
A posteriori error analysis of an augmented mixed method

for the Navier-Stokes equations with nonlinear viscosity ∗

Gabriel N. Gatica†, Ricardo Ruiz-Baier‡, Giordano Tierra§

Abstract

In this work we develop the a posteriori error analysis of an augmented mixed finite element method
for the 2D and 3D versions of the Navier-Stokes equations when the viscosity depends nonlinearly on
the module of the velocity gradient. Two different reliable and efficient residual-based a posteriori
error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral
regions are derived. Our analysis of reliability of the proposed estimators draws mainly upon
the global inf-sup condition satisfied by a suitable linearization of the continuous formulation, an
application of Helmholtz decomposition, and the local approximation properties of the Raviart-
Thomas and Clément interpolation operators. In addition, differently from previous approaches for
augmented mixed formulations, the boundedness of the Clément operator plays now an interesting
role in the reliability estimate. On the other hand, inverse and discrete inequalities, and the
localization technique based on triangle-bubble and edge-bubble functions are utilized to show
their efficiency. Finally, several numerical results are provided to illustrate the good performance
of the augmented mixed method, to confirm the aforementioned properties of the a posteriori error
estimators, and to show the behaviour of the associated adaptive algorithm.

1 Introduction

In the recent work [11], a new dual-mixed finite element method for the Navier-Stokes equations with
constant density and variable viscosity – depending nonlinearly on the gradient of velocity – has been
introduced and analyzed. More precisely, the approach in [11] employs a technique previously ap-
plied to the Navier-Stokes equations with constant viscosity (see [12] and [32]), which is based on the
introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the
pressure. The latter is then eliminated thanks to the incompressibility condition, and the nonlinear
viscosity is handled by incorporating the gradient of velocity as an auxiliary tensor unknown. In
addition, the fact that the convective term forces the velocity to live in a smaller space motivates
the augmentation of the variational formulation with suitable penalty terms arising mainly from the
constitutive and equilibrium equations, and the relation defining the aforementioned gradient. As a
consequence, the resulting augmented scheme can be written equivalently as a fixed point equation,
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and hence the well-known Schauder and Banach theorems, together with classical results on mono-
tone operators, yield the well-posedness of the continuous and discrete systems. In particular, the
usual discrete inf-sup conditions are not required anymore, and therefore the unique solvability of the
Galerkin scheme is guaranteed with arbitrary finite element subspaces of the respective continuous
spaces.

The purpose of the present paper is to develop a residual-based a posteriori error analysis for the
problem and method from [11]. Regarding this goal, we begin by remarking that standard Galerkin
procedures such as finite element and mixed finite element methods inevitably lose accuracy when
applied to nonlinear problems on quasi-uniform discretisations. The main reason for this fact is that,
in general, no a priori hints on how to mesh the domains are available in these cases, and hence one
normally employs adaptive algorithms that are based on a posteriori error estimates. While the list of
references on a posteriori error analysis for linear and nonlinear problems is nowadays quite extensive,
and includes some important contributions in recent years, some of which are mentioned in what
follows, it is important to remark that most of the main ideas and associated techniques can be found
in the early works [3], [38] and the references therein.

Now, aiming at as complete as possible bibliographic discussion on the main topics involved in
this paper, we refer first to [34] and [35], where reliable a posteriori error estimates for finite element
approximations of primal variational formulations of the compressible Euler and Navier-Stokes equa-
tions have been developed. The main tools utilized there include the element residual method and the
introduction of a special norm to measure the error in the velocity and pressure. Further contributions
in this direction for the steady incompressible Navier-Stokes equations are found in [6] and [8], where
an abstract estimate yielding Hood-Taylor and modified Hood-Taylor finite element as particular ex-
amples, and the Becker-Rannacher “dual-weighted-residual method” for optimal-control problems, are
employed, respectively. Other related works dealing with the classical velocity-pressure formulation
of the steady incompressible Navier-Stokes equations include [39], [37], and [33]. In particular, resid-
ual type a posteriori error estimates for a stabilised finite element method are developed in [33] by
applying a general framework established by Verfürth for nonlinear equations. Moreover, a simple
error estimator in L2−L2 norm is also presented in [33] by using a duality argument. Furthermore, a
posteriori error analysis for discontinuous Galerkin approximations of the Navier-Stokes equations are
developed in [30] and [31]. More precisely, a duality argument of weighted type is applied in [30] to
derive a posteriori bounds and an adaptive mesh design for the interior penalty discontinuous Galerkin
finite element approximation of the compressible Navier-Stokes equations. In turn, upper and lower
bounds for the velocity-pressure error measured in terms of the energy norm of the discretisation for
the two-dimensional stationary incompressible Navier-Stokes equations (in the case of small data) are
obtained in [31]. On the other hand, a number of dual mixed approaches for the Navier-Stokes equa-
tions and the derivation of corresponding a posteriori error estimates, have begun to appear only in the
last decade in the literature. For instance, we can refer to [20] where quasi-optimal a priori estimates
and a posteriori error estimates for a mixed finite element approximation of this system in a polygonal
domain of the plane are provided. Dirichlet boundary conditions for the velocity and the velocity gra-
dient as an additional unknown are considered in [20]. In addition, the main tools for the a posteriori
error analysis developed there include an abstract nonlinear theory and the posteriori error estimates
for the Stokes equations from [19]. Other contributions in this direction include [26], [27], and the
already mentioned work [32], which, as explained above, suggested one of the techniques employed
in [11], which, in turn, motivated the present paper. Concerning the aforementioned references, we
remark that the key aspects of the analysis in [27], which deals with a velocity-pseudostress approach
for a class of quasi-Newtonian Stokes flows, are a global inf-sup condition for a linearised version of the
resulting nonlinear twofold saddle point operator equation, and a conveniently constructed Helmholtz
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decomposition of the space containing the stresses of the fluid, together with its discrete counterpart.
The technique from [27] was then extended in [21] to any nonlinear twofold saddle point variational
formulation. Nevertheless, irrespective of it, and as we show below in the present paper, the approach
from [27] and [21] can also be applied to other nonlinear problems not showing a twofold saddle point
structure. Finally, and just for sake of completeness, we mention that a posteriori error estimates for
mixed finite element discretisations of the evolutionary Navier-Stokes equations are derived in [10] and
[16], and that an a posteriori error analysis for an iterative algorithm solving Navier-Stokes has been
proposed very recently in [9].

According to the above discussion, in this paper we adapt the strategy proposed in [27] and
[21] to derive reliable and efficient residual-based a posteriori error estimators for the model and
augmented mixed method introduced in [11]. This means that our analysis begins with a global inf-
sup condition for the linearisation arising from the use of the Gâteaux derivatives of the nonlinear
terms of the formulation. Then, our remaining tools include a suitable handling of the corresponding
convective term of the Navier-Stokes equations, continuous and discrete Helmholtz’s decompositions,
local approximation properties of the Raviart-Thomas and Clément interpolation operators, inverse
inequalities, and the localization technique based on triangle-bubble and edge-bubble functions. The
rest of the work is organised in the following manner. Both strong and weak forms of the velocity
gradient-stress-velocity formulation of the Navier-Stokes equations with nonlinear viscosity are stated
in Section 2. We recall the main hypotheses on the viscosity nonlinearity and define a Galerkin scheme,
detailing a particular choice of the discrete spaces and stating the a priori error bounds established in
[11]. Next, in Section 3 we consider the 2D case, introduce two a posteriori error indicators, and derive
the corresponding theoretical bounds yielding reliability and efficiency of each estimator. The analysis
and results from Section 3 are then extended to the 3D case in Section 4. Finally, in Section 5 we
collect several numerical examples illustrating the good performance and good effectivity indexes of
both error estimators under diverse scenarios in 2D and 3D, and confirming the satisfactory behaviour
of the corresponding adaptive refinement strategies.

2 The Navier–Stokes equations with nonlinear viscosity

2.1 Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3}, a given open, bounded, and connected domain with polygonal
(polyhedral) boundary Γ, and denote by ν the outward unit normal vector on Γ. Standard notation
will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and seminorm
| · |s,Ω. In addition, by M and M we will refer to the corresponding vector and tensorial counterparts
of the generic scalar functional space M, whereas ‖ · ‖, with no subscripts, will stand for the natural
norm of either an element or an operator in any product functional space. On the other hand, for
any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient, divergence, and tensor product
operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I .
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Finally, we define the following tensorial functional spaces:

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
,

and
L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr s = 0

}
.

2.2 The boundary value problem

We consider the stationary Navier-Stokes equations with nonlinear viscosity, that is

−div
(
µ(|∇u|)∇u

)
+ u · ∇u + ∇p = f in Ω ,

divu = 0 in Ω ,

u = g on Γ ,

(2.1)

where the unknowns are the velocity u and the pressure p of a non-Newtonian fluid occupying the
region Ω. The flow is characterised by the nonlinear function µ : R+ −→ R describing the viscosity
field, a volume force f ∈ L2(Ω), and the boundary velocity g ∈ H1/2(Γ) satisfying the compatibility
condition

∫
Γ g · ν = 0. Uniqueness of a pressure solution of (2.1) is ensured in the space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + s µ′(s) ≤ µ2 ∀ s ≥ 0 , (2.2)

which imply Lipschitz-continuity and strong monotonicity of the nonlinear operator induced by µ, in
the sense of the following result.

