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Abstract

In this paper we apply proof mining techniques to compute, in the
setting of CAT(κ) spaces (with κ > 0), effective and highly uniform rates
of asymptotic regularity and metastability for a nonlinear generalization
of the ergodic averages, known as the Halpern iteration. In this way, we
obtain a uniform quantitative version of a nonlinear extension of the clas-
sical von Neumann mean ergodic theorem.
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1 Introduction

In this paper we apply methods from mathematical logic to obtain a uniform
quantitative version of a generalization of the classical von Neumann mean
ergodic theorem, giving effective rates of metastability for the so-called Halpern
iteration, a nonlinear generalization of the ergodic averages. Our results are a
contribution to the line of research known as proof mining, initiated in the 50’s
by Kreisel under the name of unwinding of proofs and extensively developed
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by Kohlenbach, beginning with the 90’s. The idea of this research direction is
to extract new, effective information from mathematical proofs making use of
ineffective principles. Hence, it can be related to Terence Tao’s proposal [32] of
hard analysis, based on finitary arguments, instead of the infinitary ones from
soft analysis. Proof mining has already been applied in approximation theory,
nonlinear analysis, ergodic theory, topological dynamics and Ramsey theory.
Related to these applications, general logical metatheorems were proved, having
the following form: if certain statements satisfying general logical conditions
(e.g. ∀∃-sentences) are proved in some formal system associated to an abstract
space, then uniform finitary versions of these statements are guaranteed to hold
and, furthermore, one can transform the initial proof into a quantitative one for
the finitary version and, in this way, extract effective uniform bounds. We refer
to Kohlenbach’s book [11] for an introduction to proof mining.

Our theorems guarantee under general logical conditions such strong uni-
form versions of non-uniform existence statements. Moreover, they provide
algorithms for actually extracting effective uniform bounds and transforming
the original proof into one for the stronger uniformity result.

Let us recall the Hilbert space formulation of the celebrated von Neumann
mean ergodic theorem.

Theorem 1.1. Let H be a Hilbert space and U : H → H be a unitary operator.
Then for all x ∈ H, the Cesàro mean xn = 1

n

∑n−1
i=0 U

ix converges strongly to
the projection of x onto the set of fixed points of U .

If X = (X,B, µ, T ) is a probability measure-preserving system, H = L2(X ) and
U = UT : L2(X )→ L2(X ), f 7→ f ◦T is the induced operator, the Cesàro mean

starting with f ∈ L2(X ) becomes the ergodic average Anf = 1
n

∑n−1
i=0 f ◦ T i.

The convergence of the ergodic averages can be arbitrarily slow, as shown by
Krengel [22]. Furthermore, one cannot expect, in general, to get effective rates
of convergence for the ergodic averages. Avigad, Gerhardy and Towsner [1]
applied methods of computable analysis on Hilbert spaces to obtain an example
of a computable Lebesgue measure-preserving transformation T on [0, 1] and
a computable characteristic function χA such that the limit of the sequence
AnχA is not a computable element of L2([0, 1]), which implies that there is no
computable bound on the rate of convergence of (AnχA).

However, one can consider the following equivalent reformulation of the
Cauchy property of (xn):

∀k ∈ N ∀g : N→ N∃N∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < 2−k

)
. (1)

This is known in logic as Kreisel’s [20, 21] no-counterexample interpretation of
the Cauchy property and it was popularized in the last years under the name
of metastability by Tao [32, 33]. In [33], Tao generalized the mean ergodic the-
orem for multiple commuting measure-preserving transformations, by deducing
it from a finitary norm convergence result, expressed in terms of metastability.
Recently, Walsh [34] used again metastability to show the L2-convergence of
multiple polynomial ergodic averages arising from nilpotent groups of measure-
preserving transformations.
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Logical metatheorems developed by Kohlenbach [13] show that, from wide
classes of mathematical proofs one can extract effective bounds on ∃N in (1).
Thus, taking ε > 0 instead of 2−k, we define a rate of metastability as a func-
tional Φ : (0,∞)× NN → N satisfying

∀ε > 0 ∀g : N→ N∃N ≤ Φ(ε, g)∀i, j ∈ [N,N + g(N)] (‖xi − xj‖ < ε) . (2)

Thus, a natural direction of research is to obtain finitary, quantitative ver-
sions of convergence statements for sequences (xn) by providing effective rates
of metastability. A qualitative feature of these quantitative versions is that the
rates of metastability are highly uniform and independent or have only a weak
dependence on the input data. Furthermore, these quantitative versions can be
thereafter generalized to new structures, obtaining as an immediate consequence
the generalization of the initial (non-quantitative) Cauchy statement to these
structures. The main quantitative result of this paper is obtained in this way.
We refer to [15] for another example in the context of the asymptotic behaviour
of nonlinear iterations.

Avigad, Gerhardy and Towsner [1] computed for the first time explicit and
uniform rates of metastability for the ergodic averages, by a logical analysis of
Riesz’ proof of the mean ergodic theorem. Their result was generalized, with
better bounds, to uniformly convex Banach spaces by Kohlenbach and the first
author [14], applying proof mining methods, but this time to a proof of Garrett
Birkhoff [3]. In fact, Avigad and Rute [2] realized that the computations in
[16] allow one to obtain an effective bound on the number of ε-fluctuations (i.e.
pairs (i, j) with i > j and ‖xi−xj‖ > ε). A very nice discussion on the different
types of quantitative information (metastability, effective learnability, bounds
on the number of oscillations) that can be extracted from convergence proofs is
done in a recent paper by Kohlenbach and Safarik [19].

In the important paper [35], Wittmann obtained the following nonlinear
generalization of the mean ergodic theorem.

Theorem 1.2. [35] Let C be a bounded closed convex subset of a Hilbert space
X, T : C → C a nonexpansive mapping and (λn)n≥1 a sequence in [0, 1]. For
any u ∈ C, define

x0 = u, xn+1 = λn+1u+ (1− λn+1)Txn. (3)

Assume that (λn) satisfies

lim
n→∞

λn = 0,

∞∑
n=1

|λn+1 − λn| <∞ and

∞∑
n=1

λn =∞ (4)

Then for any u ∈ C, (xn) converges to the projection PFix(T )u of u onto the
(nonempty) set of fixed points Fix(T ).

One can easily see that (xn) coincides with the Cesàro mean when T is linear

and λn =
1

n+ 1
. The iteration (xn) is known as the Halpern iteration, as it was
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introduced by Halpern [9] for the special case u = 0. We refer to [17, Section 3]
for a discussion on results in the literature on Halpern iterations, obtained by
considering different conditions on (λn) or more general spaces.

Kohlenbach’s logical metatheorem for Hilbert spaces [13] guarantees also in
the case of Wittmann’s theorem that from its proof one can extract a rate of
metastability Φ of (xn), uniform in the following sense: it depends only on ε
and g, an upper bound on the diameter of C and moduli on (λn), given by the
quantitative version of (4). Thus, Φ is independent with respect to the starting
point u of the iteration, the nonexpansive mapping T , the Hilbert space X and
depends on C only via its diameter. Kohlenbach [12] computed such a uniform
rate of metastability by a logical analysis of Wittmann’s proof.

