
Introduction

Aboveground biomass is the total amount of bio-
logical material (usually oven-dried to remove water)
present above the soil surface in a specif ied area.
Because almost 50% of plant biomass is carbon, esti-
mates of the total aboveground biomass in forest ecos-
ystems are critical for carbon dynamics studies at
multiple scales (Drake et al., 2003). Estimation of the
biomass and carbon stock of trees has gained impor-
tance in recent years, especially since the Kyoto Pro-

tocol of the United Nations Framework Convention on
Climate Change (UNFCCC) entered into force on 16
February 2005. Signatory countries must estimate
carbon stocks in 1990 and any changes since 1990 from
all afforestation, reforestation and deforestation
activities (UNFCCC, 1997). In addition, the continued
growth in energy demands in technologically develo-
ped societies and the requirement to reduce the subs-
tantial use of fossil fuels have made it necessary to
diversify means of energy production. In this sense,
the forest biomass in established plantations is attrac-
ting great interest as a renewable resource for biomass
energy production, because of the following advan-
tages: reduction in net warming and environmental
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pollution, decreased risk of sacrificing natural areas,
enhanced regional welfare, and avoidance of com-
petition with food production (Freppaz et al., 2004;
Field et al., 2008). Therefore, the measurement of fo-
rest biomass provides an indication of carbon se-
questration in trees and also an estimate of cellulosic
material as a potential source of renewable energy
(Popescu, 2007).

Eucalyptus spp. are the most productive tree species
in Galicia (NW Spain). Eucalypt plantations, which
occupy 215,899 ha in the region, accumulated approxi-
mately 52% of the harvested volume in the period
2005-2010 (3,574,500 m3 harvested in 2010, with an in-
crement of 15% in the period 2009-2010) (Confemadera,
2010). The most widespread management regime for
these plantations is short rotation forestry (SRF), with
initial densities of 1,000 to 2,400 stems ha–1 in single
stem stands at first rotation and subsequent replanting
or coppicing (Pérez-Cruzado et al., 2011). The planta-
tions are generally managed, without thinning, for wood
pulp production (and to a lesser extent, chip-board), and
they provide small wood that is not used by the sawn-
wood industry. Bioenergy production is one potential
use for these plantations (Pérez-Cruzado et al., 2011).

Despite the high productivity and potential of
eucalyptus forest as carbon sinks, there are important
deficiencies in the characterization and quantification
of the biomass resource available in Galicia. This has
arisen because forest information is usually acquired
through conventional forest inventory methods, which
often use detailed measurements taken from a small
set of sampling plots distributed randomly or syste-
matically over the forest area. The quality of the esti-
mates is thus limited by the cost of establishing suffi-
cient sample plots to measure the existing variability
(Lovell et al., 2005; Musk and Osborn, 2007; Rombouts
et al., 2008). Such inventories are extremely labour
intensive and expensive (Hall et al., 2005), especially
in small areas of privately owned land, and in practice
they do not allow full inventory coverage of large areas
on the ground or can extend over several years
(Boudreau et al., 2008).

Airborne Light Detection and Ranging (LiDAR) is
currently considered the most promising remote sen-
sing technology for forest inventory and biomass esti-
mation (Boudreau et al., 2008). It is capable of offering
detailed tri-dimensional information regarding the size
and structure of the forest canopy (Reitberger et al., 2008;
Wagner et al., 2008), which is closely related to above-
ground biomass (Lim et al., 2003b). This has potential

for timely and accurate measurement of tree biomass
components and carbon stored over time (Naesset and
Gobakken, 2008; Rosenqvist et al., 2003) for the whole
area, with an equal or better accuracy than other remote
sensing techniques (Bortolot and Wynne, 2005).

Two main approaches are used for biomass estima-
tion with commercial small-footprint discrete return
laser scanning data. The “single-tree” approach used
with spatially dense LiDAR data is based on laser de-
tection and on the measurement of individual tree para-
meters, usually tree height and crown diameter (Bortolot
and Wynne, 2005; Popescu et al., 2003; Popescu, 2007).
The “stand-level” approach used with low resolution
LiDAR data establishes empirical relationships between
plot-level stand measurements and the height distribu-
tion obtained from laser returns or other laser measure-
ments related to canopy density. This approach has been
used in regression analysis to estimate forest biomass
and carbon stock levels across a range of forest types
(Lim et al., 2003a; Lim and Treitz, 2004a, 2004b;
Patenaude et al., 2004; Andersen et al., 2005; Hall et
al., 2005; Thomas et al., 2006; Naesset and Gobakken,
2008; Sherrill et al., 2008; García et al., 2010; Treitz
et al., 2010; González-Ferreiro et al., 2012) as well as
shrub biomass (Estornell et al., 2011).

Metrics derived from LiDAR data are highly depen-
dent on the tree species involved (Heurich and Thoma,
2008) and are also correlated with field assessment of
various aspects of vegetation structure, which may
influence the derived relationships (Goodwin et al.,
2006). Small footprint discrete return LiDAR has been
used in eucalyptus forests to estimate a variety of stand
variables (Wack et al., 2003; Tesfamichael et al., 2010;
Gonçalves-Seco et al., 2011), and to explore the effects
of airborne LiDAR acquisition parameters on vegeta-
tion structural assessment (Goodwin et al., 2006).
However, there are no reports of biomass estimation
of Atlantic eucalyptus plantations of medium to high
density, characterized by very small crowns with sparse
leaves that may facilitate laser penetration.

