
Verifying P Systems with Costs
by Using Priced-Timed Maude

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
E-mail: bogdan.aman@gmail.com, gabriel@info.uaic.ro

Summary. We consider P systems that assigns storage costs per step to membranes,
and execution costs to rules. We present an abstract syntax of the new class of membrane
systems, and then deal with costs by extending the operational semantics of P systems
with promoters, inhibitors and registers. We use Priced-Timed Maude to implement the P
systems with costs. By using such a rewriting engine which corresponds to the semantics
of membrane systems with costs, we are able to prove the operational correctness of this
implementation. Based on such an operational correspondence, we can analyze properly
the evolutions of the P systems with costs, and verify several reachability properties,
including the cost of computations that reach a given membrane configuration. This
approach opens the way to various optimization problems related to membrane systems,
problems making sense in a bio-inspired model which now can be verified by using a
complex software platform.

1 Introduction

Membrane computing is introduced in [10] and represents now a well known branch
of natural computing that aims to abstract computing ideas and formal models
from the structure and functioning of living cells, as well as from the organization
of cells in tissues, organs or other higher order structures such as colonies of cells
[11]. Membrane systems (known also as P systems) are parallel and distributed
models working with multisets of symbols in cell-like compartmental architectures.
The existing results in membrane computing refer mainly to the P systems char-
acterization of Turing computability, providing also some polynomial solutions to
NP-complete problems by using an exponential workspace created in a “biological
way”.

Time was introduced and studied in the framework of membrane systems [2].
However, time is not the only quantitative notion of interest; other quantities such
as energy [8] or accumulated cost can be included in such systems. The notions of
energy and cost are connected to (evolution) time, because the longer the system
evolves, the higher the energy and costs are. For simplicity, in this paper we study

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132455006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

86 B. Aman, G. Ciobanu

only the (evolution) costs in a membrane system. A membrane system with costs is
essentially a simple membrane system in which object storage costs per evolution
step are assigned to membranes, and execution costs are assigned to rules. Notice
that here we consider the cost only as an external/observer variable, and thus
whether a rule is applicable only depends on available resources (not cost value).
In this paper we present an abstract syntax of the membrane systems with costs,
and then define a structural operational semantics of P systems with costs. We
use a rewriting engine called Priced-Timed Maude to implement these P systems.
After proving an operational correctness of this implementation, we can analyze
properly the evolutions of the P systems involving costs, We look at the cost
of computations reaching a given membrane configuration. This paper represents
a first step towards a more detailed analysis of various costs in the context of
membrane systems.

This class of P systems with costs differs from energy-based P systems [8],
a model of membrane systems whose computations occur by manipulating the
energy associated to the objects, as well as the free energy units occurring inside
the regions of the system. In [8] the energy units are used to transform objects,
while in this paper the costs are used only to compute the evolution cost, and
eventually to return an optimal evolution with respect to its cost.

2 Membrane Systems with Costs

Before describing in a formal way the evolution of a P system with costs, we present
first an inductive definition of the membrane structure, the sets of configurations,
and a definition for the corresponding transition systems.

Configurations are states of a transition system, and a computation consists
of sequences of transitions between configurations terminating (if it terminates)
in a final configuration. A sequence of transition steps represents a computation.
A computation is successful if this sequence is finite, namely there is no rule
applicable to the objects present in the last committed configuration. In a halting
committed configuration, the result of a successful computation is the total number
of objects present either in the membrane considered as the output membrane, or
in the outer region.

In general,operational semantics provides a framework for defining a formal
description of a computing system. It is intuitive and flexible, and it becomes
more attractive during the years by the developments presented in [12] and [9]. In
basic P systems, a computation is regarded as a sequence of parallel applications
of rules in various membranes, followed by a communication step and a dissolving
step. The operational semantics of the P systems emphasises the deductive nature
of the membrane computing by describing the transition steps by using a set
of inference rules [3]. The operational semantics of P systems is implemented by
using the cost extension of the rewriting system called Maude [7]. The relationship
between the operational semantics of P systems and Maude rewriting is given by
certain operational correspondence results.