Furthermore, Kohlenbach and the first author [16, 17, 18] extracted rates
of metastability from the proofs of two generalizations of Wittmann’s theorem
given by Shioji and Takahashi [31] for a class of Banach spaces with a uniformly
Gâteaux differentiable norm and by Saejung [29] for CAT(0) spaces. Both Sae-
jung’s and Shioji-Takahashi’s proofs use Banach limits (whose existence requires
the axiom of choice), inspired by Lorentz’ seminal paper [25], introducing al-
most convergence. Our quantitative results were obtained by developing in [17]
a method to eliminate the use of Banach limits from these proofs and get, in this
way, elementary proofs to which general logical metatheorems for CAT(0) spaces
[13] and for uniformly smooth Banach spaces [16] can be applied to guarantee
the extractability of effective bounds. We point out that the use of Lorentz’
almost convergence (and hence, Banach limits) in nonlinear ergodic theory was
introduced by Reich [27], while Bruck and Reich [7] applied Banach limits for
the first time to the study of Halpern iterations (see also [8, Sections 12, 14]).

Geodesic spaces provide a suitable setting for extending the notion of sec-
tional curvature from Riemannian manifolds. An important class of geodesic
spaces of bounded curvature are CAT(κ) spaces, where geodesic triangles are in
some sense “thin”. Such spaces enjoy nice properties inherited from the com-
parison with the model spaces and proved to be relevant in various problems
and aspects in geometry (see [4]).

Recently, Pia̧tek [26] extended Wittmann’s result to the context of CAT(κ)
spaces with κ > 0. In this paper we extract an effective and uniform rate of
metastability for this generalization of Wittmann’s theorem.

Our main quantitative result (Theorem 3.4) is obtained by generalizing to
CAT(κ) spaces the quantitative proof for CAT(0) spaces from [17]. Thus, we
apply again the general method developed in [17], together with the remark
that, in fact, our logical analysis of Saejung’s proof for CAT(0) spaces results
in the elimination of any contribution of Banach limits, hence even the fini-
tary lemmas proved in [17, Section 8] are no longer needed (see [18]). Despite
this simplification, the proofs we give in this paper are much more involved,
since we work in the setting of CAT(κ) spaces. However, we still get a rate of
metastability having a form similar to the one described in [19].

As the first step in the convergence proof is to obtain the asymptotic regu-
larity, our first important result (Proposition 3.2) consists in the computation
of a uniform rate of asymptotic regularity.

4



For the rest of the paper N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}. Furthermore,
we consider CAT(κ) spaces with κ > 0.

2 CAT(κ) spaces

Let (X, d) be a metric space. A geodesic path from x to y is a mapping
c : [0, l] ⊆ R → X such that c(0) = x, c(l) = y and d (c(t), c(t′)) = |t− t′| for
every t, t′ ∈ [0, l]. The image c ([0, l]) of c forms a geodesic segment which joins
x and y. Note that a geodesic segment from x to y is not necessarily unique.
If no confusion arises, we use [x, y] to denote a geodesic segment joining x and
y. (X, d) is called a (uniquely) geodesic space if every two points x, y ∈ X can
be joined by a (unique) geodesic path. A point z ∈ X belongs to the geodesic
segment [x, y] if and only if there exists t ∈ [0, 1] such that d(z, x) = td(x, y) and
d(z, y) = (1− t)d(x, y), and we write z = (1− t)x+ ty for simplicity. This, too,
may not be unique. A subset C of X is convex if C contains any geodesic seg-
ment that joins every two points in C. A geodesic triangle ∆(x1, x2, x3) consists
of three points x1, x2 and x3 in X (its vertices) and three geodesic segments
corresponding to each pair of points (its edges).

CAT(κ) spaces are defined in terms of comparisons with the model spaces
Mn
κ . We focus here on CAT(κ) spaces with κ > 0. We give below the precise

definition and briefly describe some of their properties that play an essential
role in this work. For a detailed discussion on geodesic metric spaces and, in
particular, on CAT(κ) spaces, one may check, for example, [4].

The n-dimensional sphere Sn is the set {x ∈ Rn+1 : (x | x) = 1}, where (· | ·)
stands for the Euclidean scalar product. Consider the mapping d : Sn×Sn → R
by assigning to each (x, y) ∈ Sn × Sn the unique number d(x, y) ∈ [0, π] such
that cos d(x, y) = (x | y). Then, (Sn, d) is a metric space called the spherical
space. This space is also geodesic and, if d(x, y) < π, then there exists a unique
geodesic segment joining x and y. Moreover, open (resp. closed) balls of radius
≤ π/2 (resp. < π/2) are convex. The spherical law of cosines states that in a
spherical triangle with vertices x, y, z ∈ Sn and γ the spherical angle between
the geodesic segments [x, y] and [x, z] we have

cos d(y, z) = cos d(x, y) cos d(x, z) + sin d(x, y) sin d(x, z) cos γ.

Let κ > 0 and n ∈ N. The classical model spaces Mn
κ are obtained from

the spherical space Sn by multiplying the spherical distance with 1/
√
κ. These

spaces inherit the geometrical properties from the spherical space. Thus, there is
a unique geodesic path joining x, y ∈Mn

κ if and only if d(x, y) < π/
√
κ. Further-

more, closed balls of radius < π/(2
√
κ) are convex and we have a counterpart

of the spherical law of cosines. We denote the diameter of Mn
κ by Dκ = π/

√
κ.

For a geodesic triangle ∆=∆(x1, x2, x3), a κ-comparison triangle is a triangle
∆̄ = ∆(x̄1, x̄2, x̄3) in M2

κ such that d(xi, xj) = dM2
κ
(x̄i, x̄j) for i, j ∈ {1, 2, 3}.

For κ fixed, κ-comparison triangles of geodesic triangles (having perimeter less
than 2Dκ) always exist and are unique up to isometry.
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A geodesic triangle ∆ of perimeter less than 2Dκ satisfies the CAT(κ) in-
equality if for every κ-comparison triangle ∆̄ of ∆ and for every x, y ∈ ∆ we
have

d(x, y) ≤ dM2
κ
(x̄, ȳ),

where x̄, ȳ ∈ ∆̄ are the comparison points of x and y, i.e., if x = (1− t)xi + txj
then x̄ = (1− t)x̄i + tx̄j for i, j ∈ {1, 2, 3}.

A metric space is called a CAT(κ) space if every two points at distance
less than Dκ can be joined by a geodesic segment and every geodesic triangle
having perimeter less than 2Dκ satisfies the CAT(κ) inequality. CAT(0) spaces
are defined in a similar way considering the model space M2

0 to be the Euclidean
plane of infinite diameter.

3 Main results

Let (X, d) be a geodesic space, C ⊆ X a convex subset, T : C → C a nonex-
pansive mapping and (λn) a sequence in [0, 1]. The Halpern iteration starting
at u ∈ C can be defined by

x0 = u, xn+1 = λn+1u+ (1− λn+1)Txn. (5)

The main purpose of our work is to prove a quantitative version of the
following generalization of Wittmann’s theorem to CAT(κ) spaces, obtained
recently by Pia̧tek [26].

Theorem 3.1. Let X be a complete CAT(κ) space, C ⊆ X a bounded closed

convex subset with diameter dC <
Dκ

2
and T : C → C a nonexpansive mapping.

Assume that (λn) satisfies (4). Then for any u ∈ C, the iteration (xn) starting
from u converges to the fixed point of T which is nearest to u.

A first important result of this paper is the extraction of an effective rate of
asymptotic regularity for the Halpern iteration, that is, a rate of the convergence
of (d(xn, Txn)) towards 0. In order to state this result, we need to make the
hypotheses (4) on (λn) quantitative.

