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Summary. We consider P systems only allowing rules to be used in at most one copy
in each derivation step, especially the variant of the maximally parallel derivation mode
where each rule may only be used at most once. Moreover, we also consider the derivation
mode where from those sets of rules only those are taken which have the maximal number
of rules. We check the computational completeness proofs of several variants of P systems
and show that some of them even literally still hold true for the for these two new set
derivation modes. Moreover, we establish two new results for P systems using target
selection for the rules to be chosen together with these two new set derivation modes.

1 Introduction

Membrane systems with symbol objects are a theoretical framework of parallel
distributed multiset processing. Usually, multisets of rules are applied in parallel
to the objects in the underlying configuration; for example, in the maximally
parallel derivation mode (abbreviated max), a non-extendable multiset of rules is
applied to the current configuration. In this paper we now consider variants of these
derivation modes, where each rule is only used in at most one copy, i.e., we consider
sets of rules to be applied in parallel, for example, in the set-maximally parallel
derivation mode (abbreviated smax) we apply non-extendable sets of rules, and in
another derivation mode we apply sets of rules which contain a maximal number
of applicable rules (abbreviated maxrule).
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Taking sets of rules instead of multisets is a quite natural restriction and it
arises from different motivations, e.g., firing a maximal set of transitions in Petri
Nets [5, 8] or optimizing an implementation of FPGA simulators [13]. A natural
question arises concerning the power of set-based modes in contrast to multiset-
based ones. The first attempt to go into this direction was done in [10] where it
was shown that in some cases the computational completeness results established
for the max-mode also hold for the smax -mode.

In this paper we continue this line of research and we show that for several
variants of P systems the proofs for computational completeness for max can be
taken over even literally for smax and eventually even for maxrule, but on the
other hand there are also variants of P systems where the derivation modes smax
and maxrule yield even stronger results than the max-mode.

2 Variants of P Systems

In this section we recall the well-known definitions of several variants of P systems
as well as some variants of derivation modes and also introduce the variants of set
derivation modes considered in the following.

A (cell-like) P system is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, fO, fI) where

• O is the alphabet of objects,
• C ⊂ O is the set of catalysts,
• µ is the membrane structure (with m membranes),
• w1, . . . , wm are multisets of objects present in the m regions of µ at the begin-

ning of a computation,
• R1, . . . , Rm are finite sets of rules, associated with the regions of µ,
• fO is the label of the membrane region from which the outputs are taken (in

the generative case)
• fI is the label of the membrane region where the inputs are put at the beginning

of a computation (in the accepting case).

fO = 0/fI = 0 indicates that the output/input is taken from the environment.
If a rule u → v has at least two objects in u, then it is called cooperative,

otherwise it is called non-cooperative. Catalytic rules are of the form ca → cv,
where c ∈ C is a special object which never evolves and never passes through a
membrane, it just assists object a to evolve to the multiset v.

In catalytic P systems we use non-cooperative as well as catalytic rules. In a
purely catalytic P system we only allow catalytic rules.

In the maximally parallel derivation mode (abbreviated by max), in any com-
putation step of Π we choose a multiset of rules from R, defined as the union
of the sets R1, . . . , Rm, in such a way that no further rule can be added to it so
that the obtained multiset would still be applicable to the existing objects in the
regions 1, . . . ,m.
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2.1 Set Derivation Modes

The basic set derivation mode is defined as the derivation mode where in each
derivation step at must one copy of each rule may be applied in parallel with the
other rules; this variant of a basic derivation mode corresponds to the asynchronous
mode with the restriction that only those multisets of rules are applicable which
contain at most one copy of each rule, i.e., we consider sets of rules:

Appl(Π,C, set) ={R ∈ Appl(Π,C, asyn) | |R|r ≤ 1 for each r ∈ R}

In the set-maximally parallel derivation mode (this derivation mode is abbrevi-
ated by smax for short), in any computation step of Π we choose a non-extendable
multiset R of rules from Appl(Π,C, set); following the notations elaborated in [7],
we define the mode smax as follows:

Appl(Π,C, smax) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that R′ ⊃ R}

The smax-derivation mode corresponds to the min1-mode with the discrete par-
titioning of rules (each rule forms its own partition), see [7].

The derivation mode maxrulesmax is a special variant where only a maximal
set of rules is allowed to be applied. But it can also seen as the variant of the basic
set mode where we just take a set of applicable rules with the maximal number of
rules in in it, hence, we will also call it the maxrule derivation mode. Formally we
have:

Appl(Π,C,maxrule) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that |R′| > |R|}

As usual, with all these variants of derivation modes as defined above, we
consider halting computations. We may generate or accept or even computing
functions or relations. The inputs/outputs may be multisets or strings, defined in
the well-known way.

2.2 The History of the smax-Derivation Mode

In [13], a paper on fast P systems simulators using FPGA, the problem of the
unbounded max-mode was considered as too difficult to be parallelized on this
hardware. In the quest for an efficient solution, the authors proposed to restrict to
the case of the maximal parallelism where each rule can be applied at most once.
The most important advantage of this variant was that the multiset of applicable
rules could be represented as a binary string, i.e., an encoding as a number. More-
over, the paper showed that in many interesting cases it is possible to represent
the language of corresponding binary strings at each step by an automaton. Then
the problem of the simulation of a P system could be solved as follows:
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• Find the size S of the set of multisets of applicable rules (the size of the language
of binary strings).

• Take a random number k ∈ {1..S} and chose the string representing k.

This algorithm allowed for obtain a speed-up of magnitude 105.

The advantages of the set-maximally parallel derivation mode over the un-
bounded maximally parallel derivation mode are:

• A compact representation of the applicable multisets of rules as binary
strings/numbers is obtained.

• Most of the computational completeness results still hold.
• Simpler analysis of the behavior is possible.
• Only a bounded number of (multi)sets of rules has to be computed for each

derivation step.

In [10], the set-maximally parallel derivation mode was called flat maximal
parallel derivation mode, and, for example, P systems with promoters are shown
to be computationally complete using this flat maximal parallel derivation mode
with non-cooperative rules.