Verifying P Systems with Costs Using Priced-Timed Maude 87

Let O be a finite alphabet of objects over which we consider the free commuta-
tive monoid O∗c , whose elements are multisets. The empty multiset is denoted by
empty. Objects can be enclosed in messages together with a target indication. We
have here messages of typical form (w, here), out messages (w, out), and in mes-
sages (w, inL). For the sake of simplicity, hereinafter we consider that the messages
with the same target indication merge into one message:∏

i∈I(vi, here) = (w, here),
∏

i∈I(vi, inL) = (w, inL),
∏

i∈I(vi, out) = (w, out),
with w =

∏
i∈I vi, I a non-empty set, and (vi)i∈I a family of multisets over O.

We use the mapping rules to associate to a membrane label the set of evolution
rules: rules(Li) = Ri, and the projections L, w and c which return from a membrane
its label, its current multiset, and its cost, respectively.

The set M(Π) of membranes for a P system with costs Π, and the membrane
structures are inductively defined as follows:

• if L is a label, c is a cost and w is a multiset over O ∪ (O × {here}) ∪ (O ×
{out})∪{δ}, then 〈L ; c |w 〉 ∈ M(Π); 〈L ; c |w 〉 is called simple (or elementary)
membrane, and it has the structure 〈〉;

• if L is a label, c is a cost and w is a multiset over O ∪ (O × {here}) ∪ (O ×
{inL(Mj)| j ∈ [n]}) ∪ (O × {out}) ∪ {δ}, M1, . . . ,Mn ∈ M(Π), n ≥ 1, where
each membrane Mi has the structure µi, then 〈L ; c |w ; M1, . . . ,Mn 〉 ∈ M(Π);
〈 L ; c | w ; M1, . . . ,Mn 〉 is called a composite membrane having the structure
〈µ1, . . . , µn〉.
We conventionally suppose the existence of a set of sibling membranes denoted

by NULL such that M,NULL = M = NULL,M and 〈L |w ; NULL 〉 = 〈L |w 〉.
The use ofNULL significantly simplifies several definitions and proofs. LetM∗(Π)
be the free commutative monoid generated byM(Π) with the operation (,) and
the identity element NULL. We defineM+(Π) as the set of elements fromM∗(Π)
without the identity element. Let M+, N+ range over non-empty sets of sibling
membranes, Mi over membranes, M∗, N∗ range over possibly empty multisets of
sibling membranes, and L over labels. The membranes preserve the initial labelling,
cost and evolution rules in all subsequent configurations. Therefore in order to
describe a membrane we consider its label, its cost and the current multiset of
objects together with its structure.

A configuration for a P system with costs Π is a skin membrane which has no
messages and no dissolving symbol δ, i.e., the multisets of all regions are elements
in O∗c . We denote by C(Π) the set of configurations for Π.

An intermediate configuration is an arbitrary skin membrane in which we may
find messages or the dissolving symbol δ. We denote by C#(Π) the set of interme-
diate configurations. We have C(Π) ⊆ C#(Π).

Each P system with costs has an initial configuration which is characterized
by the initial multiset of objects for each membrane and the initial membrane
structure of the system. For two configurations C1 and C2 of Π, we say that there
is a transition from C1 to C2, and write C1 ⇒ C2, if the following steps are executed
in the given order:

1. maximal parallel rewriting step as in [6];

88 B. Aman, G. Ciobanu

2. parallel communication of objects through membranes;
3. parallel membrane dissolving of the membranes containing δ.

The last two steps take place only if there are messages or δ symbols resulting
from the first step, respectively. If the first step is not possible, then neither are
the other two steps; we say that the system has reached a halting configuration.

To illustrate these notions we give in Figure 1 a small example containing only
of a single membrane labelled by 1 and with associated cost 2. This membrane
contains three objects A and three rules with different assigned costs (rule R0 with
cost 10, rule R1 with cost 8 and rule R2 with cost 12). A possible evolution leads
in just one step to a configuration consisting of three objects B and with the cost
of evolution of 30 resulting from applying three times rule R0.