For brevity, we say that the sequence (λn) and the functions α : (0,∞) →
Z+, γ : (0,∞) → Z+ and θ : Z+ → Z+ satisfy (*) if the following conditions
hold:

(i) lim
n→∞

λn+1 = 0 with rate of convergence α, i.e.,

λn+1 ≤ ε, for all ε > 0 and all n ≥ α(ε);

(ii)

∞∑
n=1

|λn+1 − λn| converges with Cauchy modulus γ, i.e.,

γ(ε)+n∑
i=γ(ε)+1

|λi+1 − λi| ≤ ε, for all ε > 0 and all n ∈ Z+;
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(iii)

∞∑
n=1

λn+1 =∞ with rate of divergence θ, i.e.,

θ(n)∑
k=1

λk+1 ≥ n, for all n ∈ Z+.

Proposition 3.2. Let X be a CAT(κ) space, C ⊆ X a bounded convex subset,
T : C → C nonexpansive and M < Dκ

2 an upper bound on the finite diameter
dC of C. Assume furthermore that (λn), α, γ, θ satisfy (*).

Then lim
n→∞

d(xn, xn+1) = 0 with rate of convergence Φ̃ given by

Φ̃(ε, κ,M, γ, θ) = θ

(⌈
1

cos(M
√
κ)

⌉(
γ
( ε

2M

)
+ max

{⌈
ln

(
2M

ε

)⌉
, 1

}))
(6)

and lim
n→∞

d(xn, Txn) = 0 with rate of convergence Φ given by

Φ(ε, κ,M, γ, θ, α) = max
{

Φ̃
(ε

2
, κ,M, γ, θ

)
, α
( ε

2M

)}
. (7)

Proof. See Section 5.

If λn =
1

n+ 1
one can easily obtain rates α, γ, θ:

α(ε) = γ(ε) =

⌈
1

ε

⌉
, θ(n) = exp ((n+ 1) ln 4) . (8)

As an immediate consequence we get the following:

Corollary 3.3. Assume that λn =
1

n+ 1
, n ≥ 1. Then

lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn, Txn) = 0

with a common rate of convergence

Ψ(ε, κ,M) = exp

(⌈
1

cos(M
√
κ)

⌉⌈
8M

ε
+ 2

⌉
ln 4

)
, (9)

which is exponential in
1

ε
.

We point out that exponential rates of asymptotic regularity for the Halpern
iteration were obtained by the first author for Banach spaces in [23] and for the
so-called W -hyperbolic spaces in [24]. Kohlenbach [12] remarked that the proof
in [23] can be simplified and, as a consequence, one gets quadratic rates in
Banach spaces. For CAT(0) spaces, Kohlenbach and the first author provide in
[17] a quantitative asymptotic regularity result for general (λn) by considering
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instead of

∞∑
n=1

λn+1 = ∞ the equivalent condition

∞∏
n=1

(1 − λn+1) = 0. As a

corollary, one obtains again quadratic rates of asymptotic regularity. However,
the method used in [17] for CAT(0) spaces does not hold for CAT(κ) spaces.

The main result of the paper is the following quantitative version of Theorem
3.1, which provides an explicit uniform rate of metastability for the Halpern iter-
ation in CAT(κ) spaces. To get such a result we apply again the general method
developed by Kohlenbach and the first author in [17] for the Halpern iteration
in CAT(0) spaces and applied again in [16] for uniformly smooth Banach spaces
as well as in [30] for a modified Halpern iteration in CAT(0) spaces. As noticed
in [18], in the end we do not need the finitary Lemmas 8.3 and 8.4 from [17],
since, as a consequence of the proof mining methods applied to Saejung’s proofs,
one gets a proof where no contributions of Banach limits can be traced.

Theorem 3.4. Let X be a complete CAT(κ) space, C ⊆ X a bounded closed
convex subset, T : C → C nonexpansive and M < Dκ

2 an upper bound on the
finite diameter dC of C. Assume furthermore that (λn), α, γ, θ satisfy (*). Then
for all ε ∈ (0, 2) and g : N→ N,

∃N ≤ Σ(ε, g, κ,M, θ, α, γ) ∀m,n ∈ [N,N + g(N)] (d(xn, xm) ≤ ε),

with N = ΘK0

(
sin2 ε

√
κ

4

)
for some

⌈
1

ε0

⌉
≤ K0 ≤ f̃∗

Bε,κ,M
(0) +

⌈
1

ε0

⌉
and

Σ(ε, g, κ,M, θ, α, γ) = Aε,κ,M,θ,α,γ

(
f̃∗
Bε,κ,M

(0) +

⌈
1

ε0

⌉)
,

where the above constants and functionals are specified in Table 1.

Proof. We refer to Section 7 for the proof. We point here only the main steps:

(i) extract a rate of asymptotic regularity (this is done in Proposition 3.2);

(ii) obtain a quantitative Browder theorem (see Proposition 6.2);

(iii) define in an appropriate way an approximate fixed point sequence γtn (see
(25));

(iv) apply Lemma 7.3, a quantitative lemma on sequences of real numbers.

Hence, we compute a rate of metastability which is uniform in the starting
point x0 of the iteration and the nonexpansive mapping T . Moreover, it depends
on the space X and the set C only via κ and the diameter dC of C. The
dependence on (λn) is through the rates α, γ, θ, which can be computed very

easily for the natural choice λn =
1

n+ 1
.

Furthermore, as in [16, 17] as well as in other case studies in proof mining,
the rate of metastability has the form described by Kohlenbach and Safarik [19].

8



Bε,κ,M =

⌈
M
√
κ tan(M

√
κ)

1− cos(ε0)

⌉
, ε0 =

cos(M
√
κ)

36
sin2 ε

√
κ

4
,

Aε,κ,M,θ,α,γ(n) = θ+

(⌈
1

cos(M
√
κ)

⌉
(Γ(n)− 1 + max {S, 1})

)
+ 1,

Γ(n) = max

{
χ∗i

(
1

3
sin2 ε

√
κ

4

)
:

⌈
1

ε0

⌉
≤ i ≤ n

}
, θ+(n) = max

1≤i≤n
θ(i),

S =

⌈
ln

(
3 sin2 M

√
κ

4

sin2 ε
√
κ

4

)⌉
, χ∗i (ε) = χi

(ε
2

cos(M
√
κ)
)
, Li =

cos(M
√
κ)ε

4M
√
κ(i+ 1)

,

χi(ε) = max

{
θ

(⌈
1

cos(M
√
κ)

⌉(
γ(Li) + max

{⌈
ln

(
1

Li

)⌉
, 1

}))
, α(2Li)

}
,

Θi(ε) = θ

(⌈
1

cos(M
√
κ)

⌉(
χ∗i

(ε
3

)
− 1 + max {T, 1}

))
+ 1,

T =

⌈
ln

(
3

ε
sin2 M

√
κ

2

)⌉
, ∆∗i (ε, g) =

ε

3Θi(ε)− 3χ∗i (
ε
3 ) + 3g (Θi(ε))

,

f(i) = max

{⌈
M
√
κ

∆∗i (sin
2 ε
√
κ

4 , g)

⌉
, i

}
− i, f∗(i) = f

(
i+

⌈
1

ε0

⌉)
+

⌈
1

ε0

⌉

and f̃∗(i) = i+ f∗(i).

Table 1

Thus, g does not appear at all in the definition of the mappings Aε,κ,M,θ,α,γ

and Bε,κ,M , and f̃∗(i) only uses g on one argument, Θi(sin
2(ε
√
κ/4)), which

itself does not depend on g. We refer to [19] for a logical explanation of this
phenomenon in terms of effective learnability and bounds on the number of
mind changes.