2.3 Examples

In the maximally parallel mode, we in addition need target or rule or label agree-
ment to obtain

{
a2

n | n ≥ 0
}

, otherwise only {an | n ≥ 1} can be obtained.

1
environment (0)

2

Initial multiset: a

1 : a→a(here)a(here)

2 : a→a(in)

target/ rule/ label agreement:

the same rule is used for all symbols a

Fig. 1. Example of a P system.
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In the set-maximally parallel mode smax, we in addition need target or rule
or label agreement to obtain {an | n ≥ 1}, otherwise only {a} can be obtained,
because:

• If 2 : a→a(in) is used in the first step, then a is obtained.
• If 1 : a→a(here)a(here) is applied at least once, then from the second step

on it has to be applied infinitely often, as only one copy of a can be sent into
membrane 2 by the second rule 2 : a→a(in).

The same arguments hold for the derivation mode maxrule.

3 Symport/Antiport P Systems

A symport/antiport P system is a construct

Π = (O,E, µ,w0, w1, . . . , wm, R1, . . . , Rm, fO, fI) where

• O is the alphabet of objects,
• E ⊆ O is the set of objects being available in the environment in an unbounded

number,
• µ is the membrane structure (with m membranes),
• w0 is the finite multiset of objects over O \ E present in the environment at

the beginning of a computation,
• w1, . . . , wm are the multisets of objects present in the m regions of µ at the

beginning of a computation,
• R1, . . . , Rm are finite sets of symport and/or antiport rules, associated with

the membranes of µ,
• fO, fI is the label of the membrane region from which the outputs are taken/the

inputs are put in.

Every rule is of the form (u, out; v, in) with u, v ∈ O∗ and uv 6= λ; if u = λ
or v = λ then this rule is called a symport rule, otherwise it is called an antiport
rule. The application of a rule (u, out; v, in) ∈ Ri means sending out u from region
i and taking v into it from the surrounding region.

For (u, out; v, in), max {|u| , |v|} is called its weight and |uv| is called its size;
obviously, for symport rules weight and size are the same.

The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈
{sequ, asyn,max, smax,maxrule, . . . }, computed by symport/antiport P systems
with at most m membranes, symport rules with maximal weight r as well
as antiport rules with maximal weight w and maximal size s are denoted by
Yγ,δOPm (symr, antiw,s).

3.1 Accepting Antiport P Systems

Theorem 1. For Y ∈ {N,Ps}, β ∈ {max, smax,maxrule},

Yβ,accDOPm (anti2,3) = Y RE.
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Proof. Let M = (m,B, l0, lh, P ) be an arbitrary deterministic register machine.
We now construct an antiport P system simulating M . The number in register r
is represented by the corresponding number of symbol objects or.

• An ADD-instruction p : (ADD(r), q) is simulated by the rule (p, out; orq, in).
• A SUB-instruction p : (SUB(r), q, s) is simulated by the following rules

1. (p, out; p′p′′, in);
2. (p′, out; p̃, in) as well as (p′′or, out; p̄, in) which is executed in parallel if and

only if the register is not empty;
3. (p̃p′′, out; s, in) (if register was empty),

(p̃p̄, out; q, in) (if register was not empty).

As can be seen immediately, in each step only different rules can be applied,
each of them only once. Hence, the proof elaborated for the max-mode literally
also works for the derivation modes smax and maxrule without any restrictions
as well. ut

4 P Systems with Anti-Matter

For any object a (matter), we consider its anti-object (anti-matter) a− and the
corresponding (cooperative) annihilation rule aa− → λ. This rule is assumed to
exist in all membranes.

In the following, we assume these annihilation rules to have (weak) priority over
all other rules, i.e., other rules may only be applied if objects cannot be bound by
an annihilation rule any more.

This type of rules is abbreviated by antim/pri, indicating matter/anti-matter
annihilation rules having weak priority. For further results we refer to [1].

4.1 Matter/Anti-Matter Annihilation Rules Having Priority

The matter/anti-matter annihilation rules are so powerful that we only need the
minimum number of catalysts, i.e., zero (cat(0) = ncoo).

Theorem 2. [1] For any n ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈ {acc, aut},
Z ∈ {Fun,Rel}, and β ∈ {max, smax,maxrule},

Yβ,δOPn (ncoo, antim/pri) = Y RE and
ZYβ,αOPn (ncoo, antim/pri) = ZY RE.

4.2 Deterministic Matter/Anti-Matter Accepting P Systems

In the accepting case, we can even simulate the actions of a deterministic register
machine in a deterministic way, i.e., for each configuration of the system, there
can be at most one multiset of rules applicable to it. Yet the proof exhibited in
[1], even fulfills the condition that every rule is only applied at most once.
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Theorem 3. For any n ≥ 1,Y ∈ {N,Ps}, and β ∈ {max, smax,maxrule},

Yβ,detaccOPn (ncoo, antim/pri) = Y RE and
FunYβ,detaccOPn (ncoo, antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P ) can be simulated in a deterministic way without introducing a
trap symbol and therefore causing infinite loops by them:

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

We now take the rules ar
− → M̃r

−M̂r and the annihilation rules arar
− → λ

for every register r as well as l̂l̂− → λ and l̃l̃− → λ for all l ∈ B. Then a SUB-
instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B, l2, l3 ∈ B′, 1 ≤ r ≤ m, is simulated
by

l1 → l̄1ar
−

,

l̄1 → l̂1
−(M̃r \ {l̃1}),

l̂1
− → l2(M̃r

− \ {l̃1−}), and

l̃1
− → l3(M̂r

− \ {l̂1−}).

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated.
Again, the proof elaborated for the max-mode literally also works for the

derivation modes smax and maxrule without any restrictions as well. ut

5 Catalytic and Purely Catalytic P Systems

We now investigate proofs elaborated for catalytic and purely catalytic P systems
working in the max-mode for the smax-mode.