Laser pulse density and vegetation structure are the
factors with the greatest effects on the height accuracy
of the laser-derived Digital Terrain Model (DTM). If
the ground elevation or the uppermost portion of the
forest canopy is not well detected, the normalised heights
of the trees and the Digital Crown Model (DCM)
obtained will be underestimated (Hyyppä et al., 2008).
Goodwin et al. (2006) argued that point density is even
more important than footprint size or flight altitude in
determining certain forest variables such as crown area
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and volume. Magnusson (2006) observed a significant
increase in the root mean square error for mean height
and stand volume estimates when the laser pulse den-
sity was greatly decreased, while other authors (Maltamo
et al., 2006; Thomas et al., 2006; Gobakken and Næsset,
2007; García et al., 2010; Treitz et al., 2010; González-
Ferreiro et al., 2012) argued that the estimation of most
forest stand variables may not be affected. This should
be verified in different forests and regions to determine
whether LiDAR data can be collected at a lower avera-
ge point spacing for a more cost-effective ground
coverage, while maintaining the accuracy of the esti-
mates (Thomas et al., 2006).

The aim of this study was to estimate biomass fractions
in Eucalyptus globulus Labill. plantations from height
and intensity data gathered with a small footprint dis-
crete return LiDAR system. The effect of a reduction
in pulse density on model precision was examined, in
light of the availability of low-density LiDAR data (0.5
pulses m–2) for most of the Spanish territory.

Materials and methods

Study area

The study area is a 1 × 4 km rectangle located in the
municipality of Vilapena (Galicia, NW Spain) (see
Fig. 1). This area is characterized by a wide variety of
landform types and an elevation range of 150 to 530 m.
The forests in this area are representative of Eucalyptus
globulus stands in NW Spain, characterized by low-
intensity silvicultural treatments and by the presence
of tall shrub. The canopy of mature Eucalyptus globu-
lus plantations is usually high and sparse, thus enabling
sunlight to penetrate to the ground, which is often
aggravated by severe defoliation caused by the euca-
lyptus weevil Gonipterus scutellatus Gyll. Such low
resistance of the canopy to light penetration allows
growth of herbaceous sub-shrub cover dominated by
shade-intolerant fruticose species and both shade-
intolerant and shade-tolerant herbs below the canopy,
which often produce a large amount of biomass (about
2.5 to 3.2 Mg ha–1 total dry matter) (Silva-Pando et al.,
1993). The already well-known loss of precision in
DTMs in forest areas, together with steep slopes and
the high variability and quantity of understory, poses
a serious challenge to the accuracy of LiDAR tech-
nology (Raber et al., 2002; Hodgson et al., 2003,
2005).

LiDAR data

The LiDAR data were acquired in November 2004
with an Optech Airborne Laser Terrain Mapper (ALTM)
2033 sensor (www.optech.ca) operated at a laser wa-
velength of 1,064 nm from a flight altitude of 1,500 m
above sea level. The beam divergence was 0.3 mrad, the
pulsing frequency 33 kHz, the scan frequency 50 Hz,
and the maximum scan angle ±10∫. The first and last
return pulses were registered. The whole study area
was flown in 18 strips and each strip was flown three
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Figure 1. Inventory plots.
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times, which gave an average measurement density of
about 4 pulses m–2.

Field data

A total of 39 square plots of 225 m2 were located
and measured in the Eucalyptus globulus plantations
in the study area, between February and March 2005.
The plots were subjectively selected to represent the
existing range of ages, stand densities and sites in the
regions. Topographical surveys were carried out using
total stations and GPS to determine the location of the
four corners and the position of every tree within the
plots. First, a Trimble® 5800 GPS (Trimble, Sunnyvale,
CA, USA, www.trimble.com) (dual-frequency real-
time kinematic receiver with a planimmetric precision
of ±5 mm+0.5 ppm and a altimetric precision of ±5 mm
+ 1 ppm) was used to obtain the coordinates of a densi-
fied geodetic network for the study area by applying real-
time kinematics. Based on the network established with
the GPS, a topographic survey of the plots was conducted
using a Trimble® 5603 Robotic Total Station (Trimble,
Sunnyvale, CA, USA, www.trimble.com) with a preci-
sion in distances measurement of ±2 mm + 2 ppm and
a precision in angles measurement of 3 to 5”. Observa-
tions of the four corners of each plot and of the position
of each tree within the plot were made during the survey.

For all the trees in each sample plot, two measure-
ments of diameter at breast height (1.3 m above ground
level) were made at right angles, with a tree calliper.

Measurements were made to the nearest millimetre,
and the arithmetic mean of the two measurements was
calculated. Total tree height was measured to the
nearest decimetre with a Vertex III hypsometer (Haglöf
Sweden AB, Långsele, Sweden, www.haglof.se).

The dry weight of the biomass fractions of each tree
were estimated from the following equations for Euca-
lyptus globulus in Galicia reported by Diéguez-Aranda
et al. (2009):

[1]

[2]

[3]

[4]

[5]

where ww is stem wood biomass (kg), wb7 is wood and
bark biomass on branches with 7 cm minimum top
diameter (kg), wb is bark biomass on stem (kg), wb2–7

is wood and bark biomass on branches with 7 cm ma-
ximum butt diameter and 2 cm minimum top diameter
(kg), wb0.5–2 is wood and bark biomass on branches with
2 cm maximum butt diameter and 0.5 cm minimum top
diameter (kg), wb0.5 is wood and bark biomass on
branches with 0.5 cm maximum butt diameter (kg), wl

is needles biomass (kg), d is diameter at breast height
outside bark (1.3 m above the ground level, cm), and
h is total tree height (m).