If λn =
1

n+ 1
, with α, γ, θ given by (8), one can easily see that (χ∗i )i is

nondecreasing. As a consequence we obtain the following:

Corollary 3.5. Assume that λn =
1

n+ 1
for all n ≥ 1. Then for all ε ∈ (0, 2)

and g : N→ N,

∃N ≤ Σ(ε, g, κ,M) ∀m,n ∈ [N,N + g(N)] (d(xn, xm) ≤ ε),

9



where

Σ(ε, g, κ,M) = Aε,κ,M

(
f̃∗
Bε,κ,M

(0) +

⌈
1

ε0

⌉)
,

with

Aε,κ,M (n) = exp

((⌈
1

cos(M
√
κ)

⌉
(Γ(n)− 1 + max {S, 1}) + 1

)
ln 4

)
+ 1,

Γ(n) = χ∗n

(
1

3
sin2 ε

√
κ

4

)
,

χi(ε) = exp

((⌈
1

cos(M
√
κ)

⌉(⌈
1

Li

⌉
+ max

{⌈
ln

(
1

Li

)⌉
, 1

})
+ 1

)
ln 4

)
,

Θi(ε) = exp

((⌈
1

cos(M
√
κ)

⌉(
χ∗i

(ε
3

)
− 1 + max {T, 1}

)
+ 1

)
ln 4

)
+ 1

and the other constants and functionals are defined as in Theorem 3.4.

4 Some technical lemmas

Throughout the paper, we shall use the following well-known facts:

(i) x ≥ sinx for all x ≥ 0.

(ii) sin(tx) ≥ t sinx for all x ∈ [0, π] and all t ∈ [0, 1].

(iii) The function f : (0, π)→ (0, 1), f(x) =
sinx

x
is decreasing.

(iv) Given t ∈ [0, 1], the mapping f : (0, π) → (0,∞), f(x) =
sin(tx)

sinx
is in-

creasing.

The following very useful result is proved in [26] for κ = 1. The proof for
general κ > 0 is an immediate rescaling.

Lemma 4.1. Let ∆(x, y, z) be a triangle in X and M ≤ Dκ
2 be an upper bound

on the lengths of the sides of ∆(x, y, z). Then for all t ∈ (0, 1),

d((1− t)x+ tz, (1− t)y + tz) ≤
sin
(
(1− t)M

√
κ
)

sin
(
M
√
κ
) d(x, y) ≤ d(x, y).

Let X be a CAT(κ) space. The next results gather some useful properties
which will be needed in the subsequent sections.

Lemma 4.2. Let ∆(x, y, z) be a triangle in X with perimeter < 2Dκ. Let
w be a point on the segment joining x and z. Suppose that cos(d(y, z)

√
κ) ≥

cos(d(y, w)
√
κ) cos(d(w, z)

√
κ). Then d(x,w) ≤ d(x, y). Moreover, if ∆(x̄, ȳ, z̄)

is a κ-comparison triangle for ∆(x, y, z), then ∠w̄(ȳ, x̄) ≥ π
2 .
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Proof. Let ∆(x̄, ȳ, z̄) be a κ-comparison triangle for ∆(x, y, z) and α = ∠w̄(ȳ, z̄).

Suppose that α >
π

2
. Then

cos(d(y, z)
√
κ) = cos(d(ȳ, w̄)

√
κ) cos(d(w̄, z̄)

√
κ)

+ sin(d(ȳ, w̄)
√
κ) sin(d(w̄, z̄)

√
κ) cosα

< cos(d(ȳ, w̄)
√
κ) cos(d(w̄, z̄)

√
κ)

≤ cos(d(y, w)
√
κ) cos(d(w, z)

√
κ),

which contradicts the hypothesis. Thus, α ≤ π
2 and β = ∠w̄(ȳ, x̄) ≥ π

2
. It

follows that

cos(d(x̄, ȳ)
√
κ) = cos(d(x̄, w̄)

√
κ) cos(d(w̄, ȳ)

√
κ)

+ sin(d(x̄, w̄)
√
κ) sin(d(w̄, ȳ)

√
κ) cosβ

≤ cos(d(x̄, w̄)
√
κ),

hence d(x̄, ȳ) ≥ d(x̄, w̄). Thus, d(x,w) ≤ d(x, y).

Assume C ⊆ X is bounded with M < Dκ
2 an upper bound on its diameter.

In the sequel x, y, z are pairwise distinct points of C and w ∈ [x, y], v ∈ [x, z].
We shall use the following notation:

S1 = sin(d(x,w)
√
κ) sin(d(x, v)

√
κ), S2 = sin(d(x, y)

√
κ) sin(d(x, z)

√
κ),

S3 = sin(d(x,w)
√
κ) sin(d(x, z)

√
κ), S4 = sin(d(y, w)

√
κ) sin(d(x, z)

√
κ),

S5 = sin(d(x,w)
√
κ) sin(d(z, v)

√
κ),

C1 = cos(d(x,w)
√
κ) cos(d(x, v)

√
κ), C2 = cos(d(x, y)

√
κ) cos(d(x, z)

√
κ).

Lemma 4.3.

S2 − S3 ≤ S4 cos(d(x,w)
√
κ), (10)

S3 − S1 ≤ S5 cos(d(x, v)
√
κ), (11)

S2C1 − S1C2 = S4 cos(d(x, v)
√
κ) + S5 cos(d(x, y)

√
κ), (12)

S2 − S3 − S4 cos(d(x, v)
√
κ) ≤ 2S4

(
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2

)
, (13)

S3 − S1 − S5 cos(d(x, y)
√
κ) ≤ 2S5

(
sin2 d(x, y)

√
κ

2
− sin2 d(x, v)

√
κ

2

)
. (14)

11



Proof.

S2 − S3 =
(

sin(d(x, y)
√
κ)− sin(d(x,w)

√
κ)
)

sin(d(x, z)
√
κ)

= 2 sin
(d(x, y)− d(x,w))

√
κ

2
cos

(d(x, y) + d(x,w))
√
κ

2
sin(d(x, z)

√
κ)

= 2 sin
d(y, w)

√
κ

2
cos

((
d(x,w) +

d(y, w)

2

)√
κ

)
sin(d(x, z)

√
κ)

≤ 2 sin
d(w, y)

√
κ

2
cos(d(x,w)

√
κ) cos

d(w, y)
√
κ

2
sin(d(x, z)

√
κ)

= sin(d(w, y)
√
κ) cos(d(x,w)

√
κ) sin(d(x, z)

√
κ) = S4 cos(d(x,w)

√
κ).

Similarly, one gets that S3 − S1 ≤ S5 cos(d(x, v)
√
κ).

S2C1 − S1C2 = sin(d(x, y)
√
κ) sin(d(x, z)

√
κ) cos(d(x,w)

√
κ) cos(d(x, v)

√
κ)

− sin(d(x,w)
√
κ) sin(d(x, v)

√
κ) cos(d(x, y)

√
κ) cos(d(x, z)

√
κ)

= sin(d(x, z)
√
κ) cos(d(x, v)

√
κ) sin

(
(d(x, y)− d(x,w))

√
κ
)

+ sin(d(x,w)
√
κ) cos(d(x, y)

√
κ) sin

(
(d(x, z)− d(x, v))

√
κ
)

= sin(d(x, z)
√
κ) cos(d(x, v)

√
κ) sin(d(y, w)

√
κ)

+ sin(d(x,w)
√
κ) cos(d(x, y)

√
κ) sin(d(z, v)

√
κ)

= S4 cos(d(x, v)
√
κ) + S5 cos(d(x, y)

√
κ).

Items (13) and (14) follow easily from (10) and (11), respectively.