Lemma 2.1 Let Lµ := max
{
µ2, 2µ2 − µ1

}
, where µ1 and µ2 are the bounds of µ given in (2.2).

Then for each r, s ∈ L2(Ω) there holds

‖µ(|r|) r − µ(|s|) s‖0,Ω ≤ Lµ ‖r − s‖0,Ω , (2.3)∫
Ω

{
µ(|r|) r − µ(|s|) s

}
:
(
r − s

)
≥ µ1 ‖r − s‖20,Ω . (2.4)

Proof. See [28, Theorem 3.8] for details.

Typical examples of functions satisfying (2.2) are e.g. the classical power law and the Carreau
parametrisation:

µ(s) := 2 + (1 + s)−1 and µ(s) := α0 + α1(1 + s2)(β−2)/2 ,

where α0, α1 > 0 and β ∈ [1, 2].

Now, after introducing the additional tensor unknown, characterised by the constitutive law

σ := µ(|∇u|)∇u − (u⊗ u) − p I in Ω ,
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and applying the incompressibility constraint, we obtain

µ(|∇u|)∇u − (u⊗ u)d = σd, p = − 1

n
tr(σ + u⊗ u ) in Ω , (2.5)

which implies that the pressure can be eliminated from (2.1). Moreover, we also introduce the velocity
gradient as an auxiliary variable t := ∇u in Ω. Consequently, we end up with the following system,
expressed in terms of the unknowns t, σ, and u:

∇u = t in Ω ,

µ(|t|) t − (u⊗ u)d = σd in Ω ,

−divσ = f in Ω ,

u = g on Γ ,∫
Ω tr(σ + u⊗ u) = 0 .

(2.6)

Notice from (2.5) that the required belonging of the pressure field to L2
0(Ω) is indeed guaranteed by

the last equation of (2.6).

2.3 The augmented mixed formulation

Let us now recall that the augmented (through the incorporation of suitable Galerkin redundant terms)
mixed formulation for (2.6), introduced in [11] and motivated by velocity regularity requirements,
reads: Find ~t := (t,σ,u) ∈ H := L2

tr(Ω)×H0(div; Ω)×H1(Ω) such that[(
A + Bu

)
(~t),~s

]
=
[
F,~s

]
∀~s := (s, τ ,v) ∈ H , (2.7)

where
[
·, ·
]

stands for the duality pairing between H′ and H, A : H −→ H′ is the nonlinear operator

[
A(~t),~s

]
:=

∫
Ω
µ(|t|) t : s −

∫
Ω
σd : s +

∫
Ω
τ d : t +

∫
Ω
u · div τ −

∫
Ω
v · divσ

+ κ1

∫
Ω

{
σd − µ(|t|) t

}
: τ d + κ2

∫
Ω
divσ · div τ

+ κ3

∫
Ω

{
∇u− t

}
: ∇v + κ4

∫
Γ
u · v ,

the bounded linear functional F : H −→ R is defined as[
F,~s

]
:= 〈τ ν, g〉 +

∫
Ω
f ·
{
v − κ2 div τ

}
+ κ4

∫
Γ
g · v ,

where 〈·, ·〉 denotes the duality pairing of H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ)-inner
product, and for each z ∈ H1(Ω), Bz : H −→ H′ is the bounded linear operator

[
Bz(~t),~s

]
:= −

∫
Ω

(z ⊗ u)d :
{
κ1 τ

d + s
}
,

for all ~t := (t,σ,u), ~s := (s, τ ,v) ∈ H. The coefficients κ1, κ2, κ3, κ4 are positive parameters
assuming the following values, dictated by the stability analysis of the augmented formulation: κ1 ∈(

0,
2δµ1

Lµ

)
and κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ
2δ

))
, with δ ∈

(
0,

2

Lµ

)
and δ̃ ∈ (0, 2), and κ2, κ4 > 0.
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The unique solvability of (2.7) has been established in [11] using fixed point arguments. We omit
details and refer the reader to [11, Sections 3.2 and 3.3]. Only for further use throughout the rest of
the paper, we now let α(Ω) be the strong monotonicity constant of the nonlinear operator A (cf. [11,
eq. (3.23)]), and let c1(Ω) and cT be the boundedness constants specified in [11, eqs. (3.6), (3.19)].
In addition, we set (cf. [11, eq. (3.25)])

ρ0 :=
α(Ω)

2 c1(Ω) (κ2
1 + 1)1/2

. (2.8)

2.4 The Galerkin scheme

Let us consider arbitrary finite dimensional subspaces Hth, Hσh and Hu
h of the continuous spaces

L2
tr(Ω), H0(div; Ω), and H1(Ω), respectively. As usual, h denotes the size of a regular triangulation
Th of Ω made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK , that is

h := max
{
hK : K ∈ Th

}
. Then, the Galerkin scheme associated with the nonlinear problem (2.7)

reads: Find ~th := (th,σh,uh) ∈ Hh := Hth ×Hσh ×Hu
h such that[(

A + Buh
)
(~th),~sh

]
=
[
F,~sh

]
∀~sh := (sh, τ h,vh) ∈ Hh . (2.9)

Its linearised counterpart is defined via the discrete fixed point operator Th : Hu
h −→ Hu

h :

Th(zh) := uh ∀ zh ∈ Hu
h ,

where uh is the third component of the unique solution (to be confirmed by Theorem 2.2) of the
discrete problem: Find ~th := (th,σh,uh) ∈ Hh such that[(

A + Bzh
)
(~th),~sh

]
=
[
F,~sh

]
∀~sh := sh, τ h,vh) ∈ Hh . (2.10)

The well-posedness of the discrete problem is given in the following result

Theorem 2.2 Given ρ ∈ (0, ρ0), with ρ0 defined by (2.8), we let W h
ρ :=

{
zh ∈ Hu

h : ‖zh‖1,Ω ≤ ρ
}

,

and assume that the data satisfy (cf. [11, eq. (3.27)])

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ .

Then there exists a unique solution ~th ∈ Hh to (2.9) with uh ∈W h
ρ , and there holds

‖~th‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (2.11)

Proof. We refer the reader to [11, Lemma 4.1] for a detailed proof.

In what follows, given an integer k ≥ 0 and T ∈ Th, we let Pk(T ) (resp. P̃k(T )) be the space of
polynomials on T of degree ≤ k (resp. of degree = k), and, as indicated at the beginning of Section
2.1, we set Pk(T ) := [Pk(T )]n and Pk(T ) := [Pk(T )]n×n. In turn, the global version of Pk(T ) and
Pk(T ) are defined, respectively, as

Pk(Th) :=
{
vh ∈ L2(Ω) : vh

∣∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
and

Pk(Th) :=
{
sh ∈ L2(Ω) : sh

∣∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
.

6



In addition, denoting by x a generic vector in Rn, we let RTk(T ) be the local Raviart–Thomas space
of order k, that is

RTk(T ) := Pk(T ) ⊕ P̃k(T )x ,

and define the tensor version of the corresponding global Raviart–Thomas space of order k as

RTk(Th) :=
{
τ h ∈ H(div; Ω) : ct τ

∣∣∣
T
∈ RTk(T ) ∀ c ∈ Rn , ∀T ∈ Th

}
.

Then, examples of specific finite element subspaces Hth, Hσh and Hu
h fulfilling Theorem 2.2 are

approximations of t,σ and u by piecewise polynomial tensors of degree ≤ k, by tensor Raviart–
Thomas elements of order k, and by continuous piecewise polynomial vectors of degree ≤ k + 1,
respectively, that is

Hth := L2
tr(Ω) ∩ Pk(Th) ,

Hσh := H0(div; Ω) ∩ RTk(Th) ,

Hu
h :=

{
vh ∈ C(Ω) : vh

∣∣∣
T
∈ Pk+1(T ) ∀T ∈ Th

}
.

(2.12)

In such a framework, the following a priori error bounds are available (see the derivation in [11]):

Theorem 2.3 Suppose that there exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω),
and u ∈ Hs+1(Ω), and that the finite element subspaces are defined by (2.12). Then, there exists
C > 0, independent of h, such that for each h > 0 there holds

‖~t−~th‖+ ‖p− ph‖0,Ω ≤ C hmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s+1,Ω

}
.

3 A posteriori error analysis: The 2D case

In this section we derive two reliable and efficient residual based a posteriori error estimators for the
two-dimensional version of (2.10). The corresponding a posteriori error analysis for the 3D case, which
follows from minor modifications of the one to be presented next, will be addressed in Section 4.