5.1 Computational Completeness of Catalytic P Systems

We first check the construction for simulating a register machine M =
(d,B, l0, lh, R) by a catalytic P system Π, with m ≤ d being the number of decre-
mentable registers, elaborated in [3] for the max-mode, and argue why it works
for the smax-mode, too.

For all d registers, ni copies of the symbol oi are used to represent the value
ni in register i, 1 ≤ i ≤ d. For each of the m decrementable registers, we take
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a catalyst ci and two specific symbols di, ei, 1 ≤ i ≤ m, for simulating SUB-
instructions on these registers. For every l ∈ B, we use pl, and also its variants
p̄l, p̂l, p̃l for l ∈ BSUB , where BSUB denotes the set of labels of SUB-instructions.

Π = (O,C, µ = [ ]1, w1 = c1 . . . cmd1 . . . dmp1w0, R1, f = 1),
O = C ∪D ∪ E ∪Σ
∪ {#} ∪ {pl | l ∈ B} ∪ {p̄l, p̂l, p̃l | l ∈ BSUB},

C = {ci | 1 ≤ i ≤ m},
D = {di | 1 ≤ i ≤ m},
E = {ei | 1 ≤ i ≤ m},
Σ = {oi | 1 ≤ i ≤ d},
R1 = {pj → orpkDm, pj → orplDm | j : (ADD(r), k, l) ∈ R}
∪ {pj → p̂jerDm,r, pj → p̄jDm,r, p̂j → p̃jD

′
m,r,

p̄j → pkDm, p̃j → pkDm | j : (SUB(r), k, l) ∈ R}
∪ {cror → crdr, crdr → cr, cr⊕m1er → cr⊕m1 | 1 ≤ r ≤ m},
∪ {dr → #, crer → cr# | 1 ≤ r ≤ m}
∪ {#→ #}.

Here r⊕m1 for r < m simply is r+ 1, whereas for r = m we define m⊕m1 = 1;
w0 stands for additional input present at the beginning.

Usually, every catalyst ci, i ∈ {1, . . . ,m}, is kept busy with the symbol di
using the rule cidi → ci, as otherwise the symbols di would have to be trapped by
the rule di → #, and the trap rule # → # then enforces an infinite non-halting
computation.

In the smax-derivation mode only one trap rule #→ # will be carried
out, but this is the only difference!

Only during the simulation of SUB-instructions on register r the corresponding
catalyst cr is left free for decrementing or for zero-checking in the second step of
the simulation, and in the decrement case both cr and its “coupled” catalyst cr⊕m1

are needed to be free for specific actions in the third step of the simulation.
For the simulation of instructions, we use:

Dm =
∏
i∈[1..m] di,

Dm,r =
∏
i∈[1..m]\{r} di,

D′m,r =
∏
i∈[1..m]\{r,r⊕m1} di.

The HALT-instruction labeled lh is simply simulated by not introducing the
corresponding state symbol plh , i.e., replacing it by λ, in all rules defined in R1.

Each ADD-instruction j : (ADD(r), k, l), for r ∈ {1, . . . , d}, can easily be
simulated by the rules pj → orpkDm and pj → orplDm; in parallel, the rules
cidi → ci, 1 ≤ i ≤ m, have to be carried out, as otherwise the symbols di would
have to be trapped by the rules di → #.

Each SUB-instruction j : (SUB(r), k, l), is simulated as shown in the table
listed below (the rules in brackets [ and ] are those to be carried out in case of a
wrong choice):
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Simulation of the SUB-instruction j : (SUB(r), k, l) if
register r is not empty register r is empty
pj → p̂jerDm,r pj → p̄jDm,r

cror → crdr [crer → cr#] cr should stay idle
p̂j → p̃jD

′
m,r p̄j → pkDm

crdr → cr [dr → #] [dr → #]
p̃j → pkDm

cr⊕m1er → cr⊕m1

In the first step of the simulation of each instruction (ADD-instruction, SUB-
instruction, and even HALT-instruction) due to the introduction of Dm in the
previous step (we also start with that in the initial configuration) every catalyst
cr is kept busy by the corresponding symbol dr, 1 ≤ r ≤ m.

Based on the construction elaborated in [3] and recalled above in sum we have
obtained the following result:

Theorem 4. For any register machine M = (d,B, l0, lh, R), with m ≤ d being the
number of decrementable registers, we can construct a catalytic P system

Π = (O,C, µ = [ ]1, w1, R1, f = 1)

working in the max- or the smax-derivation mode and simulating the computations
of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 5×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.

5.2 Computational Completeness of Purely Catalytic P Systems

For the purely catalytic case, one additional catalyst cm+1 is needed to be used
with all the non-cooperative rules. Unfortunately, in this case a slightly more
complicated simulation of SUB-instructions is needed, a result established in [12],
where for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 5×m+ 1,

and for purely for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 6×m+ 1,

is shown. Yet also this proof literally works for the smax-derivation mode as well,
with the only exception that the trap rule #→ # is carried out at most once.
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6 Computational Completeness of (Purely) Catalytic P
Systems with Additional Control Mechanisms

In this section we consider (purely) catalytic P systems with additional control
mechanisms, in that way reaching computational completeness with only one (two)
catalyst(s).

6.1 P Systems with Label Selection

For all the variants of P systems of type X, we may consider to label all the rules
in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and to take a
set W containing subsets of H. Then a P system with label selection is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H is
a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any transition
step in Π we first select a set of labels U ∈W and then apply a non-empty multiset
R of rules such that all the labels of these rules in R are in U in the maximally
parallel way, i.e., the set R cannot be extended by any further rule with a label
from U so that the obtained multiset of rules would still be applicable to the
existing objects in the membrane regions 1, . . . ,m. The families of sets Yγ,δ (Π),
Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈ {sequ, asyn,max, smax,maxrule, . . . },
computed by P systems with label selection with at most m membranes and rules
of type X is denoted by Yγ,δOPm (X, ls).

The proof of the following theorem is based on the proof given in [6] for the
maximally parallel mode max; the proof can be taken over for the mode smax
word by word; the only difference is that in non-successful computations where
more than one trap symbol # has been generated, the trap rule # → # is only
applied once.