Proposition 4.4.

sin2 d(w, v)
√
κ

2
≤ S1

S2
sin2 d(y, z)

√
κ

2
+

1

2
(1− C1)− S1

2S2
(1− C2). (15)

Proof. Let ∆(x̄, ȳ, z̄) be a κ-comparison triangle for ∆(x, y, z). Denote α =
∠x̄(ȳ, z̄) = ∠x̄(w̄, v̄). Using the cosine law we have

cos(d(w̄, v̄)
√
κ) = cos(d(x̄, w̄)

√
κ) cos(d(x̄, v̄)

√
κ)

+ sin(d(x̄, w̄)
√
κ) sin(d(x̄, v̄)

√
κ) cosα

and

cos(d(ȳ, z̄)
√
κ) = cos(d(x̄, ȳ)

√
κ) cos(d(x̄, z̄)

√
κ)

+ sin(d(x̄, ȳ)
√
κ) sin(d(x̄, z̄)

√
κ) cosα.

Thus,

cos(d(w̄, v̄)
√
κ) = cos(d(x̄, w̄)

√
κ) cos(d(x̄, v̄)

√
κ)

+
sin(d(x̄, w̄)

√
κ) sin(d(x̄, v̄)

√
κ)

sin(d(x̄, ȳ)
√
κ) sin(d(x̄, z̄)

√
κ)

(
cos(d(ȳ, z̄)

√
κ)

− cos(d(x̄, ȳ)
√
κ) cos(d(x̄, z̄)

√
κ)

)
=

S1

S2
cos(d(y, z)

√
κ) + C1 −

S1

S2
C2.

12



It follows that

1− cos(d(w, v)
√
κ)

2
≤ 1

2
+
S1

S2

(
1− cos(d(y, z)

√
κ)

2
− 1

2

)
− 1

2
C1 +

S1

2S2
C2.

Hence,

sin2 d(w, v)
√
κ

2
≤ S1

S2
sin2 d(y, z)

√
κ

2
+

1

2
(1− C1)− S1

2S2
(1− C2).

Proposition 4.5. (i)

sin2 d(w, v)
√
κ

2
≤ sin(d(x,w)

√
κ)

sin(d(x, y)
√
κ)

sin2 d(y, z)
√
κ

2

+
sin(d(y, w)

√
κ)

sin(d(x, y)
√
κ)

(
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2

)
+

sin(d(z, v)
√
κ)

sin(d(x, z)
√
κ)

sin2 d(x, y)
√
κ

2
.

(ii) Assume that v = sx+ (1− s)z, s ∈ [0, 1] and w = rx+ (1− r)y, r ∈ [0, 1].
Then,

sin2 d(w, v)
√
κ

2
≤ sin((1− r)M

√
κ)

sin(M
√
κ)

sin2 d(y, z)
√
κ

2

+
sin(rM

√
κ)

sin(M
√
κ)

max

{
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2
, 0

}
+

sin(sM
√
κ)

sin(M
√
κ)

sin2 M
√
κ

2
.

Proof. (i) We apply Proposition 4.4 to get that

sin2 d(w, v)
√
κ

2
≤ S1

S2
sin2 d(y, z)

√
κ

2
+

1

2
(1− C1)− S1

2S2
(1− C2)

=
S1

S2
sin2 d(y, z)

√
κ

2

+
S2 − S1 − S4 cos(d(x, v)

√
κ)− S5 cos(d(x, y)

√
κ)

2S2

by (12)

≤ S1

S2
sin2 d(y, z)

√
κ

2
+
S4

S2

(
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2

)
+
S5

S2
sin2 d(x, y)

√
κ

2

by (13) and (14),

which yields the desired inequality.
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(ii) We have that

sin2 d(w, v)
√
κ

2
≤ sin((1− r)d(x, y)

√
κ)

sin(d(x, y)
√
κ)

sin2 d(y, z)
√
κ

2

+
sin(rd(x, y)

√
κ)

sin(d(x, y)
√
κ)

max

{
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2
, 0

}
+

sin(sd(x, z)
√
κ)

sin(d(x, z)
√
κ)

sin2 d(x, y)
√
κ

2

≤ sin((1− r)M
√
κ)

sin(M
√
κ)

sin2 d(y, z)
√
κ

2

+
sin(rM

√
κ)

sin(M
√
κ)

max

{
sin2 d(x, v)

√
κ

2
− sin2 d(x,w)

√
κ

2
, 0

}
+

sin(sM
√
κ)

sin(M
√
κ)

sin2 M
√
κ

2
.

For the rest of the section, we assume that v = sx+ (1− s)z, s ∈ (0, 1). We
use the additional notation

L1 =
S1

S3
=

sin(d(x, v)
√
κ)

sin(d(x, z)
√
κ)
, L2 =

S5

S3
=

sin(d(v, z)
√
κ)

sin(d(x, z)
√
κ)
.

Lemma 4.6.

0 < 1− L1 ≤ L2 cos(d(x, v)
√
κ), (16)

L1

1− L1
≤ 1

s cos(M
√
κ)
. (17)

Proof.

(1− L1) sin(d(x, z)
√
κ) = sin(d(x, z)

√
κ)− sin(d(x, v)

√
κ)

= 2 sin
(d(x, z)− d(x, v))

√
κ

2
cos

(d(x, z) + d(x, v))
√
κ

2

≤ 2 sin
d(z, v)

√
κ

2
cos

d(z, v)
√
κ

2
cos(d(x, v)

√
κ)

= sin(d(z, v)
√
κ) cos(d(x, v)

√
κ).

Thus, 1− L1 ≤ L2 cos(d(x, v)
√
κ).

L1

1− L1
=

sin(d(x, v)
√
κ)

sin(d(x, z)
√
κ)− sin(d(x, v)

√
κ)
≤ sin(d(x, z)

√
κ)

sin(d(x, z)
√
κ)− sin(d(x, v)

√
κ)

=
sin(d(x, z)

√
κ)

2 sin d(z,v)
√
κ

2 cos
((
d(x, z)− d(z,v)

2

)√
κ
)

≤ sin(d(x, z)
√
κ)

2 sin sd(x,z)
√
κ

2 cos(d(x, z)
√
κ)
≤ 1

s cos(M
√
κ)
.
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Proposition 4.7. (i)

sin2 d(y, v)
√
κ

2
≤ L1 sin2 d(y, z)

√
κ

2
+

1− L1

2
− 1

2
cos(d(x, y)

√
κ)L2

= L2 sin2 d(x, y)
√
κ

2
+

1

2
(1− L1 − L2) + L1 sin2 d(y, z)

√
κ

2
.

(ii) Let q ∈ C be such that d(q, z) ≤ d(y, v). Assume that

sin2 d(x, y)
√
κ

2
− sin2 d(x, v)

√
κ

2
≤ 0. (18)

Then,

sin2 d(y, v)
√
κ

2
≤ sin2 d(x, y)

√
κ

2
− sin2 d(x, v)

√
κ

2

+
1

s cos(M
√
κ)

(
sin2 d(y, q)

√
κ

2
+ sin

d(y, q)
√
κ

2

)
.

Proof. (i) We apply Proposition 4.4 with w = y to get that

sin2 d(y, v)
√
κ

2
≤ L1 sin2 d(y, z)

√
κ

2
+

1

2
(1− cos(d(x, y)

√
κ) cos(d(x, v)

√
κ))

− 1

2
L1(1− cos(d(x, y)

√
κ) cos(d(x, z)

√
κ))

= L1 sin2 d(y, z)
√
κ

2
+

1− L1

2

− cos(d(x, y)
√
κ)

2 sin(d(x, z)
√
κ)

(
cos(d(x, v)

√
κ) sin(d(x, z)

√
κ)−

− sin(d(x, v)
√
κ) cos(d(x, z)

√
κ)
)

= L1 sin2 d(y, z)
√
κ

2
+

1− L1

2
− cos(d(x, y)

√
κ)

2 sin(d(x, z)
√
κ)

sin(d(v, z)
√
κ)

= L1 sin2 d(y, z)
√
κ

2
+

1− L1

2
− 1

2
cos(d(x, y)

√
κ)L2.