3.1 Preliminaries

Let Eh be the set of all edges of Th, and E(T ) denotes the set of edges of a given T ∈ Th. Then
Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Moreover,
he stands for the length of a given edge e. Also, for each edge e ∈ Eh we fix a unit normal vector
νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector along e.
However, when no confusion arises, we simple write ν and s instead of νe and se, respectively. Now,
let v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. Then, given T ∈ Th and e ∈ E(T ) ∩ Eh(Ω),
we denote by [v · s] the tangential jump of v across e, that is [v · s] := (v|T − v|T ′)|e · s, where T
and T ′ are the triangles of Th having e as a common edge. Similar definitions hold for the tangential
jumps of scalar and tensor fields ϕ ∈ L2(Ω) and τ ∈ L2(Ω), respectively, such that ϕ|T ∈ C(T ) and
τ |T ∈ C(T ) on each T ∈ Th.

Moreover, given scalar, vector, and tensor valued fields v, ϕ := (ϕ1, ϕ2)t, and τ =: (τij), respec-
tively, we denote

curl v :=

( ∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
and curl(τ ) :=


∂τ12

∂x1
− ∂τ11

∂x2

∂τ22

∂x1
− ∂τ21

∂x2

 .
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Now, let Ih : H1(Ω) → Xh be the vector version of the usual Clément interpolation operator (cf.
[15]), where

Xh :=
{
ϕh ∈ C(Ω̄) : ϕh|T ∈ P1(T ) ∀T ∈ Th

}
,

and let Πh : H1(Ω) → RTk(Th) be the Raviart-Thomas interpolator, which, according to its charac-
terisation properties (see e.g. [22, Section 3.4.1]), verifies

div(Πh(τ )) = Ph(div τ ) ∀ τ ∈ H1(Ω) , (3.1)

where Ph is the L2(Ω)-orthogonal projector onto Pk(Th). Further approximation properties of Ih and
Πh are summarised in the following lemmas (see a proof in e.g. [15] and [22, Lemmas 3.16 and 3.18],
respectively).

Lemma 3.1 There exist c1, c2 > 0, independent of h, such that for all ϕ ∈ H1(Ω) there holds

‖ϕ− Ih(ϕ)‖0,T ≤ c1 hT ‖ϕ‖1,∆(T ) ∀T ∈ Th ,

and
‖ϕ− Ih(ϕ)‖0,e ≤ c2 h

1/2
e ‖ϕ‖1,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ) ,

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.

Lemma 3.2 There exist C1, C2 > 0, independent of h, such that for all τ ∈ H1(Ω) there holds

‖τ −Πh(τ )‖0,T ≤ C hT ‖τ‖1,T ∀T ∈ Th ,

and
‖(τ −Πh(τ ))ν‖0,e ≤ C h1/2

e ‖τ‖1,Te ∀ e ∈ Eh(Ω) ∪ Eh(Γ) ,

where Te is a triangle of Th containing the edge e on its boundary.

3.2 Error estimators and statement of our main results

Let ~th := (th,σh,uh) ∈ Hh be the unique solution of (2.10) and let us set the following residuals

r1(~th;0) := σd
h − µ(|th|) th + (uh ⊗ uh)d in Ω ,

r2(~th;f) := f + divσh in Ω ,

r3(~th;0) := ∇uh − th in Ω ,

r4(~th; g) := g − uh on Γ .

(3.2)

Then, we define for each T ∈ Th the (local) a posteriori error indicators

θ 2
1,T := ‖r1(~th;0)‖20,T + ‖r2(~th;f)‖20,T + ‖r3(~th;0)‖20,T +

∑
e∈E(T )∩Eh(Γ)

‖r4(~th; g)‖20,e , (3.3)

and
θ 2

2,T := θ 2
1,T + h2

T ‖curl(th)‖20,T + ‖f − Ph
(
f
)
‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he
∥∥[ths]∥∥2

0,e
+

∑
e∈E(T )∩Eh(Γ)

he

∥∥∥∥dgds − ths
∥∥∥∥2

0,e

,
(3.4)
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so that the global a posteriori error estimators are given, respectively, by

θ1 :=

{∑
T∈Th

θ 2
1,T + ‖r4(~th; g)‖21/2,Γ

}1/2

and θ2 :=

{∑
T∈Th

θ 2
2,T

}1/2

. (3.5)

The main results of this section are as follows.

Theorem 3.3 Assume that f ∈ L∞(Ω) and g ∈ H1(Γ), and that there holds (cf. (2.8))

cT

{
‖f‖+ ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ0

2
. (3.6)

In addition, let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete formulations
(2.7) and (2.10), respectively. Then, there exist constants Crel > 0 and Ceff > 0, independent of h,
such that

Ceff θ1 ≤ ‖~t−~th‖ ≤ Crel θ1 . (3.7)

Theorem 3.4 Under the assumptions of Theorem 3.3, there exist constants crel > 0 and ceff > 0,
independent of h, such that

ceff θ2 ≤ ‖~t−~th‖ ≤ crel θ2 . (3.8)

The upper and lower bounds in (3.7), (3.8) are known as the reliability and efficiency estimates,
respectively, which are derived below in Sections 3.4 and 3.5 under the assumption that f and g
are piecewise polynomials on Th and the induced triangulation on Γ, respectively, for each h > 0.
Otherwise, higher order terms arising from polynomial approximations of these functions would appear
in (3.7) and (3.8).

The analysis of the first a posteriori error estimator is straightforward, taking advantage of the fact
that u ∈ H1(Ω), which allows us to integrate by parts in some terms. For the second estimator, we
exploit the properties of the Helmholtz decomposition jointly with the Clément and Raviart-Thomas
interpolation operators. In this case, new terms that capture the jumps between triangles will appear.

3.3 A general a posteriori error estimate

In order to establish the reliability estimates of the a posteriori error estimators θ1 and θ2, that
is the upper bounds in (3.7) and (3.8), and as announced in the Introduction, here we follow the
strategy recently proposed in [21], which is based on the definition of a linear operator depending on
the Gâteaux derivatives of the nonlinear terms of the formulation. More precisely, we begin with the
following main result.

Lemma 3.5 Assume that the data satisfy (3.6), and let ~t ∈ H and ~th ∈ Hh be the unique solutions of
the continuous and discrete formulations (2.7) and (2.10), respectively. Then, there exists a constant
C > 0, independent of h, such that

‖~t−~th‖ ≤ C
{
‖R1‖L2

tr(Ω)′ + ‖R2‖H0(div;Ω)′ + ‖R3‖H1(Ω)′

}
, (3.9)

where R1 ∈ L2
tr(Ω)′, R2 ∈ H0(div; Ω)′, and R3 ∈ H1(Ω)′, are defined by

R1(s) :=

∫
Ω
r1(~th;0) : s ,

R2(τ ) := 〈τ ν, g〉 −
∫

Ω
uh · div τ −

∫
Ω
th : τ d

−κ1

∫
Ω
r1(~th;0) : τ d − κ2

∫
Ω
r2(~th;f) · div τ ,

R3(v) :=

∫
Ω
r2(~th;f) · v − κ3

∫
Ω
r3(~th;0) : ∇v + κ4

∫
Γ
r4(~th; g) · v ,

(3.10)
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for all ~s := (s, τ ,v) ∈ H. Furthermore, there holds

R1(sh) + R2(τ h) + R3(vh) = 0 ∀~sh := (sh, τ h,vh) ∈ Hh . (3.11)

Proof. First of all, we recall from [11, proof of Lemma 3.4] that for each z ∈ H1(Ω) such that

‖z‖1,Ω ≤ ρ0, A + Bz becomes strongly monotone with constant
α(Ω)

2
, that is

[(
A + Bz

)
(~r)−

(
A + Bz

)
(~s), ~r − ~s

]
≥ α(Ω)

2
‖~r − ~s‖2 ∀~r := (r, ζ,w), ~s := (s, τ ,v) ∈ H . (3.12)

In addition, we note that A can be split in terms of a non-linear operator A1 : L2
tr(Ω)→ L2

tr(Ω)′, and
a linear one A2 : H→ H′, namely[

A(~t),~s
]

= =
[
A1(t), s

]
− κ1

[
A1(t), τ d

]
+
[
A2

(
~t
)
,~s
]
, (3.13)

where [
A1(t), s

]
=

∫
Ω
µ(|t|) t : s ,

and [
A2

(
~t),~s

]
= −

∫
Ω
σd : s +

∫
Ω
τ d : t+

∫
Ω
u · div τ −

∫
Ω
v · divσ + κ1

∫
Ω
σd : τ d

+ κ2

∫
Ω
divσ · div τ + κ3

∫
Ω

{
∇u− t

}
: ∇v + κ4

∫
Γ
u · v ,

for all ~t := (t,σ,u), ~s := (s, τ ,v) ∈ H. Note that hereafter
[
·, ·
]

stands for both the duality
pairings between H′ and H as before, and between L2

tr(Ω) and L2
tr(Ω)′ as well. Next, we recall that

the Gâteaux derivative of A1 maps L2
tr(Ω) into L

(
L2

tr(Ω),L2
tr(Ω)′

)
, so that, given q ∈ L2

tr(Ω), it is
defined as

DA1(q)(t)(s) := lim
ε→0

[
A1(q + ε t)−A1(q), s

]
ε

∀ t, s ∈ L2
tr(Ω) .