Theorem 5. Yγ,δOP1 (cat1, ls) = YγδOP1 (pcat2, ls) = Y RE for any Y ∈
{N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax}.

Proof. We only prove the inclusion PsRE ⊆ Pssmax,genOP1 (cat1, ls). Let us con-
sider a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , [ ]
1
, cdl0, R1, H,W, 0),

O = A ∪B ∪ {d,#} ,
H = {l, l′ | l ∈ B} ∪

{
l〈x〉 | x ∈ {1, 2, 1′, 2′, d,#}

}
,
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and the rules for R1 and the sets of labels in W are defined as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the
(labeled) rules

li : li → lj (ar, out) , l′i : li → lk (ar, out) ,

are used, and for r ∈ {1, 2}, we take the rules

li : li → ljar, l′i : li → lkar.

In both cases, we define {li, l′i} to be the corresponding set of labels in W . The
contents of each register r, r ∈ {1, 2}, is represented by the number of objects ar
present in the skin membrane; any object ar with r ≥ 3 is immediately sent out
into the environment.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), for r ∈ {1, 2}, is
carried out by the following rules and the corresponding sets of labels in W :

For the case that the register r, r ∈ {1, 2}, is not empty we take the (labeled)
rules

li : li → lj , l〈r〉 : car → c, l〈d〉 : cd→ c#,

(if no symbol ar is present, i.e., if the register r is empty, then the trap symbol #
is introduced by the rule l〈d〉 : cd→ c#).

For the case that the register r is empty, we take the (labeled) rules

l′i : li → lk, l〈r′〉 : car → c#

(if at least one symbol ar is present, i.e., if the register r is not empty, then the
trap symbol # is introduced by the rule l〈r′〉 : car → c#).

The corresponding sets of labels to be taken into W are
{
li, l〈r〉, l〈d〉

}
and{

l′i, l〈r′〉
}

, respectively. In both cases, the simulation of the SUB instruction works
correctly if we have made the right choice.

C. As soon as the final label lh is reached, we apply the rules

lh : lh → λ, l′h : cd→ c

according to the set of labels {lh, l′h} in W . In fact, neglecting the single catalyst c,
we could even obtain a clean result in the skin membrane when leaving the result
objects in the skin membrane instead of sending them out.

D. We also add the labeled rule l〈#〉 : #→ # to R1 and the set
{
l〈#〉

}
to W ,

hence, the computation cannot halt once the trap symbol # has been generated.

In sum, we observe that each computation step in M is simulated by exactly
one computation step in Π; moreover, such a simulating computation in Π halts
if and only if the corresponding computation in M halts (as soon as the label lh
appears, only the set of rules {lh, l′h} can be applied, and afterwards no rule can
be applied anymore in Π, of course, provided that no trap symbol is present).
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If at some moment we make the wrong choice when trying to simulate a SUB
instruction and have to generate the trap symbol #, the computation will never
halt. Hence, we have shown Ps (M) = Ps (Π), which completes the proof for the
catalytic case.

For the purely catalytic case, all the non-cooperative rules are associated with
the second catalyst, which immediately yields the corresponding purely catalytic
P system with two catalysts. ut

6.2 Controlled P Systems and Time-Varying P Systems

Another method to control the application of the labeled rules is to use control
languages (see [9] and [4]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H, L, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H
is a set of labels for the rules in the sets R1, . . . , Rm, and L is a string language
over 2H (each subset of H represents an element of the alphabet for L) from
a family FL. Every successful computation in Π has to follow a control word
U1 . . . Un ∈ L: in transition step i, only rules with labels in Ui are allowed to be
applied (but again in the maximally parallel way, i.e., we have to apply a multiset
R of rules with labels in Ui which cannot be extended by any rule with a label
in Ui such that the resulting multiset would still be applicable), and after the
n-th transition, the computation halts; we may relax this end condition, i.e., we
may stop after the i-th transition for any i ≤ n, and then we speak of weakly
controlled P systems. If L = (U1 . . . Up)

∗
, Π is called a (weakly) time-varying

P system: in the computation step pn + i, n ≥ 0, rules from the set Ui have
to be applied; p is called the period. The family of sets Yγ,δ (Π), Y ∈ {N,Ps},
computed by (weakly) controlled P systems and (weakly) time-varying P systems
with period p, with at most m membranes and rules of type X as well as control
languages in FL is denoted by Yγ,δOPm (X,C (FL)) (Yγ,δOPm (X,wC (FL))) and
Yγ,δOPm (X,TVp) (Yγ,δOPm (X,wTVp)), respectively, for δ ∈ {gen, acc} and γ ∈
{sequ, asyn,max, smax,maxrule, . . . }.

The proof of the following theorem again is taken over for the mode smax word
by word as given in [6] for the maximally parallel mode max.

Theorem 6. Yγ,δOP1 (cat1, αTV6) = Yγ,δOP1 (pcat2, αTV6) = Y RE, for any α ∈
{λ,w}, Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax}.

Proof. We only prove the inclusion PsRE ⊆ Pssmax,genOP1 (cat1, TV6). Let us
consider a register machine M = (n+ 2, B, l0, lh, I) with only the first and the
second register ever being decremented. Again, we define A = {a1, . . . , an+2} and
divide the set of labels B \ {lh} into three disjoint subsets:
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B+ = {li | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {li | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪B−2 as well as

B′ =
{
l, l̃, l̂ | l ∈ B \ {lh}

}
∪
{
l−, l0, l̄−, l̄0, | l ∈ B−

}
.

The main challenge in the construction for the time-varying P system Π is that
the catalyst has to fulfill its task to erase an object ar, r ∈ {1, 2}, for both objects
in the same membrane where all other computations are carried out, too; hence,
at a specific moment in the cycle of period six, parts of simulations of different
instructions have to be coordinated in parallel. The basic components of the time-
varying P system Π are defined as follows (we here do not distinguish between a
rule and its label):

Π = (O, {c} , [ ]
1
, cl0, R1 ∪ · · · ∪R6, R1 ∪ · · · ∪R6, (R1 . . . R6)

∗
, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, h, lh,#} .