(ii)

sin2 d(y, v)
√
κ

2
≤ L2 sin2 d(x, y)

√
κ

2
+

1

2
(1− L1 − L2) + L1 sin2 d(y, z)

√
κ

2

≤ L2 sin2 d(x, y)
√
κ

2
+

1

2
(1− L1 − L2) + L1 sin2 (d(y, q) + d(q, z))

√
κ

2

≤ L2 sin2 d(x, y)
√
κ

2
+

1

2
(1− L1 − L2) + L1 sin2 (d(y, q) + d(y, v))

√
κ

2

≤ L2 sin2 d(x, y)
√
κ

2
+

1

2
(1− L1 − L2)

+ L1

(
sin2 d(y, q)

√
κ

2
+ sin2 d(y, v)

√
κ

2
+

1

2
sin(d(y, q)

√
κ)

)
since sin2 a+ b

2
≤ sin2 a

2
+ sin2 b

2
+

1

2
sin a for a, b ∈ [0, π] .
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It follows that

sin2 d(y, v)
√
κ

2
(1− L1) ≤ L2 sin2 d(x, y)

√
κ

2
+

1

2
(1− L1 − L2)

+ L1

(
sin2 d(y, q)

√
κ

2
+

1

2
sin(d(y, q)

√
κ)

)
≤ L2 sin2 d(x, y)

√
κ

2
+

1

2
(1− L1 − L2)

+ L1

(
sin2 d(y, q)

√
κ

2
+ sin

d(y, q)
√
κ

2

)
≤ L2 sin2 d(x, y)

√
κ

2
− 1

2
L2(1− cos(d(x, v)

√
κ))

+ L1

(
sin2 d(y, q)

√
κ

2
+ sin

d(y, q)
√
κ

2

)
by (16).

Thus,

sin2 d(y, v)
√
κ

2
≤ L2

1− L1

(
sin2 d(x, y)

√
κ

2
− sin2 d(x, v)

√
κ

2

)
+

L1

1− L1

(
sin2 d(y, q)

√
κ

2
+ sin

d(y, q)
√
κ

2

)
.

By assumption, we have that sin2 d(x, y)
√
κ

2
− sin2 d(x, v)

√
κ

2
≤ 0. Using the

fact that
L2

1− L1
≥ 1 and (17), it follows that

sin2 d(y, v)
√
κ

2
≤ sin2 d(x, y)

√
κ

2
− sin2 d(x, v)

√
κ

2

+
1

s cos(M
√
κ)

(
sin2 d(y, q)

√
κ

2
+ sin

d(y, q)
√
κ

2

)
.

5 Effective rates of asymptotic regularity

We assume the hypothesis of Proposition 3.2. As in [23, 16, 17], the main tool
in obtaining rates of asymptotic regularity is the following quantitative lemma,
which is a slight reformulation of [17, Lemma 1].

Lemma 5.1. Let (αn)n≥1 be a sequence in [0, 1] and (an)n≥1, (bn)n≥1 be se-
quences in R+ such that

an+1 ≤ (1− αn+1)an + bn for all n ∈ Z+. (19)
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Assume that

∞∑
n=1

bn is convergent with Cauchy modulus γ and

∞∑
n=1

αn+1 diverges

with rate of divergence θ.
Then, lim

n→∞
an = 0 with rate of convergence Σ given by

Σ(ε, P, γ, θ) = θ

(
γ
(ε

2

)
+ max

{⌈
ln

(
2P

ε

)⌉
, 1

})
+ 1, (20)

where P > 0 is an upper bound on (an).

A second useful result, which is also needed in the metastability proof, is the
following:

Lemma 5.2. For all n ≥ 1, let

µn = 1− sin ((1− λn)M
√
κ)

sin(M
√
κ)

∈ (0, 1). (21)

Then

(i) µn ≥ λn cos (M
√
κ) for all n ≥ 1.

(ii)

∞∑
n=1

λn+1 =∞ with rate of divergence θ yields

∞∑
n=1

µn+1 =∞ with rate of

divergence θ̃(n) = θ

(⌈
1

cos(M
√
κ)

⌉
n

)
.

Proof. (i) One has

µn =
2 sin λnM

√
κ

2 cos (2−λn)M
√
κ

2

sin (M
√
κ)

≥
2 sin λnM

√
κ

2 cos (M
√
κ)

sin (M
√
κ)

≥ λn cos
(
M
√
κ
)
.

(ii) Follows immediately from (i).

Lemma 5.3. For all n ∈ Z+

d(xn, xn+1) ≤ (1− µn+1)d(xn−1, xn) +M |λn+1 − λn|. (22)

Proof. Let us denote for simplicity un = λn+1u+ (1− λn+1)Txn−1. Then,

d(xn, un) = |λn+1 − λn|d(u, Txn−1) ≤M |λn+1 − λn| and

d(un, xn+1) ≤
sin
(
(1− λn+1)M

√
κ
)

sin
(
M
√
κ
) d(xn−1, xn) by Lemma 4.1.
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5.1 Proof of Proposition 3.2

Let Φ̃, Φ be given by (6) and (7). Apply Lemma 5.1 with

an = d(xn, xn−1), bn = M |λn+1 − λn| and αn = µn,

and use Lemma 5.2.(ii) and the fact that

∞∑
n=1

bn is convergent with Cauchy

modulus γ̃(ε) = γ
( ε

M

)
to conclude that lim

n→∞
d(xn, xn+1) = 0 with rate of

convergence Φ̃.
Since d(xn, Txn) ≤ d(xn, xn+1) +Mλn+1 for all n ≥ 1, it follows easily that

Φ is a rate of asymptotic regularity. �

6 A quantitative Browder theorem

Let X be a complete CAT(κ) space, C ⊆ X a bounded closed convex subset

with diameter dC <
Dκ

2
and T : C → C be nonexpansive.

A very important step in the convergence proof for Halpern iterations is the
construction of a sequence of approximants converging strongly to a fixed point
of T . Given t ∈ (0, 1) and u ∈ C, Lemma 4.1 yields that the mapping

Tut : C → C, Tut (y) = tu+ (1− t)Ty (23)

is a contraction, hence it has a unique fixed point zut ∈ C. Thus,

zut = tu+ (1− t)Tzut . (24)

Pia̧tek [26] obtained the following generalization to CAT(κ) spaces of an
essential result due to Browder [5, 6].

Theorem 6.1. [26] In the above hypothesis, lim
t→0+

zut exists and is a fixed point

of T .

In the setting of Hilbert spaces, Browder proved the result using weak se-
quential compactness and a projection argument (to the set of fixed points of
T ). A new and elementary proof of Browder’s result was given by Halpern [9]
when C is the closed unit ball and the starting point is u = 0. Generalizations
of Browder’s theorem were obtained by Reich [28] for uniformly smooth Ba-
nach spaces, Goebel and Reich [8] for the Hilbert ball and Kirk [10] for CAT(0)
spaces.

Kohlenbach [12] applied proof mining methods to both Browder’s original
proof and the extension of Halpern’s proof to bounded closed convex C and ar-
bitrary u ∈ C, obtaining in this way quantitative versions of Browder’s theorem
with uniform effective rates of metastability. As pointed out in [12, Remark 1.4],
one cannot expect in general to get effective rates of convergence. Since Kirk’s
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proof of the generalization of Browder’s theorem to CAT(0) spaces is obtained
by a slight change of Halpern’s argument, Kohlenbach’s quantitative result goes
through basically unchanged to CAT(0) spaces (see [17, Proposition 9.3]).