Finally, crown biomass (wcr), stem biomass (wst) and
aboveground biomass (wabg) were calculated from the
sum of the biomass fractions included:

[6]

[7]

[8]

The field measurements (heights and diameters) and
the estimated dry weight of the biomass fractions were
used to estimate the following stand variables in each
plot, on a per hectare basis: stand crown biomass (Wcr),
stand stem biomass (Wst), and stand aboveground bio-
mass (Wabg). The estimates were used to develop models
to derive these stand variables from LiDAR data.

Preparation of LiDAR data

The LiDAR data provided by the contractor only
provided information, for each laser pulse emitted by
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Table 1. Forestry stand parameters of the sample plots
(n = 39)

Variable Average Minimum Maximum
Standard
deviation

N 1,663 622 3,378 770
d 13.5 9.2 19.3 2.7
Hm 17.4 11.8 22.3 2.4
Hd 23.5 13.3 36.5 4.1
G 25.8 7.2 47.0 9.6
V 229.4 39.9 511.1 105.1
Wcr 17.4 4.5 35.6 7.0
Wst 114.6 19.9 276.9 53.9
Wabg 132.0 24.4 312.4 60.7

N: number of stems per hectare. d: diameter at breast height
outside bark (1.3 m above ground, cm). Hm: mean height (m).
Hd: dominant height (m). G: stand basal area (m2 ha–1). V: stand
volume over bark (m3 ha–1). Wcr: stand crown biomass (Mg ha–1).
Wst: stand stem biomass (Mg ha–1). Wabg: stand above ground
biomass (Mg ha–1).



the sensor, about return type (first and last), X, Y and
Z coordinates, and intensity values. Single returns, i.e.
those that hit a solid surface, were recorded twice in
the original dataset with the same information but
different return type code. The theoretical nominal
density of the LiDAR data was 4 pulses m–2, which
implied collecting 8 returns m–2.

Original LiDAR data with different resolutions, i.e.
obtained from flights carried out in the same area, at
the same time, and with the same flight parameters but
at different LiDAR pulse densities, are the most desi-
rable for assessing the influence of density on the
extraction of forest information. However, the lack of
such data can be overcome by artificially reducing the
original LiDAR point cloud. Although this approach
does not fully mimic the actual reduction that would
be obtained with different flights, it allows study of the
most important factor in canopy height modelling. For
this purpose, several alternatives have been proposed,
as follows: (i) a random reduction over the entire dataset
(Anderson et al., 2006; Liu and Zhang, 2008; Puetz et
al., 2009), (ii) a systematic reduction in each scan line
(Gueudet, 2004; Raber et al., 2007; Magnusson et al.,
2007; Treitz et al., 2010), and (iii) a reduction by random-
ly maintaining one return within a grid cell of a specific
size (Magnusson, 2006; Gobakken and Næsset, 2007).
The first alternative may not preserve the order and
regularity of the original LiDAR data. The second
requires information about the scan line and the order
in which points were recorded. The third option
overcomes the possible lack of regularity and allows
for the use of data without scan line information.

Because of the limited information provided by the
data used in this study, random selection of LiDAR
returns in a grid cell of 1 m2 was carried out (note that this
procedure does not allow for the simulation of other
potentially important parameters such as flight height
or scan angle). Examination of the original point cloud
showed that many cells included more than 8 returns m–2.
Therefore, to obtain a regular distribution of LiDAR re-
turns, and to investigate the effect of the LiDAR point
cloud density on the estimation of stand variables, two
datasets were generated: one with a final density of 1
return m–2 and other with 8 returns m–2 (equivalent to
0.5 and 4 pulses m–2). Fig. 2a and 2b show the two
LiDAR datasets generated for the plot number 3.

Intensity is a radiometric constituent of LiDAR data
(Singh et al. 2010), and it is recorded by the sensor as
the amount of energy backscattered from objects or
earth’s surface. The intensity values recorded by the
sensor remain unchanged under different conditions
of illumination caused by, e.g., shadows or occlusions
(Donoghue et al., 2007; Höfle and Pfeifer, 2007), but
they are affected by other factors, such as properties
of the terrain, topography, flight and sensor characte-
ristics, and atmospheric conditions (Donoghue et al.,
2007; Höfle and Pfeifer, 2007; Mazzarini et al., 2007).

Some authors have recommended considering range,
incidence angle and atmospheric attenuation for in-
tensity normalization (Höfle and Pfeifer, 2007; Gross
et al., 2008; Jutzi and Gross, 2010). However, such
data are not always available, and other authors re-
commend normalizing intensity values to a user-
defined standard range in order to remove the range

514 E. Gonzalez-Ferreiro et al. / Forest Systems (2013) 22(3): 510-525

Figure 2. LiDAR cloud for the plot number 3 with (a) 4 pulses m–2 and (b) 0.5 pulses m–2. Scale bars show ellipsoidal height of the
LiDAR returns for the plot number 3.
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dependency of the intensity signal (Donoghue et al.,
2007; Mazzarini et al., 2007; García et al., 2010). In
this approach, the normalized intensity values (I’) is
obtained by multiplying the raw intensity value (I) by
the quotient of the range of each return (rg), calculated
as the difference between the average flying height and
the height of each return, i.e. the difference between
the sensor-target distance, and the standard range (rgs)
(e.g. 1,000 m) (Eq. [9]):

[9]

This method eliminates the path length variations
in the intensity recorded by the system, by providing
values equivalent to the intensity that would have been
recorded if all points were at the same range (García
et al., 2010).