It follows that DA1(q) can be considered as the bilinear form

DA1(q)(t, s) := DA1(q)(t)(s) ∀ t, s ∈ L2
tr(Ω) ,

which, together with (3.13), suggests the introduction of the linear operator Ãq : H→ H′ (depending
on the given q), defined as[

Ãq(~t),~s
]

:= DA1(q)(t, s) − κ1DA1(q)(t, τ d) +
[
A2

(
~t),~s

]
, (3.14)

for all ~t := (t,σ,u), ~s := (s, τ ,v) ∈ H. Now, it is easy to see that the properties (2.3) and (2.4)
satisfied by µ (cf. Lemma 2.1) imply that DA1(q)(·, ·) is uniformly bounded and uniformly elliptic
with constants Lµ and µ1, respectively, and hence, proceeding similarly as for the derivation of (3.12),

we find that, given z ∈ H1(Ω) such that ‖z‖1,Ω ≤ ρ0, the bilinear form Ãq + Bz becomes uniformly

elliptic with the same constant
α(Ω)

2
from (3.12), that is

[(Ãq + Bz)(~r), ~r] ≥ α(Ω)

2
‖~r‖2 ∀~r ∈ H ,
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which, in turn, implies the inf-sup condition

α(Ω)

2
‖~r‖ ≤ sup

~s∈H
~s 6=0

[(Ãq + Bz)(~r),~s]

‖~s‖
∀~r ∈ H . (3.15)

On the other hand, using the Mean Value Theorem, we can assert that there exists a convex combi-
nation qh between t and th such that

DA1(qh)(t− th, s) = [A1(t), s]− [A1(th), s] ∀ s ∈ L2
tr(Ω) . (3.16)

In this way, applying (3.15) to ~r = ~t−~th, with q = qh and z = u, where u is the third component
of the exact solution ~t ∈ H, we can write

α(Ω)

2
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

[(Ãqh + Bu)(~t−~th),~s]

‖~s‖
, (3.17)

where, thanks to (3.14), (3.16), (2.7), and minor algebraic manipulations, we find that

[(Ãqh + Bu)(~t−~th),~s] = [F,~s] − [(A + Bu)(~th),~s]

= [F,~s] − [(A + Buh)(~th),~s] + [Buh−u(~th),~s] .
(3.18)

Next, we recall from [11, eq. (3.21)] that∣∣ [Buh−u(~th),~s]
∣∣ ≤ c1(Ω) (κ2

1 + 1)1/2 ‖uh − u‖1,Ω ‖~th‖ ‖~s‖ ,

which, employing (2.8), the a priori estimate (2.11), the assumption (3.6), and the fact that obviously
‖uh − u‖1,Ω ≤ ‖~t−~th‖, yields∣∣ [Buh−u(~th),~s]

∣∣ ≤ α(Ω)

4
‖~t−~th‖ ‖~s‖ . (3.19)

Thus, replacing (3.18) back into (3.17), and then using (3.19), we arrive at

α(Ω)

4
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

∣∣[F,~s] − [(A + Buh)(~th),~s]
∣∣

‖~s‖
,

from which (3.9) is obtained by observing that

[F,~s] − [(A + Buh)(~th),~s] = R1(s) + R2(τ ) + R3(v) ∀~s := (s, τ ,v) ∈ H .

Finally, it is readily seen that (3.11) follows directly from (2.9) and the foregoing identity.

We end this section with an alternative expression for the functional R2. In fact, noting that∫
Ω
th : τ d =

∫
Ω
tdh : τ =

∫
Ω
th : τ (3.20)

and ∫
Ω
r1(~th;0) : τ d =

∫
Ω
r1(~th;0)d : τ =

∫
Ω
r1(~th;0) : τ , (3.21)

and then integrating by parts the expression

∫
Ω
uh · div τ , we find that R2(τ ) can be rewritten as

R2(τ ) = −κ1

∫
Ω
r1(~th;0) : τ − κ2

∫
Ω
r2(~th;f) · div τ +

∫
Ω
r3(~th;0) : τ +

〈
τ ν, r4(~th; g)

〉
. (3.22)
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3.4 Reliability of the a posteriori error estimators

We now proceed to bound the norms appearing on the right hand side of (3.9) of the functionals
Ri, i ∈ {1, 2, 3}, defined in (3.10). This task is performed in two different ways, which leads to the
reliability of the a posteriori error estimators θ1 and θ2. We begin with θ1.

Theorem 3.6 Assume that the data satisfy (3.6), and let ~t ∈ H and ~th ∈ Hh be the unique solutions
of the continuous and discrete formulations (2.7) and (2.10), respectively. Then there exists Crel > 0,
independent of h, such that

‖~t−~th‖ ≤ Crel θ1 . (3.23)

Proof. We first observe from (3.10) that simple applications of the Cauchy-Schwarz inequality yield

‖R1‖L2
tr(Ω)′ ≤ ‖r1(~th;0)‖0,Ω (3.24)

and
‖R3‖H1(Ω)′ ≤ c3

{
‖r2(~th;f)‖0,Ω + ‖r3(~th;0)‖0,Ω + ‖r4(~th; g)‖0,Γ

}
, (3.25)

where c3 > 0 is a constant depending on κ3, κ4, and the norm of the trace operator mapping H1(Ω)
into L2(Γ). In turn, employing again the Cauchy-Schwarz inequality, and recalling that 〈·, ·〉 stands
for the duality pairing between H−1/2(Γ) and H1/2(Γ), we deduce from (3.22) that

‖R2‖H0(div;Ω)′ ≤ c2

{
‖r1(~th;0)‖0,Ω + ‖r2(~th;f)‖0,Ω + ‖r3(~th;0)‖0,Ω + ‖r4(~th; g)‖1/2,Γ

}
, (3.26)

where c2 > 0 is a constant depending on κ1, κ2, and the norm of the trace operator mapping H1(Ω)
onto H1/2(Γ). In this way, replacing the bounds (3.24), (3.25), and (3.26) back into (3.9) we arrive at
the required inequality (3.23) with θ1 given in (3.5).

Having proved Theorem 3.6, we now aim to establish the reliability of θ2 (cf. (3.5)). To this end,
we first remark that the estimation of ‖R1‖L2

tr(Ω)′ and ‖R3‖H1(Ω)′ is performed exactly as in (3.24)
and (3.25), and that the new a posteriori error estimator θ2 arises from a different way of bounding
‖R2‖H0(div;Ω)′ . More precisely, we derive this estimate by focusing on the terms arising after exploiting
the Helmholtz decomposition provided by the following lemma.

Lemma 3.7 For each τ ∈ H0(div; Ω) there exist z ∈ H2(Ω) and ϕ ∈ H1(Ω) such that

τ = ∇z + curl(ϕ) in Ω and ‖z‖2,Ω + ‖ϕ‖1,Ω ≤ c ‖τ‖div;Ω , (3.27)

where c is a positive constant independent of all the foregoing variables.

Proof. The proof proceeds exactly as in [26, Section 4] (see also [17, Lemma 3.4]). We provide details
in what follows just for sake of completeness. We begin by introducing a bounded convex polygonal
domain G containing Ω̄. Then, given τ ∈ H0(div; Ω), we define z := w|Ω, where w ∈ H1(G) is the
unique weak solution of the boundary value problem:

∆w =

{
div τ in Ω

0 in G\Ω
, w = 0 on ∂G . (3.28)

The elliptic regularity result for (3.28) establishes that w ∈ H2(G), which certainly implies z ∈ H2(Ω),
and there holds

‖z‖2,Ω ≤ ‖w‖2,G ≤ ‖div τ‖0,Ω . (3.29)
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Next, since div(τ −∇z) = 0 in Ω, and Ω is connected, an already classical result (cf. [29, Chapter
I, Theorem 3.1]) guarantees the existence of ϕ = (ϕ1, ϕ2)t ∈ H1(Ω), which can be chosen so that∫

Ω
ϕ1 =

∫
Ω
ϕ2 = 0, such that

τ − ∇z = curl(ϕ) in Ω , (3.30)

which proves the identity in (3.27). In turn, the equivalence between ‖ϕ‖1,Ω and |ϕ|1,Ω (which is
consequence of the generalised Poincaré inequality), together with (3.29) and (3.30), imply

‖ϕ‖1,Ω ≤ C |ϕ|1,Ω = C ‖curl(ϕ)‖0,Ω ≤ C
{
‖τ‖0,Ω + |z|1,Ω

}
≤ C ‖τ‖div,Ω .

Finally, the foregoing inequality and (3.29) confirm the stability estimate on the right hand side of
(3.27), thus finishing the proof.