In this section we obtain a quantitative version of Theorem 6.1. As a con-
sequence of Halpern’s proof, for any nonincreasing sequence (tn) in (0, 1), one
gets that (zutn) converges strongly to some point z ∈ C, which is a fixed point
of T if lim

n→∞
tn = 0. Our quantitative result gives rates of metastability for such

sequences (zutn) and this suffices for the proof of our main Theorem 3.4.

Proposition 6.2. Let X be a complete CAT(κ) space, C ⊆ X bounded closed

convex with diameter dC <
Dκ

2
and T : C → C be nonexpansive. Assume that

(tn) ⊆ (0, 1) is nonincreasing. Then for every ε ∈ (0, 1) and g : N→ N,

∃K0 ≤ K(ε, g,M) ∀i, j ∈ [K0,K0 + g(K0)]
(
d(zuti , z

u
tj ) ≤

ε√
κ

)
,

where

K(ε, g,M) = g̃

(⌈
M
√
κ tan(M

√
κ)

1− cos ε

⌉)
(0),

with dC ≤M <
Dκ

2
and g̃(n) = n+ g(n).

Proof. Let ε ∈ (0, 1) and g : N→ N. We assume without loss of generality that
i < j, hence tj ≤ ti. Denote ui,j = tju+ (1− tj)Tzuti . Then,

d(u, zuti) = (1− ti)d(u, Tzuti) ≤ (1− tj)d(u, Tzuti) = d(u, ui,j),

so zuti ∈ [u, ui,j ]. It follows by Lemma 4.1 that d(zutj , ui,j) ≤ d(Tzutj , T z
u
ti) ≤

d(zutj , z
u
ti).

We can apply now Lemma 4.2 with x = u, y = zutj , z = ui,j , w = zuti to
get that d(u, zuti) ≤ d(u, zutj ) and for ∆(ū, z̄utj , ūi,j) a κ-comparison triangle of
∆(u, zutj , ui,j), one has ∠z̄uti (ū, z̄

u
tj ) ≥ π/2. Since (d(u, zutn))n is a nondecreasing

sequence in [0,M ], by an application of [12, Lemma 4.1], there exists K0 ≤
K(ε, g,M) such that

∀i, j ∈ [K0,K0 + g(K0)]

(
|d(u, zutj )− d(u, zuti)| ≤

1− cos ε√
κ tan(M

√
κ)

)
.

Let now i < j ∈ [K0,K0 + g(K0)]. Then,

cos(d(u, zuti)
√
κ)− cos(d(u, zutj )

√
κ) ≤ sin(M

√
κ)

1− cos ε

tan(M
√
κ)

= (1− cos ε) cos(M
√
κ).

Furthermore, by the cosine law and the fact that ∠z̄uti (ū, z̄
u
tj ) ≥

π
2 , we have that

cos(d(ū, z̄utj )
√
κ) ≤ cos(d(ū, z̄uti)

√
κ) cos(d(z̄uti , z̄

u
tj )
√
κ).
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It follows that

cos(d(u, zuti)
√
κ)− (1− cos ε) cos(M

√
κ)

≤ cos(d(u, zutj )
√
κ) = cos(d(ū, z̄utj )

√
κ)

≤ cos(d(ū, z̄uti)
√
κ) cos(d(z̄utj , z̄

u
ti)
√
κ)

≤ cos(d(u, zuti)
√
κ) cos(d(zutj , z

u
ti)
√
κ).

Hence

cos(d(zutj , z
u
ti)
√
κ) ≥ 1− (1− cos ε)

cos(M
√
κ)

cos(d(u, zuti)
√
κ)
≥ cos ε.

Thus, d(zutj , z
u
ti)
√
κ ≤ ε and the proof is complete.

7 Effective rates of metastability

In this section we shall prove the main result of our paper, Theorem 3.4, hence
we assume that its hypotheses are satisfied. We give first some technical results
that will be needed in the proof.

7.1 Some useful lemmas

As in [16, 17], one of the main ingredients of our proof is a sequence obtained by
combining the Halpern iteration (xn) and the points zut . However, in the setting
of CAT(κ) spaces, its definition and the proofs of the necessary properties are
based on the much more involved technical lemmas from Section 4.

If (an) is a real sequence, we say that lim sup
n→∞

an ≤ 0 with effective rate

Ψ : (0,∞)→ Z+ if
∀ε > 0∀n ≥ Ψ(ε) (an ≤ ε).

Let us define

γtn = sin2 d(u, zut )
√
κ

2
− sin2 d(u, xn+1)

√
κ

2
. (25)

Proposition 7.1. (i) For n ≥ 1, if γtn ≥ 0, then

γtn ≤
an
t
− sin2 d(xn+1, z

u
t )
√
κ

2
, (26)

where

an =
1

cos(M
√
κ)

(
sin2 d(xn+1, Txn+1)

√
κ

2
+ sin

d(xn+1, Txn+1)
√
κ

2

)
. (27)

(ii) γtn ≤
an
t

for all n ≥ 1.
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(iii) lim sup
n→∞

γtn ≤ 0 with effective rate Ψ(ε, κ,M, t, γ, θ, α) given by

Ψ = max

{
θ

(⌈
1

cos(M
√
κ)

⌉(
γ(L) + max

{⌈
ln

(
1

L

)⌉
, 1

}))
, α(2L)

}
, (28)

where L =
cos(M

√
κ)tε

4M
√
κ

.

(iv) For n ≥ 1,

sin2 d(xn+1, z
u
t )
√
κ

2
≤ sin ((1− λn+1)M

√
κ)

sin(M
√
κ)

sin2 d(xn, z
u
t )
√
κ

2

+
sin (λn+1M

√
κ)

sin(M
√
κ)

max{γtn, 0}

+
sin (tM

√
κ)

sin(M
√
κ)

sin2 M
√
κ

2
.

Proof. (i) Apply Proposition 4.7.(ii) with x = u, y = xn+1, z = Tzut , v =
zut , s = t, q = Txn+1 and note that

sin2 d(u, xn+1)
√
κ

2
− sin2 d(u, zut )

√
κ

2
= −γtn ≤ 0.

It follows that sin2 d(xn+1, z
u
t )
√
κ

2
≤ −γtn +

an
t

, hence (i).

(ii) Obviously, since
an
t
≥ 0.

(iii) Since an ≤
1

cos(M
√
κ)
d(xn+1, Txn+1)

√
κ and, by Proposition 3.2, the

sequence (d(xn, Txn)) converges to 0 with rate of convergence Φ given by
(7), we get that lim sup

n→∞
γtn ≤ 0 with effective rate

Ψ(ε, κ,M, t, γ, θ, α) = Φ

(
cos(M

√
κ)tε√

κ
, κ,M, γ, θ, α

)
.

(iv) By Proposition 4.5.(ii) with x = u, y = Txn, z = Tzut , w = xn+1, v =
zut , r = λn+1 and s = t.

In fact, it suffices for the proof of the main theorem to consider the case

ti =
1

i+ 1
, i ≥ 0. Then (ti) converges towards 0 with rate

⌈
1

ε

⌉
.