Fig. 1. A Small P System with Costs

1

2

A + A + A

R0 : A
10−→ B

R1 : A
8−→ C

R2 : C
12−→ D

3 Implementing P Systems with Costs by using Maude

Reasoning about the accumulated cost (of energy usage, for instance) during be-
haviours is crucial in biological and embedded systems (e.g., wireless sensor net-
works) where minimizing overall consumed resources is critical. Generally, by using
a rewriting engine called Maude, a formal specification of a system can be auto-
matically transformed into an interpreter. Moreover, Maude provides an useful
new extension called Priced-Timed Maude [4] supporting the formal specification
and analysis of systems in which the cost of performing actions plays a significant
role. The tool offers a search command, a semi-decision procedure for finding fail-
ures of safety properties, and also a model checker. Since the P systems with costs
combine the power of parallel rewriting in various locations (compartments), the
power of local and contextual evolution and the use of rewriting costs, it is natural
to use a rewriting engine and a rewrite theory.

Roughly speaking, a rewrite theory is a triple (Σ,E,R,L), where (Σ,E) is an
equational theory used for implementing the deterministic computation, therefore
(Σ,E) should be terminating and Church-Rosser, R is a set of rewrite rules with
costs used to implement nondeterministic and/or concurrent computations, and L
is a set of tick rules which can model the time elapse in the system. Therefore we
find rewriting logic suitable for implementing these membrane systems.

Verifying P Systems with Costs Using Priced-Timed Maude 89

For simplicity, in this section we consider only costs added to the evolution
rules. A P system consists of a maximal parallel application of the evolution rules,
the (repeated) steps of internal evolution, communication, and dissolving. This se-
quence of steps uses a kind of synchronization. A P system has a tree like structure
with the skin as its root, the composite membranes as its internal nodes and the
elementary membranes as its leaves. The order of the children of a node is not im-
portant due to the associativity and commutativity properties of the concatenation
operation , of membranes.

In what follows we extend with costs the operational semantics of membrane
systems with promoters, inhibitors [5] and registers [1]. We define an operational
semantics of membrane systems by means of three sets of inference rules cor-
responding to maximal parallel rewriting, sending messages and dissolving. The
notation R ` t→ t′ is used to express that t→ t′ is provable in the theory R using
the inference rules of rewriting logic. We use the syntax of the rewriting engine
Maude extended for systems with costs [4] to describe a rewriting theory which
corresponds faithfully to the semantics of membrane systems with costs.

In rewriting logic we describe a multiset of objects and messages as consisting
of four “bags” of which three are multisets of objects (standing for objects which
are actually in the membrane, objects with message here, objects with message
out), and the fourth containing a multiset of pairs of objects and labels i which
stand for objects with message ini. This representation facilitates the rewriting
logic specification because in this way there is no need for additional sorts with
respect to messages. We first consider the following sorts:

sorts Obj ObjMultiset ObjAddressMultiset Label Rule RuleSet .
subsort Obj < ObjMultiset . subsort Rule < RuleSet .

By emptyMO and emptyMAO we denote the empty multiset of objects, respec-
tively of objects with labels, and use + to denote the addition on both ObjMultiset

and ObjAddressMultiset.
The multiset of objects with addresses is constructed through the operator
op in : ObjMultiset Label -> ObjAddressMultiset.

A rule is constructed through the operator

op _->_|_|_|_|_|_ : ObjMultiset ObjMultiset ObjMultiset
ObjAddressMultiset ObjMultiset ObjMultiset Cost -> Rule [ctor] .

The first slot is for the objects to be consumed (it is the left hand side of the rule);
the second slot is for the objects produced with label ”here”; the third slot is for
the objects produced with label ”out”; the fourth slot is for the objects produced
with label ”in child”; the next two slots are for promoters respectively inhibitors.
The last slot is used to give the cost of applying the rule. The operators which are
used to manipulate the components of a rule are

ops lhs rhsHere rhsOut promoter inhibitor : Rule -> ObjMultiset .
op rhsIn : Rule -> ObjAddressMultiset .
op costOf : Rule -> Cost .