We now list the rules in the sets of rules Ri to be applied in computation steps
6n+ i, n ≥ 0, 1 ≤ i ≤ 6:

R1: in this first step of the cycle, especially all the ADD instructions are sim-
ulated, i.e., for each li : (ADD (r) , lj , lk) ∈ I we take

cli → car l̃j , cli → car l̃k for r ∈ {1, 2} as well as cli → c(ar, out)l̃j , cli →
c(ar, out)l̃k for 3 ≤ r ≤ n + 2 (in order to obtain the output in the environment,
for r ≥ 3 we have to take (ar, out) instead of ar); only in the sixth step of the cycle,
from l̃j and l̃k the corresponding unmarked labels lj and lk will be generated;

cl → cl−, cl → cl0 initiate the simulation of a SUB instruction for register 1
labeled by l ∈ B−1, i.e., we make a non-deterministic guess whether register r is
empty (with introducing l0) or not (with introducing l−);

cl → cl̂ marks a label l ∈ B−2 (the simulation of such a SUB instruction for
register 2 will start in step 4 of the cycle);

# → # keeps the trap symbol # alive guaranteeing an infinite loop once #
has been generated;

h → λ eliminates the auxiliary object h which eventually has been generated
two steps before (h is needed for simulating the decrement case of SUB instruc-
tions).

R2: in the second and the third step, the SUB instructions on register 1 are
simulated, i.e., for all l ∈ B−1 we start with

ca1 → ca′1 (if present, exactly one copy of a1 can be primed, but only if a label
l− for some l from B−1 is present) and

l− → l̄−h, l0 → l̄0 for all l ∈ B−1;
all other labels l̃ for l ∈ B block the catalyst c from erasing a copy of a1 by

forcing the application of the corresponding rules cl̃ → cl̃ for c in order to avoid
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the introduction of the trap symbol # by the enforced application of a rule l̃→ #,
i.e., we take

cl̃→ cl̃, l̃→ # for all l ∈ B, and
cl̂→ cl̂, l̂→ # for all l ∈ B−2;
#→ # keeps the computation alive once the trap symbol has been introduced.

R3: for all li : (SUB (1) , lj , lk) ∈ I we take

cl̄0i → cl̃k, a′1 → #, l̄0i → # (zero test; if a primed copy of a1 is present, then
the trap symbol # is generated);

l̄−i → l̃j , ca
′
1 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 1 to be non-empty);

cl̃→ cl̃, l̃→ # for all l ∈ B (with these labels, we just pass through this step);

cl̂ → cl̂, l̂ → # for all l ∈ B−2 (these labels pass through this step to become
active in the next step);

#→ #.

R4: in the fourth step, the simulation of SUB instructions on register 2 is
initiated by using

cl̂ → cl−, cl̂ → cl0 for all l ∈ B−2, i.e., we make a non-deterministic guess
whether register r is empty (with introducing l0) or not (with introducing l−);

cl̃ → cl̃, l̃ → # for all l ∈ B (with all other labels, we only pass through this
step);

#→ #,
h → λ (if h has been introduced by l− → l̄−h in the second step for some

l ∈ B−1, we now erase it).

R5: in the fifth and the sixth step, the SUB instructions on register 2 are
simulated, i.e., for all l ∈ B−2 we start with

ca2 → ca′2 (if present, exactly one copy of a2 can be primed) and
l− → l̄−h, l0 → l̄0 for all l ∈ B−2;
c1 l̃→ c1 l̃, l̃→ # for all l ∈ B;
#→ #.

R6: the simulation of SUB instructions li : (SUB (2) , lj , lk) ∈ I on register 2 is
finished by

cl̄0i → clk, a′2 → #, l̄0i → # (zero test; if a primed copy of a2 is present, then
the trap symbol # is generated);

l̄−i → lj , ca
′
2 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 2 to be non-empty; if it is not used, it can
be erased in the next step by using h→ λ in R1);

cl̃→ cl, l̃→ # for all l ∈ B;
#→ # .

Without loss of generality, we may assume that the final label lh in M is only
reached by using a zero test on register 2; then, at the beginning of a new cycle,
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after a correct simulation of a computation from M in the time-varying P system
Π no rule will be applicable in R1 (another possibility would be to take cl̄0i → c
instead of cl̄0i → clh in R6).

At the end of the cycle, in case all guesses have been correct, the requested
instruction of M has been simulated and the label of the next instruction to be
simulated is present in the skin membrane. Only in the case that M has reached
the final label lh, the computation in Π halts, too, but only if during the simulation
of the computation of M in Π no trap symbol # has been generated; hence, we
conclude Ps (M) = Ps (Π).

For the purely catalytic case, all the non-cooperative rules are associated with
the second catalyst, which immediately yields the corresponding purely catalytic
P system with two catalysts. ut

7 P Systems with Toxic Objects

In many variants of (catalytic) P systems, for proving computational completeness
it is common to introduce a trap symbol # for the case that the derivation goes the
wrong way as well as the rule #→ # (or c#→ c# with a catalyst c) guaranteeing
that the derivation will never halt. Yet most of these rules can be avoided if we
specify a specific subset of toxic objects Otox.

The P system with toxic objects is only allowed to continue a computation
from a configuration C by using an applicable multiset of rules covering all copies
of objects from Otox occurring in C; moreover, if there exists no multiset of ap-
plicable rules covering all toxic objects, the whole computation having yielded the
configuration C is abandoned, i.e., no results can be obtained from this computa-
tion.

For any variant of P systems, we add the set of toxic objects Otox and
in the specification of the families of sets of (vectors of) numbers generated
by P systems with toxic objects using rules of type X we add the subscript
tox to O, thus obtaining the families Yγ,genOtoxPm (X), for any m ≥ 1, γ ∈
{sequ, asyn,max, smax,maxrule}, and Y ∈ {N,Ps}.

The following theorem stated in [2] only for the max-mode obviously hols for
the smax-mode, too.

