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This paper has been written after attending the 14th Brainstorming Week on
Membrane Computing as a physics student from University of Barcelona. The
work presented here tries to represent what I have learned during that period, while
trying to apply some of the most innovative concepts shown in the presentations
attended during that week into some interesting situations.

1 Introduction

This brief paper aims to introduce the cellular automata P systems as an example
of ESNP (extended spiking neural P systems) with transmittable states, and then
apply the available rules to simulate a simple model of a random walk in 2D. Let’s
start by formally introducing the system. We have the usual definition:

Π = (O,Q, σ1, ..., σn, in, out) (1)

· whereO = {a}, such that a is called the spike

·Q is a finit alphabet of states

· σi are neurons, defined by: σi = (αi, ni, fi, Ri) where

→ αi ∈ Q, is the initial state

→ ni is the initial number of spikes

→ fi is the state combining function

→ Ri is a finite set of rules

· in is the input neuron

· out is the output neuron
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It is also necessary to explain how the rules work. The most general form is:

α/ac → (t1, a
k1 , β1), ..., (tm, a

km , βm) such that α, βj ∈ Q (2)

that just means that when the state of the given neuron is α, and if the neuron
has exactly c objects ‘a’ inside, it should send kj spikes to the neuron tj , while
also transmitting the state βj , for 1 ≤ j ≤ m. When multiple rules are applied
into the same neuron in the same clock tick (i.e. different states are transmitted
to the same neuron σi), the function fi dictates how they should be combined to
obtain a unique final state.

2 Cellular automata

A cellular automata is defined as a grid of cells, such as every cell can be in
one of a finite number of states. The set of cells next to each one it’s called its
neighborhood. Then, at every generation, some fixed rules determine the new state
of each cell in terms of the current state of the cell and the states of the cells in its
neighborhood. One of the most important applications is the known as “Conway’s
Game of Life”, originally created by the mathematician John Conway in 1970.
Its importance is due to the fact that it can be proven to be a universal Turing
machine (that is, anything that can be computed algorithmically can be computed
within Conway’s Game of Life - even the Game of Life itself!). Rudolf Freund and
Sergiu Ivanov show in their presentation “Extended SNP Systems with States”
that the ESNP with transmittable states is analogue to a cellular automata (with
the only change we are going to do is talk about neurons instead of cells). More
specifically, when only two states are considered, there is an easy set of rules that
enables us to simulate the Game of Life. Thus, they showed that we can obtain
universality with only two states in the ESNP paradigm. The description of such
system can be found on their presentation.

3 Simple nuclear chain reaction model

In order to implement these ideas into something more tangible, we can think of
the following situation: we have an organized grid of atoms (represented by the
neurons), where all of them are stable (in the sense that no rules could be applied
initially, that is, the system would halt immediately). In the position (i, j) we
introduce an unstable atom that will explode in one clock tick, releasing n num-
ber of particles (represented by the objects), that will go to any of its neighbors,
making them unstable, and thus propagating some kind of state (generating the
chain reaction). This is known as a two dimensional random walk. Some attractive
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studies can consist of varying the number of objects an explosion yields, observ-
ing whether the reaction consume all the possible atoms or not (if an atom that
has already exploded is considered to be destroyed insted of being replaced), or
considering some time of interaction in every step. Another interesting behavior
(also more difficult to implement) would be trying to change the geometry of the
system (so the number of neighbors could vary from atom to atom), and see if you
could get more efficiency some way or another.

This is obviously the first iteration of the model one can think of: further
complications can be considered, as making the grid in 3D (just by adding layers
upon layers of atoms), or even trying to add probabilities so further atoms than
the more direct neighbors have a chance of becoming unstable. This model can
be used to simulate the path of a photon that emerges from the Sun’s core and is
trying to reach the surface. A very simple model has been implemented at what
aims to be an ESNP simulator, programmed in Python. It consists of a square grid
of arbitrary dimensions, and an unstable atom in the middle. The initial reaction
lasts two ticks, and send one spike in two random different directions. For the sake
of simplicity, we have used three different states: 0 - stable atom, 1 - unstable atom,
2 - already exploded atom, even if two were already enough, as explained before.
We understand that this model has some difficulties (we only used the most direct
neighbors; this can be extended to have probabilities for all 8 adjoin neurons), and
can even be too simplified (we know that atoms won’t be organized in a rectangular
grid, as shown here, but will have some kind of spatial distribution). But while
modeling this problem, we found out that this could also be implemented as some
kind of A∗ path-finding algorithm or some kind of path algorithm, only halting
the computation when a certain point is reached or if no rules have been applied,
and then letting a lot of systems run in parallel. With a comparison between the
number of rules used, one can actually get a good representation of the optimal
route. Could we explot from the fact that we can acces more states and take
advantage of it, working under the P-systems paradigm? Further research and
modeling must be done to answer this.




