Ψ j f (r′A2, σ
′
2)Ψ ji (r′b1, σ

′
1)]K

M
2µ f F

~2 v(r′f 2)

× [Ψ ji (r′A2, σ
′
2)Ψ ji (r′b1, σ

′
1)]0

0χ
(+)
aA (r′aA), (8b)

T (2)
NO( ji, j f ) = 2

∑
K,M

∑
σ1σ2
σ′1σ

′
2

∫
dr f Fdrb1drA2

× [Ψ j f (rA1, σ1)Ψ j f (rA2, σ2)]0∗
0 χ

(−)∗
bB (rbB)v(rb1)

× [Ψ j f (rA2, σ2)Ψ ji (rb1, σ1)]K
M

∫
dr′b1dr′A2

× [Ψ j f (r′A2, σ
′
2)Ψ ji (r′b1, σ

′
1)]K

M

× [Ψ ji (r′A2, σ
′
2)Ψ ji (r′b1, σ

′
1)]0

0χ
(+)
aA (r′aA). (8c)

Remember that in these expressions, the spatial and spin
coordinates of the two transferred nucleons are explicitly
referred to with the subscripts 1 and 2. The subscripts A
and b indicate the core to which the position of each of the
nucleons are referred to. The vectors raA, rbB and r f F are
the relative motion coordinates in the initial, final and in-
termediate channels respectively. The transition potential
responsible for the transfer of the pair is, in the post repre-
sentation,

Vβ = vbB − Uβ, (9)

where vbB is the interaction between the nuclei B and b, and
Uβ is the optical potential in the final channel. We make the
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assumption that vbB can be decomposed into a term con-
taining the interaction between the cores A and b and the
potential describing the interaction between b and each of
the transferred nucleons, namely

vbB = vbA + vb1 + vb2, (10)

where vb1 and vb2 is the same mean field potential we have
used to define the single–particle wavefunctions of the neu-
trons in the nucleus a. The transition potential is

Vβ = vbA + vb1 + vb2 − Uβ. (11)

Assuming that 〈β|vbA|α〉 ' 〈β|Uβ|α〉 (i.e, assuming that
the matrix element of the core–core interaction between
the initial and final states is very similar to the matrix ele-
ment of the real part of the optical potential), one obtains
the final expression of the transfer potential in the post rep-
resentation,

Vβ ' vb1 + vb2. (12)

This last approximation seems reasonable when dealing
with heavy ion reactions in which there is no charge trans-
fer, but more care has to be exerted when dealing with re-
actions in which light ions are involved.

To calculate the total pair transfer amplitude, a sum of
the contributions associated with each mean field contribu-
tion, labeled by the quantum numbers ( ji, j f ) and weighted
with the correspondent two–nucleon spectroscopic ampli-
tude B j, is to be carried out leading to

T2NT =
∑
j f ji

B j f B ji

(
T (1)( ji, j f )

+T (2)
succ( ji, j f ) − T (2)

NO( ji, j f )
)
. (13)

The quantity B j ≡ B( j = 0; j, j) is a special realization of
the two–nucleon spectroscopy amplitude

B(J; j1, j2) =
∑
M,Mi

〈Ji Mi JM|J f M f 〉

× 〈ΨJ f M f |P
†( j1, j2; JM)|ΨJi Mi〉, (14)

where

P†( j1, j2; JM)

= N
∑

m

〈 j1 m j2 M − m|J M〉 a†j1ma†j2 M−m, (15)

is the (renormalized) pair creation operator. In other words,
B(J; j1, j2) is the amplitude of finding in the |A+2; J f ,M f 〉

nuclear state, two nucleons moving in the single–particle
orbitals j1 and j2 and coupled to angular momentum J, on
top of the state |A; Ji,Mi〉, coupled to total angular momen-
tum (J, Ji)J. Of notice that in Eq. (13) the nuclear structure
information which is essentially all contained in the ampli-
tudes Bi j, is closely interweaved with the reaction ampli-
tudes. This is the reason why the absolute value of two–
nucleon transfer cross sections can display large enhance-
ments as compared to pure configuration cross sections,

thus revealing the coherence of (Cooper) pair correlations
resulting from the pairing interaction. Eq. (13) also testi-
fies to the fact that quantitatively accurate description of
pair transfer requires to treat on par both structure and re-
action aspects of the process. Within this scenario Eq. (13)
provides another circumstantial evidence strongly support-
ing the fact that structure and reactions are but two aspects
of the same many–body physics.

The differential cross section associated with the two–
particle transfer amplitudes discussed above can be written
as

dσ
dΩ

=
µiµ f

(4π~2)2

k f

ki
|T2NT |

2, (16)

where µi, µ f are the reduced masses in entrance and exit
channels respectively, while k f , ki are the corresponding
relative momenta.