Theorem 7. For β ∈ {max, smax},

PsRE = Psβ,genOtoxP1([p]cat2).

In general, we can formulate the following “metatheorem”:

Metatheorem: Whenever a proof has been established for the derivation mode
max and literally also holds true for the derivation mode smax, then omitting
trap rules by using the concept of toxic objects works for both derivation modes in
the same way.
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In the following sections, we now turn our attention to models of P systems
where the derivation mode smax yields different, in fact, stronger results than the
derivation mode max.

8 Atomic Promoters and Inhibtors

As shown in [11], P systems with non-cooperative rules and atomic inhibitors
are not computationally complete when the maximally parallel derivation mode
is used. P systems with non-cooperative rules and atomic promoters can at least
generate PsET0L. On the other hand, already in [10], the computational com-
pleteness of P systems with non-cooperative rules and atomic promoters has been
shown. In the following we will establish a new proof for the simulation of a regis-
ter machine where the overall number of promoters only depends on the number
of decrementable registers of the register machine. Moreover, we also show a new
pretty surprising result, establishing computational completeness of P systems
with non-cooperative rules and atomic inhibitors, and the number of inhibitors
again only depends on the number of decrementable registers of the simulated
register machine. Finally, in both cases, if the register machine is deterministic,
then the P system is deterministic, too.

8.1 Atomic Promoters

We now establish our new proof for the computational completeness of P systems
with non-cooperative rules and atomic promoters when using the derivation mode
smax; the overall number of promoters only is 5m where m is the number of
decrementable registers of the simulated register machine.

Theorem 8. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

working in the smax- or maxrule-derivation mode and simulating the computations
of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 7×m,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number of
atomic inhibitors is 5m. Finally, if the register machine is deterministic, then the
P system is deterministic, too.
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Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d; moreover, we denote BSUB = {p | p : (SUB(r), q, s) ∈ R}.

O = {or | 1 ≤ r ≤ d} ∪ {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p′′′ | p ∈ BSUB}

The symbols from {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m} are used as promoters.
An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p → qor

and p→ sor.
A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′cr;
2. p′ → p′′c′r; or → o′r |cr , cr → λ;
3. p′′ → p′′′c′′′r , c′r → c′′r |o′r , o′r → λ;
4. p′′′ → q |c′′r , p′′′ → s |c′r , c′r → λ |c′′′r

, c′′r → λ, c′′′r → λ.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

8.2 Atomic Inhibtors

We now show that even P systems with non-cooperative rules and atomic promot-
ers using the derivation mode smax can simulate any register machine needing
only 2m + 1 inhibitors where m is the number of decrementable registers of the
simulated register machine.

Theorem 9. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

a P system with atomic inhibitors Π = (O,µ = [ ]1, w1 = l0, R1, f = 1) working
in the smax- or maxrule-derivation mode and simulating the computations of M
such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 3×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number of
atomic inhibitors is 2m+ 1. Finally, if the register machine is deterministic, then
the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d. The symbols dr prevent the register symbols or, 1 ≤ r ≤ m, from evolving.
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O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ {dr | 0 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p̃ | p ∈ BSUB}

We denote D =
∏m
i=1 di and Dr =

∏m
i=1,i6=r di.

An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p→ qorD
and p→ sorD.

A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′Dr;
2. p′ → p′′Dd0; in parallel, the following rules are used:
or → o′r |¬dr , dk → λ, 1 ≤ k ≤ m;

3. p′′ → p̃D |¬o′r ; o′r → λ, d0 → λ;
again, in parallel the rules dk → λ, 1 ≤ k ≤ m, are used;

4. p′′ → qD |¬d0 , p̃→ sD.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

9 P Systems with Target Selection

In P systems with target selection, all objects on the right-hand side of a rule must
have the same target, and in each derivation step, for each region a (multi)set of
rules – non-empty if possible – having the same target is chosen. We show that
for P systems with target selection in the derivation mode smax no catalyst is
needed any more, and with maxrule, we even obtain a deterministic simulation of
deterministic register machines.

Theorem 10. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules working in the smax-derivation mode and simulating the compu-
tations of M .

Proof. As usual, we take an arbitrary register machine M with d registers sat-
isfying the following conditions: the output registers are m + 1, · · · , d, and they
are never decremented; moreover, registers 1, · · · ,m are empty in any reachable
halting configuration. Clearly, these conditions do not restrict the generality. We
construct the following P system Π simulating M .

The correct behavior of the object associated to the simulated instruction of
M is the following. In the decrement case, we have inr + 2, out, in2, idle, out, in2,
here, out, here (9 steps in total), whereas in the zero-test case, we have the same
as before, except that the fourth and the fifth steps are out and here instead of idle
and out, respectively. In case of an increment instruction, we get here, here, here,
here, in2, here, out, here (8 steps in total). We remark that the first four steps
are carried out in the skin, while the last four steps repeat the cases of zero-test
and decrement.
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The value of each register r is represented by the multiplicity of objects or in the
skin. For every decrementable register r, there is a rule sending or into region r+2.
However, this rule may only be applied safely in the first step of the simulation of
the SUB instruction, as otherwise some other object will also enter the same region
as # (either one of e, e′, e′′, ê, ê′, which we will in the following refer to as the
guards, or an object associated to the label of the simulated instruction, which we
will in the following call a program symbol) forcing an unproductive computation,
see the rules in brackets in the tables below.