90 B. Aman, G. Ciobanu

rulesIn : Label -> RuleSet is used to present the rules inside a membrane.
We work with register membranes even when implementing message passing

and dissolving. This does not modify in any way the semantics. In what follows,
all the membranes are register membranes, even when not explicitly stated.
A register membrane is constructed through the operator

op <_‘[_|_|_|_‘]_>_ : Label ObjMultiset ObjMultiset ObjMultiset
ObjAddressMultiset MembraneSet ObjMultiset -> Membrane [ctor] .

The first slot is for the label; the second slot is for the objects inside the membrane;
the third slot is for the objects with label ”here”; the fourth slot is for the objects
with label ”out”; the fifth slot is for the objects with label ”in child”; the sixth slot
is for the set of children membranes; the last slot is for the register. The operators
which are used to manipulate the components of a rule are

op labelOf : Membrane -> Label .
ops register here : Membrane -> ObjMultiset .
ops content out : MembraneSet -> ObjMultiset .
op inChildren : Membrane -> ObjAddressMultiset .
op children : Membrane -> MembraneSet .

Other operators are _isIn_ which evaluates whether a multiset is contained
in another multiset, mprIrred, msgIrred, dissIrred, eraseDelta, emptyOut and
emptyReg whose names are self-explaining. We also use labelsOf to gather the
membrane labels which appear in the right hand side of a rule, for the same
purpose membraneSetLabels with respect to the membrane sets, and subsetOf

to compare them. These last three functions are used only when evaluating whether
a pair formed of a membrane M and a rule R is valid:

op valid : Membrane Rule -> Bool .
ceq valid(M, R) = true if lhs(R) isIn content(M) /\ promoter(R)
isIn (content(M) + register(M)) /\ labelsOf(rhsIn(R)) subsetOf
membraneSetLabels(children(M)) /\ if (inhibitor(R) =/= emptyMO)
then (inhibitor(R) isIn (content(M) + register(M)) == false)
else true fi .

eq valid(M, R) = false [owise] .

To separate the three stages of evolution of a membrane we use four tags:

sorts evolutionType State .
ops mpr msg diss end : -> evolutionType [ctor] .
op _;_ : MembraneSet evolutionType -> State [ctor] .

where end is used to stop the rewriting once the membrane has stopped evolving.
The maximal parallel rewriting of a membrane is given by the following rules,

where the second one is executed with the cost of the corresponding rule:

crl [1] : M , MM ; mpr => M1 , MM ; mpr if
MM =/= null /\ M ; mpr => M1 ; mpr /\ M =/= M1 .

crl [2] : < L [W1 | W2 | W3 | A] MM > W4 ; mpr =>
< L [W1 - lhs(R) | W2 + rhsHere(R) | W3 + rhsOut(R) | A
+ rhsIn(R)] MM > (W4 + lhs(R)) ; mpr with cost costOf(R)

Verifying P Systems with Costs Using Priced-Timed Maude 91

if mprIrred(MM) /\ R RR := rulesIn(L)
/\ valid(< L [W1 | W2 | W3 | A] MM > W4, R) .

crl [3] : < L [W1 | W2 | W3 | A] MM > W4 ; mpr =>
< L [W1 | W2 | W3 | A] MM1> W4 ; mpr if
mprIrred(MM) == false /\ MM ; mpr => MM1 ; mpr /\ MM =/= MM1 .

These rules impose the following evolution: if in a membrane there is some mpr-
reducible child membrane, then the membrane is replaced by a similar membrane
which has that child rewritten (rules crl [3] and crl [1]); if a membrane has
only mpr-irreducible children, all valid rules are applied one by one (rule crl [2]).
When even the skin membrane is mpr-irreducible, the following rule is applied

crl [4] : M ; mpr => emptyReg(M) ; msg if labelOf(M) == 1
/\ mprIrred(M) .

in order to empty the register and to begin the next evolution stage, that of the
message sending.