Note that in this approach the interaction potential v(r)
responsible for the transfer is of single particle nature. As
a two–particle transfer reaction is a process in which two
nucleon change state, it is of (at least) second order in
perturbation theory. It is then not surprising that the non–
orthogonal amplitude tend to cancel the simultaneous trans-
fer contribution, which is only a spurious consequence of
the fact that the initial and final states are described with
non–orthogonal wavefunctions. This cancelation is exact if
the number of intermediate states form a complete basis of
the two–particle Hilbert states. A numerical approximate
realization of this cancelation is shown in Fig. 1, where we
show the results of the analysis of the 132Sn(p,t)130Sn re-
action at a laboratory energy of 20 MeV. It can be seen that
the two–neutron transfer reaction is essentially a sequential
(successive) process.

After some manipulation (see also [2]), we obtain a
form for the successive amplitude (8b) which can be im-
plemented in a computer to be numerically evaluated:

T VV
2NT =

1024µCcπ
9/2i

~2kAakBbkCc

1√
(2 ji + 1)(2 j f + 1)

×
∑

K

1
2K + 1

(
(l f

1
2 ) j f (li

1
2 ) ji |(l f li)K( 1

2
1
2 )0

)2
K

×
∑
lc,l

ei(σl
i+σ

l
f ) (2lc + 1)
√

2l + 1
Y l

0(k̂Bb)S K,l,lc , (17)

with

S K,l,lc =

∫
r2

Cc drCc r2
b1 drb1 sin θ dθ v(rb1)

× ul f (rC1)uli (rb1)
sK,l,lc (rCc)

rCc

Fl(rBb)
rBb

×
∑

M

〈lc 0 l M|K M〉
[
Y l f (r̂C1)Y li (θ + π, 0)

]K

M
Y l∗

M(r̂Bb),

(18)
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Fig. 1. Contributions to the total two–neutron transfer cross sec-
tion (thick black line) of the different amplitudes (8a,8b,8c), for
the 132Sn(p,t)130Sn reaction at a laboratory energy of 20 MeV.
Note that the simultaneous (dashed red line) and non–orthogonal
(red line) contributions are in anti–phase, so that the contribution
corresponding to the coherent superposition of these two ampli-
tudes (blue line) tend to cancel. The calculated total cross section
thus essentially coincides with the successive (dashed black line)
process.

and

sK,l,lc (rCc) =

∫
r
′2
Cc dr′Cc r

′2
A2 dr′A2 sin θ′ dθ′ v(r′c2)

× ul f (r
′
A2)uli (r

′
c2)

Fl(r′Aa)
r′Aa

flc (kCc, r<)Plc (kCc, r>)
r′Cc

×
∑

M

〈lc 0 l M|K M〉
[
Y l f (r̂′A2)Y li (r̂′c2)

]K∗

M
Y l

M(r̂′Aa). (19)

3 The p(11Li,9Li)t reaction: pairing in exotic
halo light nuclei

As a revealing example of the kind of analysis that can
be carried out within the framework described above, we
will consider the p(11Li,9Li)t reaction induced by the ex-
otic halo nucleus 11Li ([9], [14]).
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Fig. 2. Experimental ([9]) and theoretical (thick black line) dif-
ferential cross sections of the p(11Li,9Li)t reaction at a labora-
tory energy of 33 MeV ([14]). We also show the results obtained
without coupling with collective states (dashed black line), and
with two different pure single particle configurations of the two–
neutron halo: (s1/2)2 (red line) and (p1/2)2 (blue line). The optical
potentials used are from [1] and [9].

There exists conspicuous circumstantial evidence which
testifies to the important role medium polarization effects
play in the phenomenon of nuclear superfluidity (see e.g.
[4] and refs. therein). In spite of this, a quantitative assess-
ment of it is still lacking. Specially promising in this quest
are highly polarizable exotic nuclei, in particular, the light
halo nucleus 11Li, for which, the balance between bare and
induced pairing interactions is strongly shifted in favour of
the induced interaction ([7], see also [10], [13], [12]).

In this nucleus, the last two neutrons are very weakly
bound (S 2n ≈ 380keV [6], [11], [16]). If one neutron is
taken away from 11Li, a second neutron will come out im-
mediately leaving behind the core of the system, the ordi-
nary nucleus 9Li. This result testifies to the fact that pairing
is central in the stability of 11Li (see e.g. [3], [8]).