The “correct” target selection for the inner regions normally coincides with
that of the program symbol (described above) and no rule is applied there if
the program symbol is not there, with the following exceptions. In the first step
of simulating an instruction, object e exits membrane 2, as it is the only rule
applicable there in this step. In the last step of simulating an instruction, object
ē is rewritten into e in membrane 2, as it is the only rule applicable there in this
step. In the fourth step of the decrement case, the program symbol is idle while
object d is erased. The “correct” target selection for the skin coincides with that
of the program symbol, and is here if the program symbol is missing in the skin.
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Π = (O,µ,w1, · · · , wm+2, R1, · · · , Rm+2) where

O = {or | 1 ≤ r ≤ d} ∪ {p̄, p | p ∈ B} ∪ {p′, p′′p̂ | p ∈ BADD}
∪ {p′, p−, p′−, p0, p′0, p′′0 | p ∈ BSUB} ∪ {ē, e, e′, e′′, ê, ê′, d,#},

µ = [ [ ]
2
· · · [ ]

m+2
]
1
,

w1 = l0, w2 = e, wr+2 = λ, 1 ≤ r ≤ m,

R1 =

m+2⋃
i=1

(R1,i,s ∪R1,i,#),

Ri = Ri,1,s ∪Ri,1,# ∪Ri,i,s ∪Ri,i,#, 2 ≤ j ≤ m+ 2,

R1,1,s = {e→ e′, e′ → e′′, e′′ → ê, ê→ ê′, e′ → λ}
∪ {p′0 → p′′0 | p ∈ BSUB} ∪ {p̄→ p | p ∈ B}
∪ {p→ p̃or | p : (ADD(r), q, s) ∈ P}
∪ {p̃→ p′, p′ → p′′, p′′ → p̂ | p ∈ BADD},

R1,2,s = {p′ → (p−, in2), p′ → (p0, in2), p′− → (p′−, in2), p′′0 → (p′′0 , in2)

| p ∈ BSUB} ∪ {p̂→ (p̂, in2) | p ∈ BADD} ∪ {d→ (d, in2)}
R1,r+2,s = {or → (or, inr+2)} ∪ {p→ (p, inr+2)

| p : (SUB(r), q, s) ∈ P}, 1 ≤ r ≤ m,
R1,1,# = {p′ → #, p′′0 → #, p′− → # | p ∈ BSUB} ∪ {p̂→ # | p ∈ BADD}

∪ {#→ #},
R1,2,# = {p′0 → (#, in2), e′′ → (#, in2) | p ∈ BSUB}

∪ {p̄→ (#, in2) | p ∈ B},
R1,r+2,# = {x→ (#, inr+2} | x ∈ {e, e′, e′′, ê, ê′}

∪ {p′0, p′− | P ∈ BSUB} ∪ {p̄ | P ∈ B}}
∪ {p→ (#, inr+2) | p : (SUB(i), q, s) ∈ P, i 6= r}
∪ {p′ → (#, inr+2) | p ∈ BSUB}, 1 ≤ r ≤ m,

R2,1,s = {e→ (e, out)} ∪ {p̄→ (p̄, out) | p ∈ B}
∪ {p0 → (p′0, out), p− → (p′−, out) | p ∈ BSUB},

R2,2,s = {d→ λ, ē→ e} ∪ {| p ∈ B}
∪ {p′′0 → s̄ē, p′− → q̄ē | p : (SUB(r), q, s) ∈ P}
∪ {p̂→ q̄ē, p̂→ s̄ē | p : (ADD(r), q, s) ∈ P},

R2,1,# = {d→ (#, out),#→ (#, out)},
R2,2,# = {p0 → # | p ∈ BSUB} ∪ {p̄→ # | p ∈ B},

Rr+2,1,s = {p→ (p′, out) | p ∈ BSUB} ∪ {or → (d, out}, 1 ≤ r ≤ m
Rr+2,r+2,# = {#→ (#, out)}, Rr+1,r+1,s = Rr+1,r+1,# = ∅.

Most trapping rules, given in brackets in the tables below and listed in rule
groups Ri,j,# above, are only needed to force the “correct” target selection. The
exception are some rules in steps 4 and 5 of the simulation of SUB instructions,
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needed for verifying that the decrement and the zero test have been performed
correctly (the guess is made at step 3 by the program symbol, and is reflected
in its subscript). Indeed, if the zero-test is chosen while d is present (signifying
that the register was decremented), causing a target conflict: either p0 or d will
be anyway rewritten into #. However, if the decrement is chosen while d is absent
(signifying that the register was zero), then p− will appear in the skin in step 4
instead of step 5, causing a target conflict: either p′− or e′′ will be anyway rewritten
into #.

Below we present the tables describing the simulation of instructions of M . An
application of one of the rules given in brackets leads to non-halting computations,
not contributing to the result.

(p : (SUB(r), q, s))

r + 2 1 2
1 - or → (or, inr+2) e→ (e, out)

- p→ (p, inr+2)
[p→ (#, ini+2), i 6= r]

2 p→ (p′, out) e→ e′ -
or → (d, out) [e→ (#, ini+2)]

3 - p′ → (p−, in2) -
p′ → (p0, in2)
d→ (d, in2)
[p′ → #]
[e′ → (#, ini+2)]

1,- 1,0 2,- 2,0
4 e′ → e′′ d→ λ p0 → (p′0, out)

[p− → (p′−, out)] [d→ (#, out)]
[p0 → #]

5 e′′ → ê p′0 → p′′0 p− → (p′−, out) -
[p′− → (p′−, in2)] e′′ → ê
[p′− → #] [p′0 → (#, int)]
[e′′ → (#, int)] [e′′ → (#, int)]
[for t > 1] [for t > 1]

6 p′− → (p′−, in2) p′′0 → (p′′0 , in2) -
[p′− → #] [p′′0 → #]
[p′− → (#, ini+2)] [p′′0 → (#, ini+2)]

7 ê→ ê′ p′− → q̄ē p′′0 → s̄ē
[ê→ (#, ini+2)]

8 ê′ → λ q̄ → (q̄, out) s̄→ (s̄, out)
[ê′ → (#, ini+2)] [q̄ → #] [s̄→ #]

9 q̄ → q s̄→ s ē→ e
[q̄ → (#, int)] [s̄→ (#, int)]
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(p : (ADD(r), q, s))

1 2
1 p→ p̃or e→ (e, out)
2 p̃→ p′ -
e→ e′

3 p′ → p′′ -
e′ → e′′

4 p′′ → p̂ -
e′′ → ê

5 p̂→ (p̂, in2) -
[p̂→ #]

6 ê→ ê′ p̂→ x̄ē
7 ê′ → λ x̄→ (x̄, out)

[x̄→ #]
8 x̄→ x ē→ e

Auxiliary rules
r + 2 1 2
[#→ (#, out)] [#→ #] [#→ (#, out)]

Nearly half of the steps in the preceding constructions is needed for releasing
the auxiliary symbol e in the first step of a simulation from membrane 2, yet in
our construction, e and its derivatives are needed to control the correct target
selection in the skin membrane, and especially to keep the register objects or from
moving into membrane r + 2. ut

We now show that taking the maximal sets of rules which are applicable, the
simulation of SUB-instructions can even be carried out in a deterministic way.