In the present case, range and scan angle data were
not available for every return. The terrain was very
steep, with slopes above 40° in some areas and a topo-
graphic range of 150 to 530 m above mean sea level,
and therefore the range was normalized to a user-
defined standard range using Eq. [9]. For each return,
the range (m) was estimated as the difference between
the average altitude of the flight (1,500 m above sea
level) and the ellipsoidal altitude of the return (m). This
approach should not cause large errors in range
computation because of the small scan angle (±10°)
(García et al., 2010). Fig. 3a and 3b show the 0.5 pulses
m–2 LiDAR dataset for the plot number 3, be-
fore and after the intensity normalization process.

Extraction of LiDAR variables

For the generated datasets (0.5 and 4 pulses m–2),
FUSION software (McGaughey, 2009) was used to
perform filtering, interpolation and DTM/DCM ge-
neration operations, as well as to compute the follo-
wing variables related to the height and return intensity
distributions metrics within the limits of the 39 field
plots: mean, maximum and minimum values, mode,
standard deviation, variance, interquartile distance,
coefficients of skewness and kurtosis, average absolute
deviation, and percentiles. The percentage of returns
above a specific height threshold was also calculated.

The following steps were carried out with several
processing programmes implemented in the FUSION
LIDAR Toolkit (McGaughey, 2009). First, ground
returns were extracted from the LiDAR point cloud
with the GroundFilter tool, which implements a filte-
ring algorithm adapted from Kraus and Pfeifer (1998)
and based on linear prediction (Kraus and Mikhail,
1972). Second, these returns were used to generate a
DTM grid with the GridSurfaceCreate tool, which
computes the elevation of each grid cell from the ave-
rage elevation of all points within the cell; if the cell
does not contain any points, it is filled by interpolation
from the neighbouring cells; the cell size value was
1 m2. Third, the normalized LiDAR point cloud was
obtained by subtraction of the ellipsoidal height of the
DTM from the Z coordinate of each LiDAR return with
the ClipData tool (the height switch in combination
with the previously generated DTM were used); this

′I = I
rg2

rg
s
2
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Figure 3. 05 pulses m–2 LiDAR dataset for the plot number 3. Scale bars show the intensity of the LiDAR returns: (a) before nor-
malization and (b) after normalization.
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tool was used also to exclude returns below a normali-
sed height of 2 m (zmin switch = 2), which were consi-
dered as not belonging to tree crowns (e.g. hits on
shrubs, rocks and logs). Fourth, the normalised LiDAR
point cloud was clipped using the boundaries of the 39
field plots, which were previously stored as polygons
in ESRITM shape files (ESRI, 1998). The PolyClipData
tool allowed extracting the LiDAR cloud within the
limit of each plot area, so that, an independent LiDAR
cloud file was created, covering each plot area. Fifth,
the metrics of heights and return intensity distributions
of these 39 clipped and normalized point clouds were
computed with the CloudMetrics tool. Fig. 4 shows the
4 pulses m–2 LiDAR dataset for the plot number 3 with
the normalized height of the LiDAR returns and the
generated DTM.

Regression models

Linear, (multiplicative) power function and expo-
nential models were used to establish empirical rela-
tionships between f ield measurements and LiDAR
variables. Their respective general expressions are as
follows:

[10]

[11]

[12]

where Y are field values of Wcr (kg ha–1), Wst (kg ha–1),
and Wabg (kg ha–1), and X1, X2…, Xn may be variables
related to the metrics of heights and return intensity
distributions or measurements related to canopy
closure. All variables were computed from the datasets
with resolutions of 4 and 0.5 pulses m–2. The following
variables can be related to height distribution: hmin, hmax,
hmean, hmedian, hmode, hSD, hskw, hkurt, hID, hAAD, h05, h10,
h20,…, h90, h95, h25 or h75, which are the minimum,
maximum, mean, median, mode, standard deviation,
coeff icients of skewness and kurtosis, interquartile
distance, average absolute deviation, percentiles, and
first and third quartiles values of the height distribution
of laser returns for each plot (m), respectively. The
variables related to return intensity distribution are
based on the same statistics as the variables related to
height distribution, but in this case they are denoted
with the letter i instead of h. The variables related to
canopy closure can be either r2, which is the number
of returns above 2 m height for each plot, or c2-FP,
which is the ratio of the number of laser hits above 2
m height to the number of first returns for each plot,
expressed as a percentage. The additive error term ε is
assumed to be normally, independent and identically
distributed with zero mean.

Model fitting and selection

Linear models were fit by ordinary least squares, by
applying the REG procedure of SAS/STAT® (SAS Ins-
titute Inc., 2004). Power function and exponential
models were fit by nonlinear regression, by use of the
Gauss-Newton method implemented in the NLIN
procedure of the same statistical package. In a previous
step, the latter two types of models were linearized by
taking natural logarithms from both sides of Eqs. [11]
and [12], in order to select the best subset of indepen-
dent variables to be included in each and to obtain
initial estimates of the parameters using the linear
regression technique (Myers, 1990, p: 444).