This message sending stage is governed by the following rules:

crl [5] : M , MM ; msg => M1 , MM ; msg if
MM =/= null /\ M ; msg => M1 ; msg /\ M =/= M1 .

crl [6] : < L [W1 | W2 | W3 | A] MM > W4 ; msg => if L == 1 then
< L [W1 + W2 + out(MM1) | emptyMO | emptyMO | emptyMAO]
emptyOut(sendIn(A, MM1)) > W4 ; msg else
< L [W1 + W2 + out(MM1) | emptyMO | W3 | emptyMAO]
emptyOut(sendIn(A, MM1)) > W4 ; msg fi
if msgIrred(MM) == false /\ MM ; msg => MM1 ; msg /\ msgIrred(MM1) .

crl [7] : < L [W1 | W2 | W3 | A] MM > W4 ; msg => if L == 1 and
W3 =/= emptyMO then < L [W1 + W2 + out(MM) | emptyMO
| emptyMO | emptyMAO] emptyOut(sendIn(A, MM)) > W4;msg else
< L [W1 + W2 + out(MM) | emptyMO | W3 | emptyMAO]
emptyOut(sendIn(A, MM)) > W4 ; msg fi if msgIrred(MM)
/\ (A =/= emptyMAO) or (W2 =/= emptyMO) or out(MM) =/= emptyMO .

In this stage a membrane evolves in a single rewriting step: if the set MM
of children membranes is msg-reducible, then MM rewrites to a msg-irreducible
MM1(rule crl [5]); the membrane M with objects W1 which contains MM
is rewritten to the membrane M1 with objects W1 + W2 + out(MM1) (i.e. the
objects with messages of form (a, here) are transformed in objects of form a, and
the objects sent out by the set MM1 of membranes are added), and children
emptyOut(sendIn(A,MM1)) (i.e. the objects of form (a, inj) are sent into the
membrane with label j and then the objects with messages of form (a, out) are
erased from every child membrane). The result is msg-irreducible, because the
only objects with messages are in the membrane M1, and they are of the form
(a, out) (if M1 is the skin not even those objects remain). If the set MM of
children membranes is msg-irreducible, then the same process takes place, except
that instead of MM1 it is still MM(rule [7]).

92 B. Aman, G. Ciobanu

Rules crl [5], crl [6] and crl [7] correspond to inference rules msg1 and
msg2 . In defining the transition relation Tmsg we treat the case of an elementary
membrane separately, since we prefer to avoid extending Tmsg to sets of mem-
branes. Although rules crl [6] and crl [7] look almost identical, we cannot in-
clude them in a single rule with the conditional part if MM ; msg => MM1 ; msg

because it would lead to an infinite loop of identical rewritings. This happens be-
cause MM ;msg →MM ;msg is provable in rewriting logic.

When the entire membrane system is msg-irreducible, the rule

crl [8] : M ; msg => M ; diss if labelOf(M) == 1 /\ msgIrred(M) .

is applied. This rule starts the next evolution stage, that of dissolving.

The rules for dissolving membranes are:

crl [9] : M , MM ; diss => M1 , MM ; diss if
MM =/= null /\ M ; diss => M1 ; diss /\ M =/= M1 .

crl [10] : < L [W1 | W2 | W3 | A] MM > W4 ; diss =>
< L [W1 + eraseDelta(content(M)) | W2 | W3 | A]
children(M) , MM1 > W4 ; diss if dissIrred(MM) /\ M , MM2 := MM
/\ delta isIn content(M) /\ MM1 := children(M) , MM2 .

crl [11] : < L [W1 | W2 | W3 | A] MM > W4 ; diss =>
< L [W1 | W2 | W3 | A] MM1 > W4 ; diss
if dissIrred(MM) == false /\ MM ; diss => MM1 ; diss
/\ dissIrred(MM1) .

If the set MM of children membranes for a membrane M is diss-reducible and
it rewrites to a diss-irreducible set of membranes MM1, then M is rewritten to
the similar membrane M1 which has children membranes MM1 (rules crl [9]

and crl [11]). When the set MM of children membranes is diss-irreducible and
at least one of the membranes in MM contains the special symbol δ, then all the
membranes from MM which contain δ are dissolved (rule crl [10]). Note that
a top membrane M does not dissolve even when it does contain δ. This happens
because the rewriting rules are given with the purpose of describing the evolution
of the skin membrane, which can never dissolve. Rules crl [9], crl [10] and
crl [11] correspond to inference rules msg1 and msg2. Again, we have used the
first rule in this group as a stepping stone towards the rewriting of a set of sibling
membranes, while avoiding to include the rewriting of a set of sibling membranes
in the transition relation Tdiss.