Theorem 11. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules

Π = (O,µ = [ [ ]2 . . . [ ]2m+1 ]1, w1, λ, . . . , λ,R1 . . . R2m+1, f = 1)

working in the maxrule-derivation mode and simulating the computations of M
such that

|R1| ≤ 1×ADD1(R) + 2×ADD2(R) + 4× SUB(R) + 10×m+ 3,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.
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Proof. The contents of the registers r, 1 ≤ r ≤ d is represented by the numbers of
objects or, and for the decrementable registers we also use a copy of the symbol o′r
for each copy of the object or. This second copy o′r is needed during the simulation
of SUB-instructions to be able to distinguish between the decrement and the zero
test case. For each r, the two objects or and o′r can only be affected by the rules
or → (λ, inr+1) and o′r → (λ, inr+1) sending them into the membrane r + 1
corresponding to membrane r (and at the same time erasing them; in fact, we
could also leave them in the membrane unaffected forever as a garbage). These are
already two rules, so any other combination of rules with different targets has to
contain at least three rules.

One of the main ideas of the proof construction is that in the skin mem-
brane the label p of an ADD-instruction is represented by the three objects p and
e, e′, and the label p of any SUB-instruction is represented by the eight objects

p, e, e′, e′′, dr, d
′
r, d̃r, d̃r

′
. Hence, for each p ∈ (B \ {lh}) we define R(p) = pee′ for

p ∈ BADD and R(p) = pee′e′′drd
′
rd̃rd̃r

′
for p ∈ BSUB as well as R(lh) = λ; as

initial multiset w1 in the skin membrane, we take R(l0).

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ (B \ {lh})

∪
{
dr, d

′
r, d̃r, d̃r

′
| 1 ≤ r ≤ m

}
∪ {e, e′, e′′}

An ADD-instruction p : (ADD(r), q, s) is simulated by the rules p → R(q)or
and p→ R(s)or as well as the rules e→ λ and e′ → λ. This combination of three
rules supercedes any combination of rules or → (λ, inr+1) and o′r → (λ, inr+1), for
some 1 ≤ r ≤ m.

A SUB-instruction p : (SUB(r), q, s) is simulated in two steps as follows:

1. In R1, for the first step we take one of the following tuple of rules
p→ (p, inr+1), dr → (λ, inr+1), d′r → (λ, inr+1), d̃r → (λ, inr+1),
or → (λ, inr+1), o′r → (λ, inr+1);
p→ (p, inm+r+1), dr → (λ, inm+r+1), d′r → (λ, inm+r+1),

d̃r → (λ, inm+r+1), d̃r
′
→ (λ, inm+r+1);

the application of the rules or → (λ, inr+1), o′r → (λ, inr+1) in contrast to the

application of the rule d̃r
′
→ (λ, inm+r+1) determines whether the first or the

second tuple of rules has to be chosen. Here it becomes clear why we have to
use the two register symbols or and o′r, as we have to guarantee that the target
r+ 1 cannot be chosen if none of these symbols is present, as in this case then
only four rules could be chosen in contrast to the five rules for the zero test
case. On the other hand, if some of these symbols or and o′r are present, then
six rules are applicable superceding the five rules which could be used for the
zero test case.

2. In the second step, the following three or four rules, again superceding any
combination of rules or → (λ, inr+1) and o′r → (λ, inr+1) for some 1 ≤ r ≤ m,
are used in the skin membrane:
e→ λ, e′ → λ, e′′ → λ, and in the decrement case also the rule d̃r

′
→ λ.
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In the second step, we either find the the symbol p in membrane r + 1, if a
symbol or together with its copy o′r has been present for decrementing or in
membrane m+ r + 1, if no symbol or has been present (zero test case).
In the decrement case, the following rule is used in Rr+1: p→ (R(q), out).
In the zero test case, the following rule is used in Rm+r+1: p→ (R(s), out).

We finally point out that the simulation of the SUB-instructions works determin-
istically, hence, although the P system itself is not deterministic syntacticly, it
works in a deterministic way if the underlying register machine is deterministic.
ut

10 Conclusion and Future Work

It is not very surprising that the proofs we have checked in the preceding sections
also work for the derivation mode smax, as many constructions elaborated for the
derivation mode max just “break down” maximal parallelism to near sequentiality
in order to work for the simulation of register machines. On the other hand, we
also have shown that due to this fact some variants of P systems become even
stronger with the modes smax and maxrule.

• There are many models of P systems for which the maximally parallel deriva-
tion mode has been used, especially for showing computational completeness.

• As we have seen by careful inspection of several proofs for computational com-
pleteness, many results established with using the maximally parallel derivation
mode literally hold true as well for the derivation modes smax and maxrule.

• Many other constructions working in the maximally parallel derivation mode
have to be checked carefully if they work for the derivation modes smax and
maxrule, too.

• For some proofs having been established in the maximally parallel derivation
mode we might need completely new proofs or proof techniques for the set-
maximally parallel derivation mode; one such example is the proof for P systems
with target selection.

• Some variants of P systems become even stronger with the mode smax; as
already pointed out by Gheorghe Păun, P systems with non-cooperative rules
and atomic promoters are computationally complete with the smax-mode, also
see [10], and in this paper we have shown a new proof for this computational
completeness result and even shown a similar result for P systems with non-
cooperative rules and atomic inhibitors.

• On the other hand, eventually, some results stablished in the maximally parallel
derivation mode are not valid any more for the set-maximally parallel derivation
mode.
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