We now introduce a discrete version of the identity in (3.27). In fact, given again τ ∈ H0(div; Ω)
with z and ϕ satisfying (3.27), and recalling from Section 3.1 that Ih and Πh denote the Clément and
Raviart-Thomas interpolators, respectively, we let ϕh := Ih(ϕ) and set

τ̃ h := Πh(∇z) + curl(ϕh) + ch I , (3.31)

where ch ∈ R is chosen so that τ̃ h, which is already in RTk(Th), belongs to Hσh (cf. (2.12)). Equi-
valently, τ̃ h is the H0(div; Ω)-component of curl(ϕh) + Πh(∇z) ∈ RTk(Th). We refer to (3.31) as a
discrete Helmholtz decomposition of τ .

According to the above, and employing from (3.11) that R2(τ̃ h) = 0, we deduce thanks to the
linearity of R2 and the fact that R2(I) = 0 (which follows from (3.10) and the compatibility condition
for the Dirichlet datum g explained in Section 2.1), that the expression R2(τ ) can be decomposed as

R2(τ ) = R2(τ − τ̃ h) = R2

(
∇z − Πh(∇z)

)
+ R2

(
curl(ϕ − ϕh)

)
. (3.32)

Consequently, in what follows we derive suitable upper bounds for the modules of the two expressions
on the right hand side of the foregoing equation. To this end, we now recall from [17] the following
integration by parts formula on the boundary.

Lemma 3.8 There holds

〈curlψ ν,χ〉 = −〈dχ
ds
,ψ〉 ∀ψ, χ ∈ H1(Ω) . (3.33)

Proof. The proof follows from suitable applications of the Green formulae provided in [29, Chapter I,
eq. (2.17) and Theorem 2.11]. For details, we refer to [17, Lemma 3.5, eq. (3.35)]

The estimate for
∣∣R2

(
curl(ϕ − ϕh)

) ∣∣ is given first.

Lemma 3.9 Assume that g ∈ H1(Γ). Then there exists C > 0, independent of h, such that

∣∣R2

(
curl(ϕ − ϕh)

) ∣∣ ≤ C

 ∑
T ∈Th

θ̃ 2
2,T


1/2

‖ϕ‖1,Ω , (3.34)
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where
θ̃ 2

2,T := h2
T ‖curl(th)‖20,T +

∑
e∈E(T )∩Eh(Ω)

he ‖[th s]‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥dgds − ths
∥∥∥∥2

0,e

+ ‖r1(~th;0)‖20,T .

Proof. We begin by observing from the definition of the functional R2 (cf. (3.10)) and the identities
(3.20) and (3.21) that

R2

(
curl(ϕ − ϕh)

)
= 〈curl(ϕ − ϕh)ν, g〉 −

∫
Ω
th : curl(ϕ − ϕh)

−κ1

∫
Ω
r1(~th;0) : curl(ϕ − ϕh) .

(3.35)

Note that, alternatively, we could have employed the expression (3.22) for R2. Then, applying (3.33)
(cf. Lemma 3.8) to ψ = ϕ − ϕh and to a trace lifting χ of g, and then using from the hypothesis

that
dg

ds
∈ L2(Γ), we find that

〈curl(ϕ − ϕh)ν, g〉 = −
〈dg
ds
,ϕ − ϕh

〉
= −

∑
e∈Eh(Γ)

∫
e
(ϕ − ϕh)

dg

ds
. (3.36)

In turn, integrating by parts on each T ∈ Th, we obtain that∫
Ω
th : curl(ϕ − ϕh) =

∑
T ∈Th

∫
T
th : curl(ϕ − ϕh) =

∑
T ∈Th

∫
T
curl(th) · (ϕ − ϕh)

−
∑

e∈Eh(Ω)

∫
e
[ths] · (ϕ − ϕh) −

∑
e∈Eh(Γ)

∫
e
ths · (ϕ − ϕh) ,

which, together with (3.36), yields

〈curl(ϕ − ϕh)ν, g〉 −
∫

Ω
th : curl(ϕ − ϕh) = −

∑
T ∈Th

∫
T
curl(th) · (ϕ − ϕh)

+
∑

e∈Eh(Ω)

∫
e
[ths] · (ϕ − ϕh) −

∑
e∈Eh(Γ)

∫
e

{
dg

ds
− ths

}
· (ϕ − ϕh)

(3.37)

In this way, applying the Cauchy-Schwarz inequality, the approximation properties of the Clément
interpolator Ih (cf. Lemma 3.1), and the fact that the number of triangles of the macro-elements
∆(T ) and ∆(e) are uniformly bounded, we deduce from (3.37) that

∣∣∣∣〈curl(ϕ − ϕh)ν, g〉 −
∫

Ω
th : curl(ϕ − ϕh)

∣∣∣∣ ≤ C

 ∑
T ∈Th

θ
2
2,T


1/2

‖ϕ‖1,Ω , (3.38)

where C > 0 is independent of h, and

θ
2
2,T := h2

T ‖curl(th)‖20,T +
∑

e∈E(T )∩Eh(Ω)

he ‖[th s]‖20,e +
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥dgds − ths
∥∥∥∥2

0,e

.
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On the other hand, applying the boundedness of Ih : H1(Ω) → H1(Ω) (cf. [18, Lemma 1.127, pag.
69]), we easily find by the Cauchy-Schwarz and triangle inequalities that∣∣∣κ1

∫
Ω
r1(~th;0) : curl(ϕ − ϕh)

∣∣∣ ≤ κ1 ‖r1(~th;0)‖0,Ω |ϕ − ϕh|1,Ω

≤ κ1 ‖r1(~th;0)‖0,Ω
{
‖ϕ‖1,Ω + ‖ϕh‖1,Ω

}
≤ C ‖r1(~th;0)‖0,Ω ‖ϕ‖1,Ω .

(3.39)

In this way, by replacing (3.38) and (3.39) back into (3.35) we arrive at (3.34), thus ending the proof.

Next, we estimate
∣∣R2

(
∇z − Πh(∇z)

) ∣∣.
Lemma 3.10 There exists C > 0, independent of h, such that

|R2

(
∇z − Πh(∇z)

)
| ≤ C

 ∑
T ∈Th

θ̂ 2
2,T


1/2

‖z‖2,Ω , (3.40)

where
θ̂ 2

2,T := h2
T ‖r1(~th;0)‖20,T + h2

T ‖r3(~th;0)‖20,T + ‖f − Ph
(
f
)
‖20,T

+
∑

e∈E(T )∩Eh(Γ)

he‖r4(~th; g)‖20,e .
(3.41)

Proof. Using now the alternative definition of the functional R2 (cf. (3.22)) we find that

R2

(
∇z − Πh(∇z)

)
=

∫
Ω

{
− κ1 r1(~th;0) + r3(~th;0)

}
:
(
∇z − Πh(∇z)

)
+

〈(
∇z − Πh(∇z)

)
ν, r4(~th; g)

〉
− κ2

∫
Ω
r2(~th;f) · div

(
∇z − Πh(∇z)

) (3.42)

Then, applying the identity (3.1), denoting by I a generic identity operator, and using that divσh ∈
Pk(Th), we obtain∫

Ω
r2(~th;f) · div

(
∇z − Πh(∇z)

)
=

∫
Ω
r2(~th;f) ·

(
I − Ph

)
(div∇z)

=

∫
Ω

(
I − Ph

)
(r2(~th;f)) ·∆ z =

∫
Ω

(
f − Ph(f)

)
·∆ z ,

which yields ∣∣∣∣∫
Ω
r2(~th;f) · div

(
∇z − Πh(∇z)

)∣∣∣∣ ≤ ‖f − Ph(f)‖0,Ω ‖z‖2,Ω . (3.43)

In turn, the remaining terms on the right hand side of (3.42) are simply bounded by applying the
Cauchy-Schwarz inequality in L2(Ω) and L2(Γ), and then employing the approximation properties of
Πh provided by Lemma 3.2. The resulting estimate together with (3.43) readily lead to (3.40), which
ends the proof.
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As a straightforward consequence of Lemmas 3.9 and 3.10, the identity (3.32), and the stability
estimate of the Helmholtz decomposition (cf. (3.27)), we conclude the required upper bound for
‖R2‖H0(div;Ω)′ , that is

‖R2‖H0(div;Ω)′ ≤ C

∑
T∈Th

θ̃ 2
2,T +

∑
T∈Th

θ̂ 2
2,T


1/2

, (3.44)

where C > 0 is a constant independent of h.

We are now ready to establish the reliability estimate for θ2.

Theorem 3.11 Assume that the data satisfy (3.6), and let ~t ∈ H and ~th ∈ Hh be the unique
solutions of the continuous and discrete formulations (2.7) and (2.10), respectively. Then there exists
crel > 0, independent of h, such that

‖~t−~th‖ ≤ crel θ2 . (3.45)

Proof. Having in mind the general estimate provided by (3.9) (cf. Lemma 3.5), we begin by recalling,
as announced before, that the reliability of θ2 arises from the same upper bounds of ‖R1‖L2

tr(Ω)′ and
‖R3‖H1(Ω)′ given in (3.24) and (3.25), respectively, together with the new estimate of ‖R2‖H0(div;Ω)′

provided by (3.44). In this way, and observing that the terms h2
T ‖r1(~th;0)‖20,T , h2

T ‖r3(~th;0)‖20,T , and

he‖r4(~th; g)‖20,e, which form part of θ̂ 2
2,T (cf. (3.41)), are dominated by ‖r1(~th;0)‖20,T , ‖r3(~th;0)‖20,T ,

and ‖r4(~th; g)‖20,e, respectively, which appear in the aforementioned bounds, we conclude (3.45) after
replacing (3.24), (3.25), and (3.44) back into (3.9).