When the skin membrane is diss-irreducible but is mpr-reducible, the rule

crl [12] : M ; diss => M ; mpr if labelOf(M) == 1
/\ dissIrred(M) /\ mprIrred(M) == false .

is applied; it starts once more the maximal parallel rewriting stage of the evolution.
However, if the skin membrane is also mpr-irreducible, rule

crl [13] : M ; diss => M ; end if labelOf(M)==1
/\dissIrred(M)/\mprIrred(M).

Verifying P Systems with Costs Using Priced-Timed Maude 93

is applied; in this case it ends the rewriting. We do not need to evaluate the
msg-irreducibility of the skin membrane, because the dissolving stage can only be
reached by msg-irreducible membranes.

The correspondence between the operational semantics given by the transition
relation⇒ on one hand, and the rewriting logic implementation on the other hand
is is given by a mapping ψ : Π → State defined by the natural encoding presented
above. By R� we denote the rewrite theory defined by the rewrite rules [1] . . .
[13] together with the operators and equations defining them. The next theorem
emphasizes the correspondence between the dynamics of the membrane systems
with costs and the rewrite theory.

Theorem 1. M
c⇒ N iff RD ` ψ(M)⇒∗ ψ(N) with cost c.

4 Analyzing and Verifying P Systems With Costs

Using the previous operational correspondence provided by Theorem 1, the soft-
ware experiments done in Priced-Timed Maude reflect exactly the evolution of the
encoded membrane systems with costs. In this section we use a simple example of
a membrane system with costs, example that is described in rewriting logic in the
following form:

eq R0 = A -> B | emptyMO | emptyMAO | emptyMO | emptyMO | 10 .
eq R1 = A -> C | emptyMO | emptyMAO | emptyMO | emptyMO | 8 .
eq R2 = C -> D | emptyMO | emptyMAO | emptyMO | emptyMO | 12 .
eq Q = < 1 [A + A + A | emptyMO | emptyMO | emptyMAO] null > emptyMO .
eq rulesIn(1) = R0 R1 R2 .
eq S = Q ; mpr .

When entering the rewrite command
(ptfrew {S} in time <= 0 with cost <= 70 .)

Maude presents the following output:

Result PricedTimedSystem :
{< 1[B + B + B | emptyMO | emptyMO | emptyMAO]null > emptyMO ; end}

in time 0 with cost 30

We use priced-time Maude to check if certain configurations of a system can be
reached (reachability problem).

(ptsearch {S} =>* {X:StateStop} with no limits .)

We use the ptsearch command to answer the question: starting from the initial
membrane system S, what are the reachable final states (the ones containing the
end tag)? This is done by searching for states which match a corresponding pattern.
In this example, we use the => ∗ symbol, meaning that we are searching for
several steps. If one is interested in a bounded number of reachable final states,
the command ptsearch[n] can be used to obtain systems reachable in n steps. In
our case, the output is

94 B. Aman, G. Ciobanu

Priced-timed search in EXAMPLE
{S} =>* {X:StateStop}

with no time or cost limit and with mode default time increase 10 :

Solution 1
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 30 ;
X:StateStop --> < 1[B + B + B | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 2
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 40 ;
X:StateStop --> < 1[B + B + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 3
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 50
X:StateStop --> < 1[B + D + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 4
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 60 ;
X:StateStop --> < 1[D + D + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

No more solutions

It should be noticed that after only two steps, the cost of the reachable config-
urations is very different depending on the rules applied.