In ref. [7] it has been shown that the two outer (halo)
neutrons of 11Li in its ground state attract each other, not
only due to the strong nuclear force acting among them, but
also and primarily due to the virtual processes associated
with the exchange of collective vibrations. In particular,
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the quadrupole vibration of the 9Li core, and the dipole vi-
bration associated with the neutron halo field (pigmy reso-
nance of 11Li [15]). Such a pairing mechanism is clearly re-
flected in the calculated ground state wavefunction of 11Li
[7],

|11Li(gs); 3/2−〉 = |0̃〉ν ⊗ |1p3/2(π)〉, (20)

where π and ν indicate proton and neutron degrees of free-
dom respectively, while |0̃〉ν indicates the halo neutron Cooper
pair wavefunction, that is,

|0̃〉ν = |0〉+α|(p1/2, s1/2)1− ⊗ 1−; 0〉
+ β|(s1/2, d5/2)2+ ⊗ 2+; 0〉,

(21)

with
α ≈ 0.7, and β ≈ 0.1, (22)

and

|0〉 = 0.45|s2
1/2(0)〉 + 0.55|p2

1/2(0)〉 + 0.04|d2
5/2(0)〉, (23)

the states |1−〉 and |2+〉 being the (RPA) states describing
the dipole pigmy resonance of 11Li and the quadrupole vi-
bration of the core 9Li (see [7], see also Tables 11.3 and
11.5 of ref [4]). Note that in this model half of the wave-
function of the ground state of 11Li correspond to states
of the halo coupled to collective excited states of the sys-
tem. In Fig. 2 we show the results of the experimental and
theoretical differential cross sections of the p(11Li,9Li)t re-
action with a 33 MeV lithium beam ([9], [14]). We com-
pare the predictions obtained within the structure model
described above with other calculations in which we ne-
glect ground state correlations (coupling to collective states),
and in which we describe the neutron halo as single a par-
ticle configuration.

4 Conclusions

As it emerges from the previous narrative, theoretical pre-
dictions reproduce the data within experimental errors with-
out free parameters. This is a consequence of the use of
reliable optical parameters for entrance, intermediate and
exit channels and to the treatment, on equal footing, of the
structure and of the reaction aspects of the phenomena un-
der discussion. Within this scenario, it is only a question
of time before the optical potential becomes routine part of
the reaction–structure computational output/input.

It is well established that single Cooper pair transfer
is the specific tool to probe pairing correlations in nuclei.
This fact translates itself through structure–reaction calcu-
lations, in the fact that the absolute value of two–particle
transfer cross sections is the result of the interweaving of
a number of structure amplitudes and of single–particle re-
action form factors.

Financial support from the Ministry of Science and In-
novation of Spain grants FPA2009–07653 and ACI2009–
1056 are acknowledged by FB and GP and by FB respec-
tively.

References

1. H. An and C. Cai, Global deuteron optical model po-
tential for the energy range up to 183 MeV, Phys. Rev.
C 73 (2006), 054605.

2. B. F. Bayman and J. Chen, One-step and two-step
contributions to two-nucleon transfer reactions, Phys.
Rev. C 26 (1982), 1509.

3. G. F. Bertsch and H. Esbensen, Pair correlations near
the neutron drip line, Annals of Physics 209 (1991).

4. D. Brink and R. A. Broglia, Nuclear superfluidity,
Cambridge University Press, Cambridge, 2005.

5. R.A. Broglia and A. Winther, Heavy ion reactions, 2nd
ed., Westview Press, Perseus Books, Boulder, 2005.

6. C. Bachelet et al., New Binding Energy for the Two-
Neutron Halo of 11Li, Phys. Rev. Lett. 100 (2008),
182501.

7. F. Barranco et al., The halo of the exotic nucleus 11Li: a
single Cooper pair, Europ. Phys. J. A 11 (2001), 385.

8. K. Hagino and H. Sagawa, Pairing correlations in nu-
clei on the neutron–drip line, Phys. Rev. C 72 (2005),
044321.

9. I. Tanihata et al., Measurement of the two-halo neutron
transfer reaction 1H(11Li,9Li)3H at 3A MeV, Phys.
Rev. Lett. 100 (2008), 192502.

10. K. Hagino et al., Coexistence of BCS– and BEC–like
pair structures in halo nuclei, Phys. Rev. Lett. 99
(2007), 022506.

11. M. Smith et al., First penning-trap mass measurement
of the exotic halo nucleus 11Li, Phys. Rev. Lett. 101
(2008), 202501.

12. N. Vinh Mau and J. C. Pacheco, Structure of the 11Li
nucleus, Nucl. Phys. A 607 (1996), 163.

13. F.M. Nunes, Valence pairing, core deformation and
the development of two–neutron halos, Nucl. Phys. A
757 (2005), 349.

14. G. Potel, F. Barranco, E. Vigezzi, and R. A. Broglia,
Evidence for phonon mediated pairing interaction in
the halo of the nucleus 11Li, Phys. Rev. Lett. 105
(2010), 172502.

15. T. Nakamura et al., Observation of Strong Low-Lying
E1 Strength in the Two-Neutron Halo Nucleus 11Li,
Phys. Rev. Lett. 96 (2006), 252502.

16. T. Roger et al., Mass of 11Li from the 1H(11Li,9Li)3H
reaction, Phys. Rev.C 79 (2009), 031603.

01004-p.5