3.5 Efficiency of the a posteriori error estimators

In this section we prove the lower estimates announced in (3.7) (cf. Theorem 3.3) and (3.8) (cf.
Theorem 3.4). Most of the corresponding analysis consists of deriving suitable upper bounds depending
on the true errors for each one of the terms defining the local error indicators θ2

1,T and θ2
2,T . For this

purpose, we make extensive use of the original system of equations (2.6), which is recovered from the
augmented continuous formulation (2.7) by choosing suitable test functions and integrating by parts
backwardly the corresponding equations.

We begin with the efficiency estimate for θ1.

Theorem 3.12 Let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete
formulations (2.7) and (2.10), respectively. Then there exists Ceff > 0, independent of h, such that

Ceff θ1 ≤ ‖~t−~th‖ . (3.46)

Proof. We first deduce from (3.2) and the second equation of (2.6) that

r1(~th;0) =
(
σd
h − σd

)
−
(
µ(|th|) th − µ(|t|) t

)
+
(
(uh ⊗ uh)d − (u⊗ u)d

)
,

which, applying (2.3) (cf. Lemma 2.1), and noting that ‖τ d‖0,Ω ≤ ‖τ‖0,Ω for each τ ∈ L2(Ω), yields

‖r1(~th;0)‖20,Ω ≤ 3
{
‖σh − σ‖20,Ω + L2

µ ‖ t− th‖20,Ω + ‖(uh ⊗ uh) − (u⊗ u)‖20,Ω
}
. (3.47)
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In turn, subtracting and adding u in the first term involving the tensor product ⊗, and using Cauchy-
Schwarz’s inequality for the resulting expressions, we find that

‖(uh ⊗ uh) − (u⊗ u)‖20,Ω ≤ 2
{
‖uh‖2L4(Ω) + ‖u‖2L4(Ω)

}
‖u− uh‖2L4(Ω) ,

from which, employing that the injection ic : H1(Ω)→ L4(Ω) is compact (and hence continuous) (see
Rellich-Kondrachov compactness Theorem in [1, Theorem 6.3] or [36, Theorem 1.3.5]), and using from
[11, Theorems 3.9 and 4.2] that ‖u‖1,Ω and ‖uh‖1,Ω are bounded above by ρ0 (cf. (2.8)), we deduce
that

‖(uh ⊗ uh) − (u⊗ u)‖20,Ω ≤ 4 ρ2
0 ‖ic‖4 ‖u− uh‖21,Ω . (3.48)

On the other hand, it is readily seen from (3.2) and the remaining equations of (2.6) that

‖r2(~th;f)‖20,Ω ≤ ‖div
(
σ − σh

)
‖20,Ω ,

‖r3(~th;0)‖20,Ω ≤ 2
{
|u − uh|21,Ω + ‖t − th‖20,Ω

}
,

‖r4(~th; g)‖20,Γ ≤ C ‖u − uh‖21,Ω ,

and
‖r4(~th; g)‖21/2,Γ ≤ C ‖u − uh‖21,Ω , (3.49)

where the last two inequalities make use of the trace inequalities in L2(Γ) and H1/2(Γ), respectively.
In this way, the required efficiency estimate (3.46) follows straightforwardly from the definition of θ1

(cf. (3.5)) and the inequalities (3.47), (3.48) – (3.49).

We now aim to establish the efficiency of θ2. More precisely, thanks to the previous theorem,
it only remains to prove the corresponding upper bounds for the other four terms defining θ2

2,T (cf.
(3.4)). For this purpose, we proceed as in [13, 24, 4], and apply the localization technique based
on triangle-bubble and edge-bubble functions, together with extension operators, discrete trace and
inverse inequalities. According to the above, we now introduce additional notations and preliminary
results. Given T ∈ Th and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble
functions, respectively (see [38, eqs. (1.5) and (1.6)]), for which there hold:

i) ψT ∈ Pn+1(T ), ψT = 0 on ∂T , supp(ψT ) ⊆ T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ Pn(T ), ψe = 0 on ∂T \ e, supp(ψe) ⊆ we := ∪{T ′ ∈ Th : e ∈ E(T ′)}, and 0 ≤ ψe ≤ 1 in
we.

It is well-known that, given k ∈ N ∪ {0}, there exists an extension operator L : C(e)→ C(T ) that
satisfies L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e). Further properties of ψT , ψe and L are stated
in the following lemma (see e.g. [38]).

Lemma 3.13 Given k ∈ N ∪ {0}, there exist positive constants c1, c2, and c3, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ E(T ), there hold

,

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀p ∈ Pk(e) ,

and
‖ψ1/2

e L(p)‖20,T ≤ c3 he‖p‖20,e ∀p ∈ Pk(e) .
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The following inverse and discrete trace inequalities are also employed.

Lemma 3.14 Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then there exists c > 0, depending only on k,
l, m and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ) .

Proof. See [14, Theorem 3.2.6].

Lemma 3.15 There exists C > 0, depending only on the shape regularity of the triangulations, such
that for each T ∈ Th and e ∈ E(T ), there holds

‖v‖20,e ≤ C
{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) .

Proof. See [2, Theorem 3.10].

In turn, the following lemma, whose proof makes use of Lemmas 3.13 and 3.14, is applied next to
bound the terms involving curl and the tangential jumps across the edges of Th.

Lemma 3.16 Let ρh ∈ L2(Ω) be a piecewise polynomial tensor of degree k ≥ 0 on each T ∈ Th, and
let ρ ∈ L2(Ω) be such that curl(ρ) = 0 in Ω. Then, there exist c, c̃ > 0, independent of h, such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th , (3.50)

and
‖[ρhs]‖0,e ≤ c̃ h−1/2

e ‖ρ− ρh‖0,ωe ∀ e ∈ Eh(Ω) . (3.51)

Proof. For the proof of (3.50) we refer to [7, Lemma 4.3], whereas (3.51) is a slight modification of
the proof of [7, Lemma 4.4]. We omit further details.

The following lemma provides the required upper bounds for the second and fourth terms on the
right hand side of (3.4).

Lemma 3.17 There exists C1, C2 > 0, independent of h, such that

h2
T

∥∥curl(th)
∥∥2

0,T
≤ C1 ‖t− th‖20,T ∀T ∈ Th ,

and
he
∥∥[th s]∥∥2

0,e
≤ C2 ‖t− th‖20,we ∀ e ∈ Eh(Ω) .

Proof. It suffices to apply Lemma 3.16 with ρh = th and ρ = t = ∇u.

Now, the third and fifth terms on the right hand side of (3.4) are estimated as follows.

Lemma 3.18 There holds

‖f − Ph
(
f
)
‖0,T ≤ 2 ‖divσ − divσh‖0,T ∀T ∈ Th . (3.52)
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Proof. Using that f = −divσ, and then adding and subtracting Ph(divσh) = divσh, we readily
find that

‖f − Ph
(
f
)
‖0,T ≤ ‖Ph

(
divσ − divσh

)
‖0,T + ‖divσh − divσ‖0,T ,

which yields (3.52) and ends the proof.

Lemma 3.19 There exists C3 > 0, independent of h, such that

he

∥∥∥∥dgds − ths
∥∥∥∥2

0,e

≤ C3 ‖t− th‖20,Te ∀ e ∈ Eh(Γ) ,

where Te is the triangle of Th having e as and edge.

Proof. It follows similarly to the proof of [26, Lemma 4.15]. We omit further details.

As a consequence of Theorem 3.12 and Lemmas 3.17, 3.18, and 3.19, we are now in position to
state the efficiency of θ2.

Theorem 3.20 Let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete
formulations (2.7) and (2.10), respectively. Then there exists ceff > 0, independent of h, such that

ceff θ2 ≤ ‖~t−~th‖ .

4 A posteriori error analysis: The 3D case

In this section we extend the results from Section 3 to the three-dimensional version of (2.10). Similarly
as in Section 3, given a tetrahedron T ∈ Th, we let E(T ) be the set of its faces, and let Eh be the set of
all faces of the triangulation Th. Then, we write Eh = Eh(Ω)∪Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}
and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Also, for each face e ∈ Eh we fix a unit normal νe to e, so that given
τ ∈ L2(Ω) such that τ |T ∈ C(T ) on each T ∈ Th, and given e ∈ Eh(Ω), we let

[
τ × νe

]
be the

corresponding jump of the tangential traces across e, that is
[
τ × νe

]
:= (τ |T − τ |T ′)|e × νe, where T

and T ′ are the elements of Th having e as a common face. In what follows, when no confusion arises,
we simple write ν instead of νe.