Once the complete linear form of the models was
specif ied, the models were examined to determine
whether all terms should be retained in the final re-
gression equations. This involved fitting a number of
subset models and comparing the relative performance
of each (Clutter et al., 1983, p: 318). Although there
are different approaches for selecting the subset models
to be fit by linear regression (Draper and Smith, 1998,
chapter 15), the Mallows’ Cp selection method of theY = exp β
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Figure 4. 4 pulses m–2 LiDAR dataset for the plot number 3 and
the generated DTM. Scale bar shows the normalized height of
the LiDAR returns.
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REG procedure, which performs all possible subset
regressions and lists the models in ascending order of
Cp, was used. Heteroscedasticity was examined vi-
sually, by plotting residuals as a function of predicted
values, but any discernible trend or heteroscedasticity
was found. Multicollinearity among the explanatory
variables was also checked with the condition index.
Regressions with a condition index above 30 were
disregarded, as recommended by Belsley (1991). Fi-
nally, only models in which all the parameter estimates
were significant at 5% level were considered.

Comparison of the estimates for the different models
(linear, power function and exponential) was based on
numerical and graphical analyses of the residuals. The
following three statistics were calculated: the coeffi-
cient of determination (R2), the root mean square error
(RMSE), and the Bayesian Information Criterion (BIC)
proposed by Schwarz (1978). Although BIC was used
as the final criterion for model selection (Peña, 2002,
p: 570), it does not provide an intuitive idea of model
precision. R2 (also referred to as pseudo-R2 when applied
in nonlinear regression) indicates the proportion of the
total variance of the dependent variable that is explai-
ned by the model. Although there are several shortco-
mings associated with use of R2 in nonlinear regression,
the general usefulness of some global measure of mo-
del adequacy appear to override some of those limi-
tations (Ryan, 1997, p: 424). The RMSE provides an
idea of the precision of the estimates in the same units
as the dependent variable.

Effects of density reduction

Using a similar procedure to that proposed by Treitz
et al. (2010), but considering only laser pulse density
as the factor of interest, prediction errors from the best
linear, power function, and exponential models deve-
loped for each dependent variable were calculated for
each plot:

[13]

where eij is the prediction error of the ith plot (from 1
to 39) associated with the jth LiDAR pulse density (0.5
pulses m–2 and 4 pulses m–2), Yi is the stand variable
obtained from field measurements for the ith plot, and
ŷij is the corresponding predicted value for the ith plot
and the jth LiDAR pulse density.

The nonparametric Kruskal-Wallis one-way analysis
of variance by ranks (Kruskal, 1952; Kruskal and Wallis,

1952) was used to compare the prediction errors dis-
tributions by LiDAR pulse density factor because of
the non-normal distribution of the prediction errors for
each model type and dependent variable, as suggested
by the Shapiro-Wilk test for normality (Shapiro and
Wilk, 1965, 1968) and the examination of Quantile-
Quantile plots. If the computed value of the test suggests
rejecting the null hypothesis, there is a high likelihood
that the two samples represent populations with diffe-
rent median values (Sheskin, 2004, pp: 757-761).

Results

Regression models

The parameter estimates and goodness-of-f it sta-
tistics of the best model developed by type (linear, power
function and exponential), dependent stand variable
(Wcr, Wst, and Wabg) and generated dataset (0.5 and 4
pulses m–2) are shown in Tables 2-4. For all the de-
pendent variables and datasets, exponential models
performed best (as shown by the BIC values), followed
by linear and power function models. In Wcr modelling,
exponential models provided R2 values of 75.3% and
71.8% for the 4 and 0.5 pulses m–2 datasets, respec-
tively (Table 2); the respective differences between the
best and worst (power function) models, in terms of
R2, were 11.7% and 19.6%. In Wst modelling, exponen-
tial models provided R2 values of 86.6% and 84.1% for
the 4 and 0.5 pulses m–2 datasets, respectively (Ta-
ble 3); the respective differences between the best and
worst (power function) models, in terms of R2, were
9.2% and 19.7%. In Wabg modelling, exponential mo-
dels provided R2 values of 85.7% and 83.1% for the 4
and 0.5 pulses m–2 datasets, respectively (Table 4); the
respective differences between the best and worst
(power function) models, in terms of R2, were 9.7%
and 19.9. Only independent variables related to the
metrics of height distribution proved to be reliable sta-
tistics for predicting the three dependent variables Wcr,
Wst, and Wabg (Supplementary data includes plot
information of the values of dependent and explanatory
variables used in the final models presented in the Ta-
bles 2, 3 and 4). Further analyses were only carried out
for exponential models.

Figs. 5a, 5b, 6a, 6b, 7a and 7b show the field-mea-
sured versus predicted values (using exponential models)
of crown, stem and aboveground biomass fractions for
the 0.5 and 4 pulses m–2 datasets, respectively.

e
ij

= Y
i
− Ŷ

ij
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Effects of density reduction

For all the pairwise comparisons, the computed chi-
square approximation of the Kruskal-Wallis test sta-
tistic (H) was below the tabled critical 0.05 chi-square
value (χ1

05 = 3.84) for 2-1 degrees of freedom (df). The
alternative hypothesis (no equality of medians) was
not supported at the 0.05 level in any of the cases
(H < χ1

05, α = 0.05 and p > 0.05; see Table 5). Therefore,
the results suggest that the reduction in the LiDAR
point cloud has no effect on exponential model fit.