We shall denote γtin with γin. Furthermore, zuti will be simply denoted by zui .
Thus,

γin = sin2 d(u, zui )
√
κ

2
− sin2 d(u, xn+1)

√
κ

2
. (29)
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Lemma 7.2. Assume that i, j ≥ 0 and δ ∈ (0, 1) are such that d(u, Tzui ) −
d(u, Tzuj ) ≤ δ√

κ
. Then,

γin ≤ γjn + sin2 M
√
κ

2(j + 1)
+ 2 sin

M
√
κ

2(j + 1)
+ sin2 δ

2
+ 2 sin

δ

2
sin

M
√
κ

2
.

Proof. We have that

γin = sin2
i
i+1d(u, Tzui )

√
κ

2
− sin2 d(u, xn+1)

√
κ

2

≤ sin2 d(u, Tzui )
√
κ

2
− sin2 d(u, xn+1)

√
κ

2

≤

(
sin

d(u, Tzuj )
√
κ

2
+ sin

δ

2

)2

− sin2 d(u, xn+1)
√
κ

2

≤ sin2
d(u, Tzuj )

√
κ

2
− sin2 d(u, xn+1)

√
κ

2
+ sin2 δ

2
+ 2 sin

δ

2
sin

M
√
κ

2
.

Note that

sin2
d(u, Tzuj )

√
κ

2
= sin2

j
j+1d(u, Tzuj )

√
κ+ 1

j+1d(u, Tzuj )
√
κ

2

≤ sin2

j
j+1d(u, Tzuj )

√
κ

2
+ sin2 M

√
κ

2(j + 1)
+ 2 sin

M
√
κ

2(j + 1)
.

Finally, let us recall the following slight reformulation of [17, Lemma 5.2].

Lemma 7.3. Let ε ∈ (0, 2), g : N→ N, L > 0, θ : Z+ → Z+ and ψ : (0,∞)→
Z+. Define

Θ = Θ(ε, L, θ, ψ) = θ

(
ψ
(ε

3

)
− 1 + max

{⌈
ln

(
3L

ε

)⌉
, 1

})
+ 1,

∆ = ∆(ε, g, L, θ, ψ) =
ε

3gε(Θ− ψ(ε/3))
,

where gε(n) = n+ g(n+ ψ(ε/3)).
Assume that

(i) (αn) is a sequence in [0, 1] such that the series

∞∑
n=1

αn diverges with rate

of divergence θ;

(ii) (tn) is a sequence of real numbers such that tn ≤
ε

3
for all n ≥ ψ

(ε
3

)
.

Let (sn) be a bounded sequence of real numbers with upper bound L satisfying

sn+1 ≤ (1− αn)sn + αntn + ∆ for all n ≥ 1. (30)

Then sn ≤ ε for all n ∈ [Θ,Θ + g(Θ)].
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7.2 Proof of Theorem 3.4

Let ε ∈ (0, 2) and g : N → N be fixed. For simplicity, we omit parameters
κ,M,Φ, θ, α, β for all functionals in this proof. Let us define h : (0, 1)→ R+ by

h(δ) = sin
δ

2

(
sin

δ

2
+ 2 sin

M
√
κ

2

)
+ sin

δM
√
κ

2

(
sin

δM
√
κ

2
+ 2

)
≤ 6δ. (31)

Take ε0 =
cos(M

√
κ)

36
sin2 ε

√
κ

4
. Then, h(ε0) ≤ cos(M

√
κ)

6
sin2 ε

√
κ

4
.

Applying Proposition 6.2 for ti =
1

i+ 1
, ε0 and f∗, we get the existence of

K1 ≤ K(ε0, f
∗) = f̃∗

(⌈
M
√
κ tan(M

√
κ)

1− cos ε0

⌉)
(0)

such that d(zui , z
u
j ) ≤ ε0√

κ
for all i, j ∈ [K1, f̃∗(K1)].

Let K0 = K1 +

⌈
1

ε0

⌉
and J = K0 + f(K0) = f̃∗(K1). It follows that

d(zuJ , z
u
K0

) ≤ ε0√
κ

, hence

d(u, TzuJ ) ≤ d(u, TzuK0
) + d(TzuK0

, T zuJ ) ≤ d(u, TzuK0
) + d(zuK0

, zuJ )

≤ d(u, TzuK0
) +

ε0√
κ
.

An application of Lemma 7.2 with i = J, j = K0 and δ = ε0 gives us

γJn ≤ γK0
n + sin2 M

√
κ

2(K0 + 1)
+ 2 sin

M
√
κ

2(K0 + 1)
+ sin2 ε0

2
+ 2 sin

ε0

2
sin

M
√
κ

2

≤ γK0
n + sin2 ε0

2
+ 2 sin

ε0

2
sin

M
√
κ

2
+ sin2 Mε0

√
κ

2
+ 2 sin

Mε0
√
κ

2

= γK0
n + h(ε0) ≤ γK0

n +
cos(M

√
κ)

6
sin2 ε

√
κ

4
.

Applying now Proposition 7.1.(iv) with t = 1
J+1 and recalling the definition

(21) of (µn), it follows that for all n ≥ 1,

sin2 d(xn+1, z
u
J )
√
κ

2
≤ (1− µn+1) sin2 d(xn, z

u
J )
√
κ

2

+
sin(λn+1M

√
κ)

sin(M
√
κ)

max{γJn , 0}

+
sin
(

1
J+1M

√
κ
)

sin(M
√
κ)

sin2 M
√
κ

2
.

Since J = K0 + f(K0) ≥

⌈
M
√
κ

∆∗K0
(sin2 ε

√
κ

4 , g)

⌉
and

cos(M
√
κ) sin(λn+1M

√
κ) ≤ sin(M

√
κ)− sin

(
(1− λn+1)M

√
κ
)
,
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it follows that

sin2 d(xn+1, z
u
J )
√
κ

2
≤ (1− µn+1) sin2 d(xn, z

u
J )
√
κ

2

+µn+1 max

{
γJn

cos(M
√
κ)
, 0

}
+ ∆∗K0

(
sin2 ε

√
κ

4
, g

)
.

Letting t =
1

K0 + 1
in Proposition 7.1.(iii), we get that

γK0
n ≤ cos(M

√
κ)

6
sin2 ε

√
κ

4
,

for all n ≥ χ∗K0

(
1

3
sin2 ε

√
κ

4

)
= χK0

(
cos(M

√
κ)

6
sin2 ε

√
κ

4

)
. Thus,

γJn ≤ γK0
n +

cos(M
√
κ)

6
sin2 ε

√
κ

4
≤ cos(M

√
κ)

3
sin2 ε

√
κ

4
,

and so, max

{
γJn

cos(M
√
κ)
, 0

}
≤ 1

3
sin2 ε

√
κ

4
for all n ≥ χ∗K0

(
1

3
sin2 ε

√
κ

4

)
.

Furthermore, by Lemma 5.2, we have that

∞∑
n=1

µn+1 =∞ with rate of diver-

gence θ̃(n) = θ

(⌈
1

cos(M
√
κ)

⌉
n

)
. Hence, we can apply Lemma 7.3 with

sn = sin2 d(xn, z
u
J )
√
κ

2
, tn = max

{
γJn

cos(M
√
κ)
, 0

}
, αn = µn+1,

ε = sin2 ε
√
κ

4
, ∆ = ∆∗K0

(
sin2 ε

√
κ

4
, g

)
, L = sin2 M

√
κ

2
.

By letting N = ΘK0

(
sin2 ε

√
κ

4

)
, it follows that for all n ∈ [N,N + g(N)],

sin2 d(xn, z
u
J )
√
κ

2
≤ sin2 ε

√
κ

4
, and so d(xn, z

u
J ) ≤ ε

2
.

Obviously, d(xn, xm) ≤ ε for all m,n ∈ [N,N + g(N)]. One can easily see that
N ≤ Σ(ε, g). �
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