Now, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl(v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl denotes curl acting along each row
of τ , that is, curl(τ ) is the 3× 3 tensor whose rows are given by

curl(τ ) :=

 curl(τ11, τ12, τ13)
curl(τ21, τ22, τ23)
curl(τ31, τ32, τ33)

 .

In addition, τ × ν stands for the 3× 3 tensor whose rows are given by the tangential components of
each row of τ , that is,

τ × ν :=

 (τ11, τ12, τ13)× ν
(τ21, τ22, τ23)× ν
(τ31, τ32, τ33)× ν

 .
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Having introduced these notations, and employing the same definitions of the residuals given in
(3.2), we now set for each T ∈ Th the local a posteriori error indicators θ2

1,T (exactly as in (3.3)), and

θ 2
2,T := θ 2

1,T + h2
T ‖curl(th)‖20,T + ‖f − Ph

(
f
)
‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he
∥∥[th × ν]∥∥2

0,e
+

∑
e∈E(T )∩Eh(Γ)

he ‖∇g × ν − th × ν‖20,e .
(4.1)

In this way, the corresponding global a posteriori error estimators are defined as in (3.5), that is

θ1 :=

{∑
T∈Th

θ 2
1,T + ‖r4(~th; g)‖21/2,Γ

}1/2

and θ2 :=

{∑
T∈Th

θ 2
2,T

}1/2

,

and the main estimates, which are the analogue of Theorems 3.3 and 3.4, are stated as follows.

Theorem 4.1 Assume that f ∈ L∞(Ω) and g ∈ H1(Γ), and that there holds (3.6). In addition,
let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete formulations (2.7)
and (2.10), respectively. Then, there exist constants Crel > 0, Ceff > 0, crel > 0, and ceff > 0,
independent of h, such that

Ceff θ1 ≤ ‖~t−~th‖ ≤ Crel θ1 .

and
ceff θ2 ≤ ‖~t−~th‖ ≤ crel θ2 .

The proof of Theorem 4.1 follows very closely the analysis of Section 3, except a few issues to be
described throughout the following discussion. Indeed, we first observe that the general a posteriori
error estimate given by Lemma 3.5 is also valid in 3D, and that the corresponding upper bounds of
‖R1‖L2

tr(Ω)′ , ‖R3‖H1(Ω)′ , and ‖R2‖H0(div;Ω)′ yielding the reliability of θ1 are the same as those given
in (3.24), (3.25), and (3.26), respectively.

In turn, for the reliability of θ2, we need to use a 3D version of the stable Helmholtz decomposition
provided by Lemma 3.7, which is valid only for 2D. This required result and a further extension of it to
a particular case of Neumann boundary conditions were established recently for arbitrary polyhedral
domains in [23, Theorem 3.1]. Before it, the stability of the Helmholtz decomposition in 3D was known
only for convex regions (see, e.g. [40, Proposition 4.52]), whose proof is consequence of some results
from [5]. We remark that the analysis in [23] also makes use of several estimates available in [5].
Next, the associated discrete Helmholtz decomposition and the functional R2 are set and rewritten
exactly as in (3.31) and (3.32), respectively. Furthermore, in order to derive the new upper bound
of ‖R2‖H0(div;Ω)′ , we now need the 3D analogue of the integration by parts formula on the boundary
given by (3.33) (cf. Lemma 3.8). In fact, by applying again the identities from [29, Chapter I, eq.
(2.17) and Theorem 2.11], we deduce that in this case there holds

〈curlχν,φ〉 = −〈∇φ× ν,χ〉 ∀χ ∈ H1(Ω) , ∀φ ∈ H1(Ω) .

In addition, the integration by parts formula on each tetrahedron T ∈ Th, which is employed in the
proof of the 3D analogue of Lemma 3.9, becomes (cf. [29, Chapter I, Theorem 2.11])∫

T
curl τ : χ −

∫
T
τ : curlχ = 〈τ × ν,χ〉∂T ∀ τ ∈ H(curl; Ω) , ∀χ ∈ H1(Ω) ,

where 〈·, ·〉∂T is the duality pairing between H−1/2(T ) and H1/2(T ), and, as usual, H(curl; Ω) is the
space of tensors in L2(Ω) whose curl lie also in L2(Ω). Note that the foregoing identities explain the
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D.o.f. h e(t) r(t) e(σ) r(σ) e(u) r(u) eff(θ1) eff(θ2) iter

Augmented P0 − RT0 −P1 scheme

74 1.4142 4.7503 – 91.5264 – 11.5238 – 1.0219 0.6711 4
258 0.7071 3.1161 0.6082 53.1640 0.7837 5.2062 1.1462 1.0093 0.6720 5
962 0.3535 1.5991 0.9624 32.6029 0.7054 2.6013 1.0009 1.0073 0.6732 5

3714 0.1767 0.8003 0.9986 17.7405 0.8779 1.2612 1.0443 1.0069 0.6778 5
14594 0.0883 0.3986 1.0055 8.9096 0.9936 0.6210 1.0221 1.0070 0.6828 4
57858 0.0441 0.1990 1.0021 4.4821 0.9911 0.3090 1.0070 1.0069 0.6849 5

230402 0.0220 0.0994 1.0007 2.2497 0.9944 0.1542 1.0019 1.0069 0.6856 5
919554 0.0110 0.0497 1.0002 1.1259 0.9985 0.0771 1.0005 1.0069 0.6858 5

Augmented P1 − RT1 −P2 scheme

173 1.4142 3.9997 – 73.6908 – 5.4413 – 0.9627 0.2804 5
589 0.7071 1.7202 1.2172 30.2571 1.4738 2.0013 1.4429 0.9792 0.2899 5

2165 0.3535 0.3219 2.4176 12.1352 1.3180 0.4759 2.0720 0.9790 0.2939 5
8293 0.1767 0.0734 2.1328 4.7582 1.7127 0.1125 2.0797 0.9807 0.2964 5

32453 0.0883 0.0184 1.9905 1.2888 1.8223 0.0260 2.1110 0.9794 0.3030 5
128389 0.0441 0.0048 1.9320 0.3577 1.8492 0.0064 1.9940 0.9799 0.3016 5
510725 0.0220 0.0012 1.9834 0.0913 1.9691 0.0016 1.9944 0.9788 0.2996 6

2037253 0.0110 0.0003 1.9987 0.0227 1.9786 0.0004 1.9953 0.9800 0.2996 5

Table 5.1: Test 1: convergence history and Newton iteration count for the Pk −RTk −Pk+1 approxi-
mations of the Navier–Stokes problem, with k = 0, 1.

appearing of the expressions th × ν and ∇g × ν − th × ν in the 3D definition of θ2
2,T (cf. (4.1)). The

rest of the proof of the reliability of θ2 and the entire analysis yielding the efficiency of both θ1 and θ2

proceed as in Sections 3.4 and 3.5, respectively. Just for sake of completeness, we remark that most
of the details concerning the 3D version of the efficiency estimates given in Lemmas 3.16, 3.17, and
3.19, can be found in (or derived from) [25, Lemmas 4.9, 4.10, 4.11, and 4.13].

5 Numerical results

We numerically investigate the performance and accuracy of the proposed augmented finite element
scheme along with the properties of the a posteriori error estimators θ1 and θ2 derived in Section 3
and 4, respectively. In this regard, we remark that for purposes of adaptivity, which requires to have
locally computable indicators, we now use that

‖r4(~th; g)‖21/2,Γ ≤ c ‖r4(~th; g)‖21,Γ = c
∑

e∈Eh(Γ)

‖r4(~th; g)‖21,e ,

and redefine θ1 as

θ1 :=

{∑
T∈Th

θ 2
1,T

}1/2

,

where

θ 2
1,T := ‖r1(~th;0)‖20,T + ‖r2(~th;f)‖20,T + ‖r3(~th;0)‖20,T +

∑
e∈E(T )∩Eh(Γ)

‖r4(~th; g)‖21,e .
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Figure 5.1: Test 1: P1−RT1−P2 approximation of velocity gradient components (top panels), Cauchy
stress first components and postprocessed pressure field (center panels), and viscosity with velocity
components and vector directions (bottom row).