Comparison in terms of R2 can provide a more
intuitive idea of the non loss of fit caused by reduction

of LiDAR density. Variations in R2 of  3.5, 2.5 and 2.6%
were obtained for Wcr, Wst, and Wabg exponential
models, respectively. The selected exponential models
for Wcr, Wst, and Wabg include the same independent
variable (h75) for the two datasets (4 and 0.5 pulses m–2)
(Tables 2-4).

Discussion

A statistical approach based on regressors, which
were calculated directly from the previously normali-
zed laser-derived canopy height and intensity distribu-
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Table 2. Results of Wcr modelling for 0.5 and 4 pulses m–2 datasets

Pulses
Model

Independent Parameter Standard t-
p > |t| R2 RMSE

BIC
m–2 variable estimate error1 value (kg ha–1)

0.5 Linear β0 parameter –20,897 4,086 –5.11 < 0.0001 0.708 3,812 650.5
h90 1,916 202.3 9.47 < 0.0001

Power β0 parameter 108.2 101.4 1.07 0.2929 0.522 4,879 669.8
function h60 1.770 0.319 5.55 < 0.0001

Exponential β0 parameter 7.544 0.264 28.56 < 0.0001 0.718 3,745 649.1
h75 0.1164 0.0129 9.02 < 0.0001

4 Lineal β0 parameter –17,319 3,610 –4.80 < 0.0001 0.719 3,736 648.9
h75 1,835 188.4 9.74 < 0.0001

Power β0 parameter 51.81 43.76 1.18 0.2421 0.636 4,256 659.1
function h60 2.009 0.285 7.05 < 0.0001

Exponential β0 parameter 7.576 0.231 32.78 < 0.0001 0.753 3,504 643.9
h75 0.1126 0.011 10.24 < 0.0001

1 For the power function and exponential models, the standard errors are approximates values.

Table 3. Results of Wst modelling for 0.5 and 4 pulses m–2 datasets

Pulses
Model

Independent Parameter Standard t-
p > |t| R2 RMSE

BIC
m–2 variable estimate error1 value (kg ha–1)

0.5 Linear β0 parameter –16,3950 23,804 5,424 < 0.0001 0.801 24,732 800.0
h75 15,802 1,319 11.98 < 0.0001
hskw 1,2920 5,425 2.38 0.0226

Power β0 parameter 103.8 107.0 0.97 0.3383 0.644 32,594 817.9
function h60 2.434 0.349 6.97 < 0.0001

Exponential β0 parameter 8.785 0.240 36.60 < 0.0001 0.841 21,773 786.4
h75 0.1493 0.0114 13.10 < 0.0001

4 Linear β0 parameter –169,209 23,446 –7.22 < 0.0001 0.803 24,261 794.9
h75 15,017 1,223 12.28 < 0.0001

Power β0 parameter 39.57 33.29 1.19 0.2422 0.774 25,991 800.2
function h60 2.745 0.282 9.73 < 0.0001

Exponential β0 parameter 8.902 0.200 44.51 < 0.0001 0.866 19,985 779.7
h75 0.1406 0.0093 15.12 < 0.0001

1 For the power function and exponential models, the standard errors are approximates values.



tions, was used for forest attribute estimation. Therefore, the
model fit will be influenced by the precision of the point
cloud processed into canopy heights and intensities.

Errors in DTM will lead to errors in the normalized
canopy height distribution. In addition to errors caused
by the sensor (e.g. variation in scanning angles due to
different and multiple flight lines) and the methods and
algorithms used (e.g. noise threshold algorithms used
to identify the first and last returns), the quality of a
laser-derived DTM is affected by data characteristics,
such as point density, f irst/last pulse, footprint size,
flight height or scan angle, and by errors caused by the
complexity of the target, such as type and flatness of

terrain, density of the canopy or amount and height of
understory (Hyyppä et al., 2008; Thomas et al., 2006).
However, relatively good canopy height information
can be collected with various parameter configura-
tions. Among the above factors, pulse density can be
considered the most influential (Hyyppä et al., 2008).

The results presented in this study demonstrate that
descriptive variables, which are essential to biomass
assessment, can be modelled with reasonable precision
with medium- and low-density laser data obtained from
Atlantic Eucalyptus globulus plantations. The mo-
delling results for Wcr (R2 = 0.75, RMSE = 3.50 Mg ha–1

for 4 pulses m–2; R2 = 0.72, RMSE = 3.75 Mg ha–1 for
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Table 4. Results of Wabg modelling for 0.5 and 4 pulses m–2 datasets

Pulses
Model

Independent Parameter Standard t-
p > |t| R2 RMSE

BIC
m–2 variable estimate error1 value (kg ha–1)

0.5 Linear β0 parameter –206,767 30,719 –6.73 < 0.0001 0.771 29,453 810.0
h95 16,422 1,471 11.16 < 0.0001

Power β0 parameter 154.8 157.2 0.98 0.3312 0.632 37,319 828.5
function h60 2.345 0.344 6.82 < 0.0001