In addition to these commands, Priced-Timed Maude allows to find optimal
results such as the earliest state matching a pattern, as well as the cheapest evo-
lution to reach a given configuration. In our case, the earliest reachable states
containing the evolution type end can be found using the following command

(priced find earliest { Q ; mpr} =>* {X:MembraneSet ; end}
with no cost limit .)

that returns the result:

Priced find earliest {X:MembraneSet ; end} in EXAMPLE such that
{Q ; mpr} =>* {X:MembraneSet ; end}

with no cost limit with mode default time increase 10 :

Result: {< 1[B + B + B | emptyMO | emptyMO | emptyMAO]null >
emptyMO ; end} in time 0 with cost 30

Using the command find cheapest, it is possible to detect the cheapest evo-
lution (as cost) to reach a given configuration.

(find cheapest { Q ; diss} =>* {X:MembraneSet ; mpr}
with no time limit .)

This command verifies that indeed reaching a configuration ready to apply maxi-
mal from a configuration ready to apply dissolution rules takes 10 time units with
cost 0.

Verifying P Systems with Costs Using Priced-Timed Maude 95

Find cheapest in EXAMPLE
{Q ; diss} =>* {X:MembraneSet ; mpr}

with no time limit time and with mode default time increase 10 :

Solution
TIME_ELAPSED:Time --> 10 ; TOTAL_COST_INCURRED:Cost --> 0 ;

X:MembraneSet
--> < 1[A + A + A | emptyMO | emptyMO | emptyMAO]null > emptyMO

5 Conclusions and Future Work

We defined P systems with costs by assigning storage costs to membranes, as
well as and execution costs to rules. We used the Priced-Timed Maude rewriting
engine to implement these P systems with costs. By using such a rewriting en-
gine corresponding to the semantics of membrane systems with costs, we proved
the operational correctness of this implementation. Based on such an operational
correspondence, we can analyze the P systems with costs and verified several in-
teresting properties.

As a future work we plan to deal with Cost Problems in the framework of
membrane systems by considering two variants of the cost problem, namely the
Cost-Threshold Problem (can we obtain an evolution cost under a certain threshold
value) and the Cost-Optimality Problem (compute the minimal evolution cost).
We also intend to study how different evolution strategies influence the computed
cost of reaching a desired configuration.

References

1. O. Agrigoroaiei, G. Ciobanu. Rewriting Logic Specification of Membrane Systems
with Promoters and Inhibitors. Electronic Notes in Theoretical Computer Science
238(3), 5–22 (2009).

2. B. Aman, G. Ciobanu. Time Delays in Membrane Systems and Petri Nets. Electronic
Proceeding in Theoretical Computer Science 57, 47–60 (2011).

3. O. Andrei, G. Ciobanu, D. Lucanu. A Rewriting Logic Framework for Operational
Semantics of Membrane Systems. Theoretical Computer Science 373, 163–181 (2007).

4. L. Bendiksen, P.C. Ölveczky. The Priced-Timed Maude Tool. Lecture Notes in Com-
puter Science 5728, 443–448 (2009).

5. P. Bottoni, C. Mart́ın-Vide, Gh. Paun, G. Rozenberg. Membrane Systems With Pro-
moters/Inhibitors. Acta Informatica 38, 695–720 (2002).

6. G. Ciobanu, S. Marcus, Gh. Păun. New Strategies of Using the Rules of a P System in
a Maximal Way: Power and Complexity. Romanian Journal of Information Science
and Technology 12(1), 157–173 (2009).

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, J.F. Quesada.
Maude: Specification and Programming in Rewriting Logic. Theoretical Computer
Science 285, 187–243 (2002).

8. A. Leporati, C. Zandron, G. Mauri. Simulating the Fredkin Gate with Energy-based
P Systems. Journal of Universal Computer Science 10(5), 600–619 (2004).

96 B. Aman, G. Ciobanu

9. R. Milner. Operational and Algebraic Semantics of Concurrent Processes. Handbook
of Theoretical Computer Science B, 1201–1242, Elsevier (1990).

10. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences
61, 108–143 (2000).

11. Gh. Păun. Membrane Computing. An Introduction. Springer (2002).
12. G. Plotkin. Structural Operational Semantics. Journal of Logic and Algebraic Pro-

gramming 60, 17–140 (2004).