Under this redefinition θ1 is certainly still reliable, but efficient only up to all its terms, except
for the last one, associated to the boundary Γ. Nevertheless, the numerical results to be displayed
below allow us to conjecture that this modified θ1 actually verifies both properties. Furthermore, a
Newton-Raphson procedure is employed to linearise (2.9) (where we recall that the convective term is
already linearised via a fixed-point strategy), and impose a fixed tolerance of 1E-6 on the norm of the
incremental solutions. Linear systems were solved with the iterative GMRES method preconditioned
with a multilevel incomplete-LU factorisation. In all subsequent cases, the viscosity is set as

µ(s) := α0 + α1(1 + s2)−1/2, µ1 = α0 < µ(s) < α1 = µ2, for s ≥ 0,

and the stabilisation coefficients are chosen according to their optimal values suggested by the analysis
of Section 2, that is, Lµ = max{µ2, 2µ2 − µ1}, δ = L−1

µ , κ1 = δµ1/Lµ, κ2 = κ1, κ3 = µ1 − κ1Lµ
2δ ,

κ4 = µ1/4. In addition, the mean value of trσh over Ω is fixed via a penalisation strategy.
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D.o.f. e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e r iter eff(θi)

Augmented P0 − RT0 −P1 scheme with uniform refinement

794 6.3200 – 450.6412 – 11.0093 – 17.2742 – 450.8528 – 6 –
1876 5.1547 0.4741 413.9833 0.1953 7.7599 0.8135 14.6693 0.3802 414.0881 0.1946 5 –
4880 4.4945 0.2867 386.1393 0.1456 5.2116 0.8327 9.9066 0.8212 386.2006 0.1458 6 –

15480 2.8735 0.7749 260.9739 0.6787 3.8975 0.7170 6.9631 0.6108 261.0058 0.6788 6 –
55622 1.8025 0.7291 177.1064 0.6061 2.2694 0.7904 3.7081 0.9852 177.1201 0.6062 6 –

206242 1.1616 0.7588 98.3499 0.7977 1.4177 0.6963 2.2597 0.7558 98.3555 0.7977 7 –
799732 0.8884 0.7997 51.9209 0.9114 1.0376 0.7494 1.1785 0.8915 53.9234 0.8714 7 –

Augmented P0 − RT0 −P1 scheme with adaptive refinement via θ1

638 4.5173 – 411.7368 – 7.9698 – 16.911 – 411.8387 – 6 1.0013
1308 3.0896 1.0582 339.4973 0.5374 4.2947 1.4880 7.5044 2.2634 339.5373 0.5378 6 1.0007
2418 1.8071 1.7456 168.9206 2.2721 3.2822 1.4399 4.2425 1.8564 168.9419 1.5720 6 1.0009
6199 0.8863 1.5134 80.7837 1.5670 1.5660 1.2590 2.4891 1.1328 80.7932 1.3670 5 1.0012

21914 0.5149 0.9601 34.9716 1.3260 0.9218 1.0924 1.2172 1.1302 34.9793 1.2259 5 1.0018
110799 0.2231 1.0321 14.6106 1.0771 0.3215 1.0573 0.5409 1.0008 14.6140 1.0771 6 1.0020
668283 0.0940 0.9614 5.8537 1.0180 0.1245 1.0072 0.2217 0.9927 5.8552 1.0179 6 1.0022

Augmented P0 − RT0 −P1 scheme with adaptive refinement via θ2

615 4.3007 – 402.5308 – 7.3464 – 16.1987 – 402.6208 – 6 0.6988
1243 2.9774 1.0451 320.5792 0.6597 4.3928 1.4616 8.6691 1.7768 330.6218 0.5599 6 0.7001
2614 1.6849 1.5318 165.1663 1.4669 1.8411 2.3396 4.0207 2.0671 165.1852 1.8669 6 0.7041
6529 0.8727 1.4373 76.9355 1.3692 0.8917 1.5838 2.3679 1.1567 76.9456 1.3691 6 0.7045

24145 0.4898 0.9832 33.0832 1.2906 0.4837 0.9553 1.1645 1.0852 33.0904 1.2904 6 0.7038
126045 0.2138 1.0030 13.3836 1.0949 0.2139 0.9873 0.5099 0.9994 13.3901 1.0949 5 0.7032
795283 0.0861 0.9968 5.3079 1.0043 0.0857 0.9921 0.2019 1.0057 5.3093 1.0043 6 0.7033

Table 5.2: Test 2: convergence history and Newton iteration count for the Pk −RTk −Pk+1 approxi-
mations of the Navier-Stokes problem with k = 0, and convergence of the postprocessed pressure field.
Values computed under uniform (top rows) and adaptive (bottom) refinement.

Test 1. Our first example concentrates on the accuracy of the augmented method when a manufac-
tured solution of (2.7) is given by the smooth functions

u =

(
− cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

)
, t = ∇u, σ̃ = µ(|∇u|)∇u− u⊗ u− (x2

1 − x2
2)I, σ = σ̃ − 1

8
(

∫
Ω

trσ̃)I,

defined on the square domain Ω = (−1, 1)2. The external load f and the boundary datum g are
determined from these solutions. The viscosity parameters are set as α0 = 3, α1 = 4. A sequence of
successively refined uniform triangulations of the domain is used to present the error history displayed
in Table 5.1. Discrete norms and the convergence rate between two consecutive meshes of size h and
ĥ are defined as

e(t) = ‖t− th‖0,Ω, e(σ) = ‖σ − σh‖div,Ω, e(u) = ‖u− uh‖1,Ω, r(·) = log(e(·)/ê(·))[log(h/ĥ)]−1.

The results reported in Table 5.1 are in accordance with the theoretical bounds established in Theo-
rem 2.3. In addition, we also compute the global a posteriori error indicators θ1, θ2 and measure their
reliability and efficiency with the efficiency index. For the two orders tested, these estimators remain
always bounded. The approximate solutions computed with k = 1 are displayed in Figure 5.1.
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Figure 5.2: Test 2: Convergence test against analytical solutions employing the lowest order family
k = 0. Individual contributions (left) and global errors (right) computed on a sequence of uniformly
and adaptively refined meshes according to the a posteriori error estimators θ1 and θ2.

Test 2. Our next numerical experiment is aimed at testing the features of adaptive mesh refinement
after the a posteriori error estimators θ1,θ2. Removing the unit square from the computational
domain considered in Test 1 we end up with an L-shaped domain Ω = (−1, 1)2 \ [0, 1]2. Let us further
consider the same exact velocity and velocity gradient as in Test 1, but now the volumetric part of
the Cauchy stress (the pressure field) assumes a different expression, yielding

σ̃ = µ(|∇u|)∇u− u⊗ u− (1− x1)
[
(x1 − 1/20)2 + (x2 − 1/20)2

]−1I.

Under uniform refinement, a hampering of the convergence rates is expected due to the stress singu-
larity near the origin (where the domain has a reentrant corner).

For Tests 2 and 3 we compute individual convergence rates as

r(·) := −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where N and N̂ denote the corresponding degrees of freedom at each triangulation, and we also define
the total error, its convergence rate, and the effectivity index associated to the scheme where the mesh
refinement has been applied according to a given global estimator θi, i ∈ {1, 2} as

e :=
{

[e(t)]2 + [e(σ)]2 + [e(u)]2
}1/2

, r := −2 log(e/ê)[log(N/N̂)]−1, eff(θi) := eθ−1
i .

We carry out a classical adaptive mesh refinement based on the equi-distribution of the local error
indicators: the diameter of each element in the new fine mesh, which is contained in a generic element

T on the initial coarse mesh, is proportional to the diameter of the old element times the ratio θ̃i
θi,T

,

where θ̃i stands for the average of θi over the old triangulation (cf. [38]).
Table 5.2 along with Figure 5.2 report on the error history under uniform and adaptive refinement.

Sub-optimal rates are observed in the first case (not only for the total error, but for each field),
whereas adaptive refinement according to either a posteriori error indicator yield optimal convergence
and stable effectivity indexes. Notice also that, even if the total errors have practically the same
rate of convergence and the same orders of magnitude for both error estimators, θ2 delivers lower
errors for the velocity. Approximate solutions computed with an augmented P0−RT0−P1 family are

24



Figure 5.3: Test 2: Approximate solutions computed with a lowest order family k = 0.

shown in Figure 5.3, and examples of some adapted meshes generated using θ1 and θ2 are collected
in Figure 5.4. We can observe a clear clustering of elements near the reentrant corner (where pressure
and stresses exhibit high gradients), and also in the zones where the pseudo-stress and the viscosity
show sharp profiles.

Test 3. To conclude, we replicate Test 2 in a three-dimensional setting. This time the manufactured
exact solutions adopt the form

u =

 cos(x1) sin(x2) sin(x3)
sin(x1) cos(x2) sin(x3)
−2 sin(x1) sin(x2) cos(x3)

 , t = ∇u,

σ̃ = µ(|∇u|)∇u− u⊗ u− (1− x2
1 − x2

2 − x2
3)
[
(x1 − 1/20)2 + (x2 − 1/20)2 + (x3 − 1.01)2

]−1I,

and the domain consists on the polygon Ω =

(
(−1, 1)2 \ [0, 1]2

)
× (0, 1), so σ = σ̃ − 1

9(
∫

Ω trσ̃)I. All

remaining parameters and functions are taken as in the previous test. Again, from the computations we
observe a disturbed convergence under uniform refinement, and we confirm the recovering of optimal
convergence rates when using adaptive refinement guided by the a posteriori error estimator θ1 (see
a summary in Table 5.3). Resulting approximations after five mesh refinement steps are collected in
Figure 5.5, whereas snapshots of intermediate meshes are shown in Figure 5.6.
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