Exponential β0 parameter 9.010 0.241 37.39 < 0.0001 0.831 25,337 798.2
h75 0.1450 0.0116 12.50 < 0.0001

4 Linear β0 parameter –186,527 26,791 –6.96 < 0.0001 0.797 27,723 805.3
h75 16,852 1,398 12.06 < 0.0001

Power β0 parameter 60.83 51.08 1.19 0.2413 0.760 30,120 811.7
function h60 2.646 0.281 9.42 < 0.0001

Exponential β0 parameter 9.115 0.202 45.12 < 0.0001 0.857 23,269 791.6
h75 0.1371 0.0095 14.43 < 0.0001

1 For the power function and exponential models, the standard errors are approximates values.

a) b)

Figure 5. a) Field-measured versus predicted Wcr for 0.5 pulses m–2 dataset (R2 = 0.718; p-value < 0.005). Line shows 1:1 relations-
hip. b) Field-measured versus predicted Wcr for 4 pulses m–2 dataset (R2 = 0.753; p-value < 0.005). Line shows 1:1 relationship.
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0.5 pulses m–2), Wst (R2 = 0.87, RMSE = 20.0 Mg ha–1

for 4 pulses m–2; R2 = 0.84, RMSE = 21.8 Mg ha–1 for
0.5 pulses m–2) and Wabg (R2 = 0.86, RMSE = 23.3 Mg
ha–1 for 4 pulses m–2; R2 = 0.83, RMSE = 25.3 Mg ha–1

for 0.5 pulses m–2) (see Tables 2-4) are similar to those
reported in the international literature. Carbon stocks
can be easily calculated as a 45.1% of the aboveground
biomass estimations; this value corresponds to the
weighted average carbon concentration for Eucalyptus
globulus in Galicia reported by Diéguez-Aranda et al.
(2009, p: 241).

Aboveground biomass estimates from exponential
models (see Table 4) were similar in terms of R2 to

those reported by Lim and Treitz (2004a) and Thomas
et al. (2006) in Canada. Both studies used LiDAR-
derived height quantiles as independent variables. The
first, in uneven-aged mature to overmature tolerant
hardwood forests, used the 25th percentile as the best
explanatory variable; the second one, in mixedwood
boreal forests, used the 50th percentile as the best expla-
natory variable. Modelling results were slightly better
in terms of R2 than those reported by Lim et al. (2003a)
and Lim and Treitz (2004b) in Canada, by Hall et al.
(2005) in USA, and by González-Ferreiro et al. (2012)
in Spain. The f irst, in deciduous forest ecosystems
composed predominantly of Acer saccharum Marsh.
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a) b)

Figure 6. a) Field-measured versus predicted Wst for 0.5 pulses m–2 (R2 = 0.841; p-value < 0.005). Line shows 1:1 relationship. 
b) Field-measured versus predicted Wst for 4 pulses m–2 (R2 = 0.866; p-value < 0.005) dataset. Line shows 1:1 relationship.

300

250

200

150

100

50

0

300

250

200

150

100

50

0

Fi
el

d 
st

em
 b

io
m

as
s 

(M
g 

ha
–1

)

Fi
el

d 
st

em
 b

io
m

as
s 

(M
g 

ha
–1

)

0 50 100 150 200 250 300
Predicted stem biomass (Mg ha–1)

0 50 100 150 200 250 300
Predicted stem biomass (Mg ha–1)

b)a)

Figure 7. a) Field-measured versus predicted Wabg for 0.5 pulses m–2 (R2 = 0.831; p-value < 0.005). Line shows 1:1 relationship. 
b) Field-measured versus predicted Wabg for 4 pulses m–2 (R2 = 0.857; p-value < 0.005). Line shows 1:1 relationship.
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and Betula alleghaniensis Britton, found that the best
explanatory variable was the mean of laser height cal-
culated from LiDAR returns f iltered based on a
threshold applied to the intensity return values; the
second, in mature and homogeneous Pseudotsuga
menziesii (Mirb.) forests, used the deciles of the
distribution of the laser canopy heights as explanatory
variables; the third, in Pinus ponderosa Dougl. ex
Laws. forests, found that the best predictors were the
mean height of the highest vegetation return in each
m2, the proportion of ground returns that are also 1st

returns, and the proportion of 1st returns that are also
ground returns; the last, in Pinus radiata D. Don fo-
rests, found that the skewness, the standard deviation,
and the 5th percentile of height distribution were the
best explanatory variables when a 0.5 pulses m–2

LiDAR dataset was used, while the maximum intensity,
the number of returns above 2 m height, the skewness
and the 80th percentile of height distribution were the
best explanatory variables when a 8 pulses m–2 LiDAR
dataset was used. Finally, the R2 values for above-
ground biomass modelling were considerably lower
than those obtained by Garcia et al. (2010) in Spain
and by Treitz et al. (2010) in Canada. The former, fitted
species-specific models on Pinus nigra Arn., Juniper
thurifera L. and Quercus ilex L. and also a general
model in which the percentage of intensity of the
height percentile 25 and the height percentile 50 were
the explanatory variables; the latter, for Picea mariana
(Mill) B.S.P. forests, used the mean height (for a LiDAR
dataset of 1.6 pulses m–2), the mean height and the cumu-
lative proportions of LiDAR returns found in the intervals
6 and 9 of heights (for a LiDAR dataset of 3.2 pulses
m–2), and the mean height, the number of first divided
by all returns, and the 40th percentile of the height
distribution (for a LiDAR dataset of 0.5 pulses m–2).

Several studies based on small-footprint LiDAR
data systems have found that height percentiles are
highly correlated with stand biomass (Lim and Treitz,
2004b; Patenaude et al., 2004; Treitz et al., 2010; García

et al., 2010; González-Ferreiro et al., 2012). The selec-
ted exponential models for Wcr, Wst, and Wabg include
the 75th percentile of the height distribution (h75) as a
single regressor to estimate the different biomass frac-
tions (Tables 2-4), which is consistent with the findings
of Gobakken and Næsset (2007), who reported that
intermediate and upper height percentiles (h50 to h90)
remain very stable after a reduction in LiDAR pulse
density. This demonstrates the potential of the height
percentiles for estimation of several biomass fractions
in Atlantic Eucalyptus globulus plantations, the stand
structure characteristics of which are clearly different
from those in previous studies. Similar to Hall et al.
(2005), none of the regression models finally selected
included intensity-derived metrics as explanatory
variables; this is in contrast with the results of García
et al. (2010), who found that intensity-derived varia-
bles were more strongly related to biomass than height-
related variables. This may be because the intensity-
derived explanatory variable was weighted by the mean
point density. González-Ferreiro et al. (2012) found
that independent variables related to return intensity
distributions and measurements related to canopy
closure may add some valuable information for pre-
dicting biomass fractions. In conclusion, but remaining
cautious —as some of the papers did not consider the
use of the intensity as a predictor— it is expected that
height-derived variables are able to explain most of the
variability of biomass fractions, while intensity-deri-
ved variables only explain a small part of the observed
variability, although they may improve models (e.g.
González-Ferreiro et al., 2012) or be decisive if used
in combination with density or height LiDAR values
(e.g. Lim et al., 2003a; García et al., 2010).

The selected models for Wcr, Wst, and Wabg were very
stable after thinning LiDAR pulse density (see Table
5), which is consistent with the findings reported by
Treitz et al. (2010) and by González-Ferreiro et al.
(2012), who did not find any evidence, at significance
levels of respectively 10% and 5%, that a reduction in
LiDAR density affected model precision for stand
aboveground biomass. García et al. (2010) concluded
that reduction of point density had little effect on the
results of general models for mixed stands of Pinus
nigra Arn., Juniper thurifera L., and Quercus ilex L.;
with the exception of the species-specific equations
fitted for Pinus nigra Arn. and Quercus ilex L. Thomas
et al. (2006) asserted, on the basis of Q-Q analysis and
comparison of R2 values, that models performed simi-
larly for low and high density LiDAR data Despite the
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Table 5. Comparison of the prediction errors for 0.5 pulse
m–2 and 4 pulses m–2 datasets by use of the test of Kruskal-
Wallis one-way analysis of variance by ranks

Dependent
Model H p-value

variable

Wcr Exponential 0.0042 0.9482
Wst Exponential 0.0182 0.8927
Wabg Exponential 0.0072 0.9323



stability to reduction demonstrated in the present study,
all R2 values associated with the models tested were
higher when the variables were modelled with full
density data (see Tables 2-4).

Exponential models performed better for all the
fitted variables, using both 4 and 0.5 pulses m–2 data-
sets. Differences in R2 of more that 5% were obtained
between the “best” and “worst” model for each depen-
dent variable, which confirms the importance of model
selection. For all predicted variable power function
models (one of the most widely used types of model
for predicting forest stand variables with LiDAR: see
e.g. Næsset, 1997, 2002, 2004; Næsset and Bjerknes,
2001; Næsset and Økland, 2002; Hollaus et al., 2007)
provided the poorest results in terms of R2 for both da-
tasets. Although the difference between power function
and exponential models may be subtle, it becomes
gradually more evident as data accumulates.

Conclusions

The results suggest that LiDAR is a valuable tool
for estimating biomass fractions in Atlantic Eucalyptus
globulus plantations. Exponential regression models
performed better as regards estimating all biomass
fractions, although they must be tested in different
types of forest, regions and data ranges in order to ve-
rify their general applicability. Low-density LiDAR
data (e.g. 0.5 pulses m–2) can be used without signi-
ficant loss of information, but usual density variation
across areas should be considered when requesting
airborne LiDAR surveys from commercial companies.
The possibility of using low-density LiDAR data for
retrieving stand biomass fractions is extremely impor-
tant for inventory of remote and inaccessible areas as
well as for monitoring long-term changes in above-
ground biomass and carbon changes in the context of
the Kyoto Protocol. Furthermore, low-density data will
facilitate regional and national forest inventories,
because it will reduce monetary costs along with com-
putation, storage and handling efforts (Thomas et al.,
2006). Considering the results of this study, the low-
density LiDAR data (0.5 pulses m–2) that are released
by the Spanish National Geographic Institute (Instituto
Geográfico Nacional IGN) will be an excellent source
of information for reducing the cost of forest inven-
tories, and will thus have implications for forest mana-
gement. Furthermore, IGN LiDAR data and the propo-
sed models will be available to all stakeholders and the

research community, thus facilitating mapping efforts.
Subsequently, valuable knowledge about spatial varia-
bility in the different fractions of biomass and carbon
stocks in Galicia will be added.
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